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Abstract

We present improved techniques for finding homologous regions in DNA and protein
sequences. Our approach focuses on the core regions of a local pairwise alignment;
we suggest new ways to characterize these regions that allow marked improvements
in both specificity and sensitivity over existing techniques for sequence alignment.
For any such characterization, which we call a vector seed, we give an efficient al-
gorithm that estimates the specificity and sensitivity of that seed under reasonable
probabilistic models of sequence. We also characterize the probability of a match
when an alignment is required to have multiple hits before it is detected. Our ex-
tensions fit well with existing approaches to sequence alignment, while still offering
substantial improvement in runtime and sensitivity, particularly for the important
problem of identifying matches between homologous coding DNA sequences.

1 Introduction

We study techniques for faster and more sensitive pairwise local alignment.
Recent advances [1-3] have demonstrated modifications of the basic approach
introduced in BLAST [4] that lead to significant improvements in both sen-
sitivity and running time of local alignment. Here, we present a framework
unifying and further extending these approaches, leading to even better per-
formance.

The traditional approach for fast local alignment problem is represented by
the BLASTN [4] program. BLASTN first identifies all pairs of short exact
matches between the two sequences (hits). Every hit is then extended to a
longer alignment, and alignments with high scores are reported, while those
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with low scores are discarded. High scoring alignments that do not contain a
hit cannot be found by this approach.

Sensitivity can be increased by decreasing the required length of the hit; how-
ever, this also increases the number of spurious hits (decreasing specificity)
and thus also increases the running time. Thus, there is a tradeoff between
sensitivity and specificity induced by a particular definition of a hit.

Recently, several researchers have reported alterations to the hit definition
that improve sensitivity without decreasing specificity. Kent [2] in his program
BLAT allows a fized number of mismatches in the region that makes up a hit.
For example, we may require at least 11 matches in a region of length 12.

PatternHunter [1] uses spaced seeds, which allow arbitrary numbers of mis-
matches in fixed positions of the hit. For example, a region of length 9 of an
alignment is a hit to the PatternHunter seed 110110001 if there is a match
on the first, second, fourth, fifth and ninth positions of the region. The other
positions (the zeros in the seed) are not relevant.

Ma et al. [1] also introduce the idea of optimizing the seed, or choosing the
seed of a given specificity which has the highest sensitivity under a specific
probabilistic model of alignments (in their case, a region with 70% similarity of
length 64). In follow-up work, more realistic probabilistic models of alignments
(Markov chains, hidden Markov models) have been shown to yield optimal
seeds with better performance on real data [5,3]. These methods also allow the
creation of seeds tailored for particular application such as finding homologous
protein coding regions.

Protein alignments are scored by substitution matrices such as BLOSUM62
[6] that define different scores for different matching and mismatching amino
acid pairs. Therefore techniques considering only matches and mismatches
for finding hits do not work very well. BLASTP [4] defines a hit as several
consecutive positions with total score exceeding a given threshold.

These techniques are often supplemented by requiring two non-overlapping
hits that are the same distance apart in both sequences. This method also
increases sensitivity compared to a single stronger hit [7].

Here, we generalize these approaches into a new model of vector seeds (Sec-
tion 2). Our model is general, allowing us to produce seeds for nucleotide
alignments that incorporate positions that are required to match, positions
that are free to vary, sets of positions that allow for a limited number of
mismatches, and more. The hit definitions used by BLASTN, BLAT, Pattern-
Hunter, and BLASTP can be all expressed as special cases of vector seeds.
Moreover, vector seeds allow easy transfer of techniques developed specifi-
cally for match/mismatch models into models based on scoring matrices. For



example, we can apply spaced seed ideas to protein homology search.

We also provide an algorithm to predict the sensitivity of a vector seed, given
a probabilistic model of alignments (Section 3). Our algorithm extends the
original algorithm used to compute the sensitivity of PatternHunter’s spaced
seeds [8] to the case of vector seeds. We have previously extended this algo-
rithm to more realistic probabilistic models of alignments, such as HMMs [5],
and the sensitivity of our new seed models can also be computed for HMMs.
This algorithm can be used to find the seed with the best predicted sensitivity
for a given family of vector seeds. We further extend the algorithm to allow it
to predict the sensitivity of two-hit alignment methods.

Our extensions universally allow greater sensitivity and specificity over ex-
isting pairwise alignment methods. For coding DNA alignments, we greatly
improve over the performance of BLAT or spaced seeds specifically chosen
for this problem [5], allowing false positive rates several times smaller than
previously existed, or offering large advantages in specificity with comparable
sensitivity (Section 4). Our methods offer substantially improved performance
over BLAT or PatternHunter, with minimal additional required changes.

2 Alignments and vector seeds

Vector seeds are a new way of defining a hit, the conserved part of an alignment
that triggers alignment extension in the homology search program. A good
definition of hits allows efficient identification of all hits in a sequence database
and leads to high sensitivity and specificity. In this section we introduce vector
seeds as well as probabilistic models for predicting their performance.

2.1 Vector seeds

To define a hit in the vector seed model, we represent ungapped pairwise local
alignments as a sequence of real numbers, each corresponding to a position in
the alignment. Alignments may potentially contain gaps. However, hits must
be located inside a single ungapped region of an alignment. Here, we model
only individual ungapped fragments of such alignments.

In the simplest case, we represent pairwise alignments as binary sequences.
Zero represents a mismatch and one represents a match. For protein align-
ments, we represent the alignment between sequences Y = v1ys...¥y, and
Z = z125...%, by the sequence of positional Scores, (Sy, z1;Sys.z0s- - s Syn.zn )
where S = (s;;) is the scoring matrix. We call such a sequence of positional



scores an alignment sequence. Now we are ready to formally define a vector
seed.

Definition 1 A vector seed is an ordered pair Q = (v,T), where v is the seed
vector (vy,va, ..., vp) of real numbers and T is the seed threshold value.

An alignment sequence X = (x1,xs,...,x,) hits the seed @) at position p if
Zle(vi-prri_l) > T. That is, the dot product of the seed vector and the align-
ment sequence of length € beginning at position p is at least the threshold T
The number of nonzero positions in the vector v is the support of the seed.

Vector seeds generalize the spaced seeds of PatternHunter, the mismatching
seeds of BLAT, and the minimum word score seeds used by BLASTP. For ex-
ample, the BLAT seed that requires seven matching positions in nine consecu-
tive positions in a nucleotide alignment is the vector seed ((1,1,1,1,1,1,1,1,1)
, 7). The spaced seed 110110001 can be represented as the vector seed ((1,1,0,
1,1,0,0,0,1),5). The BLASTP rule that a hit is three consecutive positions
having total score at least 13 corresponds to the vector seed ((1,1,1),13).

However, vector seeds can also encode more complicated concepts. For exam-
ple, if the alignment sequence is binary, the vector seed ((1,2,0,1,2,0,1,2),8)
requires matches in all positions with seed vector value of two, but allows
one mismatch in the three positions with value one. The positions with value
zero are not relevant to a hit. Or, if the alignment sequence is over the val-
ues {0, 1,10}, then the seed ((10, 10, 1,10),301) matches either the alignment
vector (10,10, 1,10) or the vector (10, 10,10, 10), but no others.

Of course, more complicated vector seeds than these rather simple examples
could be developed; the framework is general enough to allow vector seeds
matching any half-space of R‘. However, for simplicity, we will focus on a few
families of vector seeds: for nucleotides, we will consider seed vectors with
only zeros, ones and twos, where the total number of allowed mismatches is
at most one or two, while for amino acids, we will consider short binary seed
vectors. We have not, in our experiments, found much utility for non-binary
seed vectors, though we will describe some exceptions to this rule.

Vector seeds are not universally expressive. For example, the seed ((1,1,0,1, 1,
0,1,1,0,1,1),8) corresponds to requiring matches in the first two positions of
each of four consecutive codons. There is no way in the vector seed model to
encode the requirement that three of the four codons are matched this way;
the seed ((1,1,0,1,1,0,1,1,0,1,1),6) also allows one mismatch each in two
codons.



2.2 Identifying hits in a sequence database

Assume we are given two sequences (or sequence databases) and want to find
all hits between them. If hits are required to be exact matches of length £,
the common approach is to create a hash table of all k-mers in one of the
sequences and then search for each k-mer of the other sequence in the table. If
hits are not exact matches (such as in BLAT or BLASTP), we can take each
k-mer in the second sequence, generate a list of k-mers that would produce a
hit, and search for each k-mer in the hash table. This lookup strategy extends
to the vector seed scenario. Notice that we need to hash only characters on
positions corresponding to non-zero elements in the vector seed.

In this paper we evaluate seeds based on their sensitivity and specificity. This
is based on the assumption that the running time of homology search is dom-
inated by extension attempts for false hits. However, this may not always be
the case.

Consider the support-15 seed ((1,1,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1), 13). For
every 17-mer in the second sequence, there are 991 matching 15-letter hash
table keys whose table entries must be examined. If many of these hash table
entries are empty, the running time of the look-up phase may dominate the
extension phase of the homology search, rendering the seed impractical.

On the other hand, if the first input sequence is large, say 1 Gb, the expected
number of entries in each hash table entry will be close to one for seeds of
support 15. In such a case, we will perform an extension for almost all lookups,
and the extension time will again dominate the lookup phase.

Hence, we seek vector seeds with small support (to minimize memory require-
ments) that allow for a small number of hash table entries to be examined for
each position in a query sequence.

2.8 Seed probabilities

So far, we have described how to use a single vector seed to generate a set of
hits. However, given a family of seeds, we desire the seed that will perform
best. To allow such optimization, we represent properties of alignments by a
probabilistic model and search for a seed maximizing probability of at least
one hit in an alignment sampled from the model. However, to control runtime,
one must also control the false positive rate. Given two probabilistic models,
one modeling alignments of unrelated sequences, and one for true alignments,
we seek seeds with high sensitivity to true alignments, and low false positives.



Probabilistic models of true alignments. We model gap-free local align-
ments with probabilistic processes that generate sequences of real numbers.
We investigate three models for local alignments.

The simplest is the model introduced by PatternHunter for nucleotide align-
ments, with alignments of a specific length (for us, 100) and each position
having probability 0.3 of being zero (mismatch) and 0.7 of being one (match),
independently.

The other model we use for nucleotide alignments is a three-periodic model of
alignments in protein coding regions, where each triplet is emitted as a unit,
chosen from a probability distribution over {0, 1}. Each triplet is independent,
of the others in this model. Such models can be used to effectively model the
conservation in coding alignments, which are of key importance [9]. Recently
[5], we have shown that the optimal spaced seed for coding alignments is
quite different from the one that optimizes PatternHunter’s model, and showed
that this simple codon model is moderately effective at representing these
alignments. To estimate seed sensitivity, we represent this probabilistic model
as an 8-state hidden Markov model emitting individual binary characters.

For protein sequences, we represent the alignment as a sequence of BLO-
SUMG62 scores ranging from —4 to 11, and we use a positionally independent
model similar to PatternHunter’s. An amino acid scoring matrix implies a
probability distribution on pairs of residues being aligned in true alignments.
In particular, an entry s;; in a scoring matrix implies that the probability
of residue 7 aligning with residue j in related sequences is approximately b%i
times the probability of them aligning by chance, for some base b [7]. We use
this observation to compute a distribution on positional scores implied by the
matrix.

Alignments are typically made up of more than one ungapped fragment, sep-
arated by gaps, and in our experiments, we treat the number and lengths
of these fragments as independent random variables. Assume we know the
probability po(k) that an ungapped alignment of a fixed length k, generated
by a probabilistic model M, has a match to a given vector seed (). These
probabilities can be used to compute the probability that a seed matches an
alignment sequence whose length is a random variable L, by simply comput-
ing Po(L) = Y. po(k) Pr[L = k]. We have noted that alignments between
homologous proteins usually consist of one long ungapped fragment and some
number of shorter fragments. Suppose that the number of short fragments is a
random variable F', and the lengths of the long and short fragments are drawn
independently from known distributions L and S. Then we can compute the



probability that an alignment has at least one match:

1= (1= Po(L)) (i(l ~ Py())" PrlF = n]) . 1)

n=0

Background model. To control the false positive rate, we need to be able to
compute the probability p that a hit of a given seed occurs purely by chance at
a given pair of unrelated sequence positions. The expected number of spurious
hits is then pnm, where n and m are the lengths of the two sequences.

For both nucleotide alignment models, our background probability distribu-
tion is a simple noise model, with zero emitted with probability 0.75, and
one with probability 0.25. For protein alignments, we use the probabilities of
the background distribution built into the BLOSUMG62 matrix. The entries
in this matrix are log-odds ratios of the probability that two amino acids
are aligned in homologous sequences and in unrelated noisequences; one can
use the matrix to compute the implied underlying probability distribution of
aligned unrelated pairs of nucleotides, and then use that to compute the score
distribution.

Given this background model, we want to compute the probability p of a ran-
dom match at any position in two sequences. If the seed is particular simple,
we can just compute it directly. For example, in the background model for nu-
cleotide alignments, the probability of a 0/1 seed with support s and threshold
T having a match at a random place is just

p= Z <Z>0.25’f0.758—’f. (2)

k=T

For general vector seeds, probability p is just a sensitivity of the seed in random
alignment of length ¢ generated from the background model, where ¢ is the
length of the vector seed. This can be computed by the algorithm presented
in the next section.

Our experiments also explore the scenario where we require two hits to a
particular seed that do not overlap and are within a distance d of each other.
In this case, the false positive probability p is the probability that a random
pair of positions is a hit and that there is another hit within the needed
distance. This can be computed as p = Bg(f) - Bo(d — £), where Bg(k) is
the probability of at least one seed match in a random alignment of length &
generated from the background model. Values of Bg (k) can be again computed
by the algorithm in the next section.



3 Computing sensitivity for vector seeds

Here, we show how to compute the sensitivity of a vector seed to detect align-
ments that come from a position-independent alignment model. Our method
is analogous to the original Keich et al. [8] algorithm, except that the alphabet
has changed and need not be binary, and that the definition of a hit is the
more complicated dot product property. In recent work [5], we show how to
extend the original Keich et al. algorithm to the case where the alignment
sequence is generated by a hidden Markov model. The extension to HMMs for
vector seeds is straightforward, and we omit it for brevity.

Suppose that the probabilistic model generates an alignment sequence X =
(x1,x9,...,x,), and that the value in each position is independently chosen
from a small finite set D of real numbers; we define p; = Pr[z; = d] for each
d € D. We seek the probability that sequence X generated by this process has
a hit of a given vector seed Q = (v,T), where |v| = ¢. Let D* be the set of
all sequences of numbers from D whose length is at most ¢. In the analysis of
our algorithm’s runtime, we assume that we can represent vectors from D* as
integers and manipulate them in constant time. This assumption is reasonable
in our experimental setting.

We compute the probability by dynamic programming, where the subproblem
is the probability Pg(k, Z) that a sequence of length &, which begins with a
given sequence Z from D*, hits the seed (). We are looking for Pg(n, \), the
probability of a hit when we make no conditions on the string, and the string
is of length n. (We use A to denote the empty sequence.)

We first identify sequences which are guaranteed hits and possible hits. Let Z
be a sequence from D* with the property that for any extension of Z to a
sequence Z' from DY, we have that Z’'-v > T. Then Z is a guaranteed hit:
all extensions to it will hit the seed. Let F' be the set of all such guaranteed
hits. Similarly, let M be the set of all sequences Z from D* for which there
exists an extension Z’ from D' with Z’ - v > T. Members of M are possible
hits: they can be extended to seed hits.

With these definitions, Py(k, Z) can be computed as follows:

(1) If k < ¢, then Py(k,Z) = 0.

(2) Otherwise, if Z € F, then Py(k,Z) = 1.

(3) Otherwise, if Z ¢ M, then Py(k,Z) = Po(k—1,Y), where Z = 21 ... 2,
and Y = z5...2,.

(4) Otherwise, Py(k, Z) = Y paPo(k, Zd).

deD

The computation can be rearranged so that the third case is never reached,



by always shifting forward enough positions when d is added to the end of Z
in the fourth case. We move to the longest suffix of Zd that is in M, and skip
each instance of the third case. For each entry in M, and each value in D, this
skip value can easily be computed in O(¢) time.

Sets I and M can be found in O(|M]) time. We initially compute the best
and worst possible score for each suffix of the seed (). Initially, F' is empty and
M contains the empty string. In each iteration we choose one string X from
M and using the pre-computed scores we identify which elements d from D
permit or require an extension of Xd to a sequence of length ¢ to hit the seed.

Thus, for an arbitrary vector seed (), the algorithm computes Pg(n,\) in
O(|M|(¢ 4 |D|n)) time, if the entries of the dynamic programming table are
stored in a data structure with O(1) access. Note that the running time is
dependent on the size of M; however, seeds with many matching strings are
less useful in practice. Also, we need only keep the table Py for ¢ values of £,
so the memory requirement is O(|M|¢).

Some algorithm extensions. We note four other fairly straightforward
extensions. The first is to seed pairs, where two seeds, ()1 and (), must both
have a hit in the sequence. We first compute the Py, and Py, matrices for
each seed. Then, let Py, g,(k,Z) be the probability of a hit to both ¢); and
()2 in an alignment sequence of length k, starting with Z. If Z is in the F
set for @y, then Py, o,(k,Z) = Pg,(k,Z): we have our hit to the first seed
and require it for the second. Otherwise, if Z is in the M set for neither seed,
we move forward one position, and Pg, o,(k,Z) = Py, 0,(k — 1,Y), where
Z = aY. Finally, if Z is in one of the two possible match sets M, we move
forward one letter: Py, g,(k, Z) = Y qep Po1.0.(k, Zd). The overall runtime is
at most twice the runtime to compute P, and Fp,.

We can also compute the probabilities when a hit of either of the two seeds is
required, or expand the set of matching strings in a variety of ways, by simply
changing the sets M and F'. For example, one can easily examine a single seed
and the BLAST-style vector seed (1%, k), by simply adding the sequence 1% to
F and all of its & — 1 prefixes to M.

We can also consider multi-hit models. Here, we require that the alignment
contains at least p hits at least ¢ positions apart. This can be incorporated by
keeping matrices Py ,, where P ,(k, Z) is the probability of at least @ hits in
a sequence of length k starting with Z. The recurrence is the same as before,
except for the following modifications. First, Pg1(k, X) = Pg(k, X). Second,
if Z € F and a > 1, then Py ,(k,Z) = Py .—1(k — ¢, \). This is because if a
sequence of length k starts with a hit, we need a — 1 hits in the rest of the
sequence.



Finally, the probabilities p; also need not be the same for all positions, as
long as positions are independent. One can instead incorporate a position-
specific probability distribution on D. This is equivalent to computing the
sensitivity of a seed to a position-specific score matrix, if we assume that the
true positives are generated with the probabilities implied by the score matrix
[10]. Of course, such scoring matrices are simply special cases of HMMs, which
our algorithms can also expand to cover, using the techniques in our recent
paper [5], but the algorithm is especially straightforward for these profiles.

4 Experiments

We performed four experiments to verify the usefulness of vector seeds. Our
first two experiments investigate their predicted performance in the simple
PatternHunter model of alignments. In one case, we compute the best single
seeds, and in the other case, we study pairs of seeds that join together well.

In our other experiments, we used models trained for DNA coding regions
and for proteins, and we computed both theoretical performance of seeds and
actual performance on real sequences.

In each experiment, we computed the probability of one hit and of two hits for
the seeds we considered. We also computed the false positive probabilities for
these seeds (assuming that two-hit models were satisfied when two matches
occurred within 100 positions of each other). In experiments on real data, we
also computed how many alignments from our set can be detected by each
seed.

4.1  Predicted performance in the PatternHunter model

One hit required. First, we studied all vector seeds (v,T) with vector
entries zero or one, support s satisfying 8 < s < 15, threshold T satisfying
s—2 < T < s, and whose length is at most min{s+4,17}. We have evaluated
sensitivity of these seeds in a simple PatternHunter model. Recall that in this
model, all positions are independent, alignments are of a constant length, and
the probability of a match at a particular position is a constant p.

Our results are summarized in Figure 1 and Table 1. Seeds with both permitted
mismatches and the structure of spaced seeds have a large advantage over
either alone. For example, the no-mismatch seed PH-10 has false negative
rate 22.4% and false positive rate 9.54 x 10~". By contrast, the two-mismatch
vector seed VS-13-15 has false negative rate 4.11% with very similar false
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Seed One hit Two hits
False False False False

Vector T Support Name negative positive negative positive

1111111111 10 10 BLAST-10 42.0% 9.54 x 10~7 77.9% 9.10 x 10~ 11
111001001001010111 10 10 PH-10 21.1% 9.54 x 10~ 7 53.9% 9.10 x 10~ 11
111111111111111 13 15 BLAT-13-15 11.3% 9.23 x 1077 34.4% 8.52 x 10~ 11
11111101111011111 13 15 VS-13-15 4.11% 9.23 x 1077 18.9% 8.52 x 10711
11101110110101111 12 13 VS-12-13 10.4% 5.96 x 107 34.5% 3.56 x 10~ 11
111111111111 11 12 BLAT-11-12 14.8% 2.21 x 106 41.9% 4.86 x 10710
1111110011010111 11 12 VS-11-12 4.89% 2.21 x 106 19.1% 4.86 x 10710
101111011001111 9 11 VS-9-11 <0.01%  1.26 x 10~ % 0.1% 1.58 x 106

Table 1

Theoretical performance of seeds of different support and with different
allowed number of mismatches. BLAST-X — unspaced seeds of support X;
BLAT-X-Y — unspaced seeds with allowed mismatches; PH-X — optimized spaced
seeds of support X; VS-X-Y — optimized vector seeds (allowing both spaced seeds
and mismatches).

positive rate 9.23 x 1077,

This seed may not be practical, as there are 4'® possible hash table entries,
and for each position in the second sequence we need to check more than 900
of those (see discussion in Section 2.2). The more practical one mismatch seed
VS-11-12 has false negative rate 4.9%, with twice the false positive rate (2.2 x
1075). This is to be compared to BLAT-11-12 with roughly the same specificity,
but much lower sensitivity (almost three times as many false negatives).

Spaced seeds permitting errors are much more useful than unspaced seeds
allowing errors. For example, the one-mismatch seed BLAT-11-12, with one
hit, has false negative rate 14.8%, while the best vector seed, VS-11-12, has
false negative rate 4.9%, three times lower. Both have the same false positive
rate, and are equally simple to implement.

Two hits of the same seed required. The situation is even more dramatic
if we require two hits in the alignment. We note that for our purposes, a false
positive two-hit match is a pair of hits within 100 positions of each other
that do not result from a true alignment. The false positive rate, then, is the
fraction of random positions that satisfy this property.

The seed VS-9-11, allowing two mismatches, has unacceptably high false pos-
itive rate for one hit. If we require two hits, however, the false positive rate
drops to 1.58 x 1079, comparable to that of one hit to the VS-11-12 seed. Yet
the false negative rate is an astonishing 0.1%. While there is some overhead
involved in throwing out the many single hits that aren’t extended, this can
still be done extremely quickly.

If one seeks much better specificity, VS-11-12, with two hits, allows false pos-
itive rate 4.8 x 1071°, over three orders of magnitude better than for one hit

11
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Fig. 1. Performance of vector seeds on simple Bernoulli model. The Figure
shows false positive and false negative rates of seeds with support between 8 and 15,
and with zero, one, or two mismatches permitted, according to the simple Bernoulli
model of alignments. Seeds in a horizontal row in the figure have the same support,
threshold, and number of hits; the unspaced BLAT or BLAST seeds always have
the lowest sensitivity. Two hits to the best one-mismatch seed of support 12 are
found in 81% of alignments, comparable to two hits to the best PatternHunter seed
of weight 9 or one hit to the best PatternHunter seed of weight 10, yet these have
orders of magnitude more false positives.

to PH-10, with comparable false negative rate (19.1%).

The vector seeds with support between ten and twelve may be appropriate
for practice with two hit models. If an input sequence is large, say 20 Mb, the
expected number of entries in each site of a hash table will be at least one
for seeds of these supports (see Section 2.2), and the added work to identify
double hits should be moderate for these seeds. Our tentative recommendation
is two hits to the seed VS-11-12, with false negative rate 19.1% (better than
one hit to the best seed of support 10), and false positive rate 4.86 x 1071,

Interestingly, we found that the sensitivity of a seed to one hit is an excellent
predictor of its sensitivity to two hits. The sensitivity of a seed to two hits is
quite consistently close to the cube of the sensitivity to one hit, with correlation
coefficient r? = .9982. The fourteen seeds of support 11 allowing no errors with
highest sensitivity to one hit are also the best for sensitivity to two hits; this
pattern is consistent for other supports and seed lengths. This suggests that
one need only consider sensitivity of seeds to one hit, perhaps computing
sensitivity to two hits for appealing seeds.
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False False

Seed vector Negative Positive
No augmentation 10.4%  5.96 x 1077
1111111111111 (worst) 8. 7% 1.18 x 1076

1110010111111111 (median) 6.1% 1.16 x 1076
11110101101110111 (mirror) 5.6% 1.18 x 1076
11101110110101111 (best) 5.4% 1.16 x 1076

Table 2
Theoretical performance of two-seed models when a seed of support 13 and
threshold 12 is added to the seed VS-12-13 from Table 1.

Two seeds are better than one. One can use a pair of seeds instead of one,
allowing matches to either seed. We can avoid twice completing alignments
that hit both seeds, so runtime will roughly double for false positives and not
change at all for true positives found with both seeds. We considered adding
a different seed of support 13 with threshold 12 to the seed VS-12-13, which
has false negative rate 10.4% by itself.

The results are shown in Table 2. The best pair halves the false negative rate
while the worst augmentation (non-spaced seed with one mismatch allowed)
only improves false negatives slightly, yet will still double runtime. Interest-
ingly, one of the best seeds to augment the seed with is its mirror image. This
seed has the same sensitivity by itself as VS-12-13.

Of course, there is no evidence that the best seed pair includes the best solo
seed in it; however, it is a reasonable heuristic. (The best pair found here was
also superior to 1000 random pairs of seeds.) Using the second seed comple-
menting the best seed is also sensible when one is unhappy with the results of
a search merely using the first seed.

4.2 DNA seeds for coding alignments

We conducted further experiments on a data set consisting of alignments of
homologous coding regions from human and fruit fly. The initial set contained
339 protein alignments. One protein alignment can yield several DNA align-
ments (or fragments) because the coding regions for each protein can be in-
terrupted by non-coding introns. The final data set contained 972 ungapped
fragments in the training set and 810 gapped fragments in the testing set, after
discarding weak and short fragments. A detailed description of the data set
can be found elsewhere [5] and the data set can be obtained on-line [11]. We
model aligned coding regions by the three-periodic model described earlier.
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Actual Predicted Predicted
Seed False False False
Vector T Support Name Negative Negative Positive
1111111111 10 10 BLAST-10 56.7% 71.4% 9.54 x 10~7
11011000011011011 10 10 CPH-10 14.0% 32.8% 9.54 x 10~7
11011011000011011001011011 13 15 CVS-13-15 4.0% 19.1% 9.23 x 1077
11011012000012011001011011 15 15 CVS2-15-15 4.9% 21.1% 7.0x 10°7
11011011000011011000011011 13 14 CVS-13-14 13.1% 33.1% 1.6 x 10°7
11011012000011011000011012 15 14 CVS2-15-14 13.8% 34.4% 1.4 x 1077
12012012000012012001012012 20 15 CVS2-20-15 9.3% 34.6% 2.7 x 1077
11111111111 10 11 BLAT-10-11 16.2% 32.4% 7.9 x 1076
111111111 9 9 BLAST-9 46.3% 60.2% 3.82 x 106
11001011000011011 9 9 CPH-9 8.14% 24.0% 3.82 x 107
11011000011000011011011 11 12 CVS-11-12 5.2% 19.1% 2.2 x 1076
12011000011000012011011 13 12 CVS2-13-12 5.6% 20.5% 2.2 x 1076
12022012000012 (two hits) 12 8 CVS2-12-8 6.0% 29.3% 2.3 x 1076

Table 3

Theoretical and actual performance of various coding region seeds.
BLAST-X — unspaced seeds of support X; BLAT-X-Y — unspaced seeds with al-
lowed mismatches; CPH-X — spaced seeds of support X optimized in coding-aware
model; CVS-X-Y — vector seeds (allowing spaced seeds and mismatches) optimized
in coding-aware model; CVS2-X-Y — same as CVS, except values from {0, 1,2}
are allowed. The predicted false negative rates come from the Formula (1), where
fragment lengths and numbers are inferred from real alignments.

We used the training set to estimate the probability that a codon triplet has
a given alignment pattern and the alignment length distribution.

First we have investigated 1372 binary vector seeds (v,7T’) with supports
s € {10,...,15} and T' > s — 2. The seeds we have investigated have codon
structure: they can be divided into triplets, where each triplet is either (0, 1,0),
(1,1,0) or (0,0,0). In real alignments, the second codon position is most likely
to be conserved and the third often varies [5].

We compared the theoretical performance of the codon-aware spaced seeds
versus their performance on our test set. Here, we also found quite striking
advantages of vector seeds over seeds that are unspaced or that do not allow
error. The model is a good predictor of the performance of a seed, though our
seeds do better than predicted, as the model is not aware of highly conserved
parts of alignments. Results for some interesting seeds are shown in Table 3.

We then chose the best seeds allowing mismatches, at each support/threshold
combination (the seeds denoted by CVS-X-Y in Table 3), and explored the
effect of fixing the middle positions of some of their codons, by setting the
corresponding position in the seed vector to two and raising the threshold by
one. Results for this experiment are shown in Table 3. It shows the perfor-
mance of a collection of BLAST and BLAT seeds, optimized spaced seeds, and
optimized vector seeds, chosen for sensitivity to this model.

This experiment highlights the expressive richness of vector seeds. The seed
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CVS2-15-15 in Table 3 matches fully 95% of alignments. This is comparable to
the sensitivity of the BLAST-7 seed, whose false positive rate is ninety times
higher. It is also preferred over the BLAT-10-11 seed for both sensitivity and
specificity, and over the CPH-10 seed, which has comparable specificity.

Lastly, we note that the seeds we examined are also overwhelmingly preferred
for two-hit study as well. While they are long enough that they reduce sen-
sitivity below 65% in two-hit models, still better than the BLAST-9 seed,
they also admit tens of thousands times fewer false positives than that seed.
One can also use shorter seeds for use with two hits, which allows for smaller
hash table structures. The last seed in Table 3 is especially appealing; the
support for this seed is just eight, making for very small hash table, while the
performance is comparable to one hit to the longer seed CVS2-13-12 in the
table.

4.8 Seeds for protein alignments

We also studied the use of vector seeds for protein alignments. Our data set
consisted of randomly chosen BLASTP 2.0.2 alignments [7] of pairs of human
sequences, taken from 8654 human proteins in the SWISSPROT database
[12], release 40.38. We chose 566 alignments with score between 50 and 75 bits
using the BLOSUMG62 scoring matrix, with a requirement that there are at
most eight alignments from each collection of genes connected by BLASTP
hits. This restriction avoids choosing too many matches from one family of
very common proteins; without it, the majority of alignments would be from
only one family. The dataset can be obtained on-line [11].

To train our probabilistic model we estimated the distribution of the number
of ungapped fragments, the length of the longest ungapped fragments, and
the length of all other fragments as gamma distributions from this set of
alignments. We used gamma distributions because the distributions seemed
empirically to have strong means and heavy tails, so normal distributions
or other obvious distributions seemed less appropriate. These parameters are
summarized in Table 4. Other parameters of the probability distribution were
obtained directly from BLOSUMG62 matrix.

We investigated 237 seeds of vector length at most six with between three and
five ones and the remaining positions all zero. We chose values of T' between
11 and 18 for seeds with 3 ones, between 12 and 22 for seeds with 4 ones,
and between 15 and 25 for seeds with 5 ones. There is an observational bias
in our experiments since the test set consists of alignments found by two-
hit BLASTP. This guarantees that the two-hit BLASTP seed will match all

alignments!
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Property N  mean std. dev.

Number of fragments 566  5.80 4.23
Length of longest fragment | 566  59.6 20.4
Length of other fragments | 2718  20.4 13.1

Table 4
Parameters characterizing the gamma distributions that approximate the
properties of protein alignments from our data set.

Actual Predicted Actual Predicted
Seed False False False False
Vector Threshold Hits Negative Negative Positive Positive
110111 15 2 2.47%  (14/566) 4.04% 2.9 x 1077
111 13 1 0.18% (1/566) 0.62% 6.9 x 1074 6.5 x 104
1011 13 1 0.18% (1/566) 0.45% 6.9x10"%* 6.5x 10"
11101 14 1 0.18% (1/566) 0.24% 6.7 x 1074 6.4 x 1074
111101 15 1 0.00% (0/566) 0.19% 5.6 x 1074 5.4 x 1074
111 15 1 3.53%  (20/566) 3.39% 2.0x107%  1.9x107%
10111 16 1 0.35%  (2/566) 1.18% 23x10°%  22x10%
111 (%) 11 2 0.00%  (0/566) 1.38% 2.1 %1073
1011 11 2 0.35%  (2/566) 1.14% 2.1x 1073

Table 5

Theoretical and actual performance of various protein seeds. The unspaced
seeds, commonly used by BLAST, are potentially improved upon by the spaced seeds
listed after them. We also show the false positive rates for the one hit models in
comparisons between 200 unrelated proteins. The default two-hit BLASTP seed is
marked by (*). Predicted false negative rates were produced using the Formula (1).

The advantage of spaced seeds over unspaced seeds is not as dramatic as for
nucleotide matches, as seen in Figure 2 and Table 5. This is because BLASTP
seed matches for proteins are more independent than BLASTN hits are for
nucleotides. For example, the probability of a pair of amino acids scoring at
least +5 is only 0.22 in homologous protein sequence, while the probability of a
1is 0.7 in the PatternHunter model. Thus, for proteins, immediately following
a hit, there is a lower probability of another hit.

Also, a disadvantage of spaced seeds is that they offer fewer positions for a
possible match; when ungapped fragments are as short as they are for our
protein alignments (with fragments of length 20 being reasonably common),
this reduction affects seed sensitivity.

We also performed an experiment to verify that the false positive rates pre-
dicted were close to those found in reality. We chose 100 proteins at random
and built a hash table for each one-hit seed in Table 5. We then counted
the number of seed hits when we chose 100 other random proteins. For all
seeds, the false positive rate was within 10% of what was predicted by the
background model.
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Fig. 2. Theoretical and actual performance of seeds for protein alignments.
The graph shows the predicted false positive rate and false negative rate for several
seeds of different supports and threshold. The commonly used one-hit and two-hit
BLASTP seeds are highlighted with special symbols; both are dominated by vector
seeds with the same support and by vector seeds with different support.
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Fig. 3. Comparison of the actual and theoretical performance of seeds on
protein alignments. The model does a good job of predicting the sensitivity of
seeds, though for the seeds with highest sensitivity, the accuracy is worse. This is
due to observation bias (alignments were found by BLASTP), and because the data
set is small.

Still, there is some advantage to the use of spaced seeds. The spaced seed
((1,1,1,0,1),14) offers a theoretical advantage of 61% fewer false positives
over the standard BLAST seed,((1, 1, 1), 13), with slightly lower false negative
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rate; for that matter, the obvious spaced seed of support 3, ((1,0,1,1),13), is
also preferred over the standard BLAST seed, with 27% fewer missed align-
ments (though the difference is small).

The advantage of two-hit models is not as great as for nucleotides, either. One
notable discovery is that seeds with support greater than three have greater
sensitivity than those with support three. Implementing seeds with support
four requires building hash tables with entries for all amino acid 4-mers. This
is most useful when most table entries are full (see Section 2.2), but since
there are only 160,000 amino acid 4-mers, for large protein databases, most
hash table entries would be populated if one used seeds depending on four
positions.

If one is willing to tolerate higher false negative rate, there are two seeds
which seem to be favorable compared to one-hit BLAST seed of threshold 15
(approximately 3.4% false negatives). The one-hit seed ((1,0,1,1, 1), 16) offers
comparable false positives, with one third the false negative rate (1.2%). Or,
if one is willing to use seeds of support 5, the two-hit seed ((1,1,0,1,1,1),15)
offers 4.0% false negatives and seven times fewer false positives in theory.

A data set not derived from BLASTP. To try to avoid the observation
bias we noted before, we aligned sequences that are not reported as aligned
by BLASTP, but which are connected by a sequence of alignments that are
reported by BLAST. If BLAST defines a graph on the set of proteins, these are
nonadjacent nodes in the same connected component. We aligned all such pairs
from connected components of size at most 30, and discovered 396 alignments
in our target score range, again using the BLOSUMG62 scoring matrix.

However, all match the one-hit BLASTP seed with threshold 13, and all but
three match the two-hit BLASTP seed with threshold 11. Presumably, all were
incorrectly thrown out during one of BLASTP’s many filtering steps.

In this new data set, we do see some advantage to spaced seeds, especially
among less sensitive seeds, which might be of use if one desired an extremely
fast, moderate sensitivity aligner. For example, the spaced vector seed ((1,1,
0,1),16) matches 381 (96.2%) of these alignments, while the unspaced seed
((1,1,1),16) matches 367 (92.6%) of them. Similarly, the spaced support 4
seed ((1,1,0,1,1),18) matches 382 alignments (96.4%), while the unspaced
seed ((1,1,1,1),18) matches 373 (94.2%). We found similar results for two hit
models.

Predictions versus reality. Finally, the simple model of sequences allows
good predictions of seed sensitivity. Figure 3 shows the predicted and actual
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sensitivity of the seeds we studied. The model generally does a good job at
predicting the sensitivity of the seeds, except for the most sensitive seeds.
This is expected, since our test set includes only 566 alignments. In general, we
underestimate the sensitivity of seeds, which is because true protein alignments
do not consist of random noise, but include strongly conserved regions within
the alignment; these will be more likely to produce a hit than is suggested
by our theory. Our set is also subject to observation bias: the alignments we
tested were found with BLASTP, which guarantees that they have a hit to
the two-hit seed ((1,1,1),11).

5 Conclusion

We have presented an extension to previous models for hits that are used in
large-scale local alignments. Our vector seeds offer a much wider vocabulary for
seed matches than previously studied seeds. For example, they allow certain
positions to be more important than others, they allow a fixed number of
mismatches in some positions and an arbitrary number in others, and more.

Our extensions to spaced seeds or seeds with constrained mismatches allow
substantially improved pairwise local alignment, with vastly improved sen-
sitivity. Especially with the coding sequence nucleotide alignments (possibly
one of the most important large-scale local alignment problems), alignment
programs using our seeds can reduce their false negative rates by over half,
with no change to false positives over BLAT or PatternHunter.

We have also shown an algorithm that allows us to predict the sensitivity and
false positive rate of a vector seed on probabilistic models of true and random
alignments. This allows us to choose an optimal seed for a given alignment
task. Our algorithm is an extension to the original Keich et al. algorithm for
predicting seed sensitivity in simple models. Our method is practical as long
as the number of alignment sequences matching a given seed is moderate.
Extensions to our algorithm allow one to predict the sensitivity of a seed in
multi-hit models, or when using multiple seeds.

We show that spaced seeds can be helpful for proteins as well. The improve-
ments are not as dramatic as for nucleotides, mostly because the seeds them-
selves are so short, yet they are still useful, and if one is willing to allow a
moderate false positive rate, spaced seeds are strongly preferred over unspaced
seeds.

Our results offer substantial improvement over the current state of the art,
with minimal change required in coding.
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Future work. Finally, we discuss a few extensions which we have only be-
gun to consider. In PSI-BLAST [7], alignment phases after the first are based
on position-specific scoring matrices, which model the probabilities expected
in sequence matching a profile. Much as with the standard BLASTP model of
aligning sequences that comes from the scoring matrix, here as well, one may
desire a seed that has a higher probability of matching the sequence than the
usual (1%, T) consecutive seed. It is impractical to compute the probabilities
for thousands of seeds for each profile, yet it is quite reasonable to compute
the match rates for each of a small set of diverse good seeds, and use the
best of these seeds in that round. (One may also compute predicted false pos-
itive rates, using the standard background probabilities with the new scoring
matrices.)

We are also interested in whether the representation of vector seed hits as half-
spaces in a lattice can help in optimizing them. Given a certain length, support
and threshold, is it possible to find the best seed, even for a simple position-
independent model, without using essentially exhaustive search? While the
exhaustive search is possible for small seed families, for the vector seed models,
this becomes absurd as the families of possible seeds grows to the millions.
Clearly, one could use heuristic methods. However, sometimes, there is a large
difference between the best seed and seeds at the 99th percentile, so one would
want a very good heuristic.

Finally, we demonstrated that the vector seeds are not universally expressive.
Are there still other seed models that express a useful further generalization
to the ones we have given?
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