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ABSTRACT
Motivation: We present ExonHunter, a new and comprehens-
ive gene finding system that outperforms existing systems and
features several new ideas and approaches. Our system com-
bines numerous sources of information (genomic sequences,
expressed sequence tags and protein databases of related
species) into a gene finder based on a hidden Markov model in
a novel and systematic way. In our framework, various sources
of information are expressed as partial probabilistic statements
about positions in the sequence and their annotation. We then
combine these into the final prediction via a quadratic program-
ming method, which we show to be an extension of existing
methods. Allowing only partial statements is key to our trans-
parent handling of missing information and coping with the
heterogeneous character of individual sources of information.
In addition, we give a new method for modeling the length
distribution of intergenic regions in hidden Markov models.
Results: On a commonly used test set, ExonHunter performs
significantly better than the existing gene finders ROSETTA,
SLAM and TWINSCAN, with more than two-thirds of genes
predicted completely correctly.
Availability: Supplementary material available at http://www.
bioinformatics.uwaterloo.ca/supplements/05eh/
Contact: bbrejova@uwaterloo.ca

1 INTRODUCTION
Gene finding, predicting the exon–intron structure of genes,
is a basic task in DNA sequence analysis. With more than
400 eukaryotic sequencing projects under way,1 gene finding
tools easily adapted to new organisms are greatly needed.
Early successes based on hidden Markov models (HMMs)
[e.g. GENSCAN by Burge and Karlin, 1997] have given way
to comparative approaches, where DNA sequence is supple-
mented by alignments of expressed sequence tags (ESTs)
or cDNAs [e.g. GRAIL by Xu and Uberbacher (1997)], of
known proteins [GenomeScan by Yeh et al. (2001)] or of a
related genome [e.g. Twinscan by Korf et al. (2001); SGP2
by Parra et al. (2003); Projector by Meyer and Durbin (2004)]

∗To whom correspondence should be addressed.
1Genomes Online Database http://www.genomesonline.org, October 2004.

or by simultaneous analysis of syntenic regions of two organ-
isms [e.g. ROSETTA by Batzoglou et al. (2000); SLAM by
Alexanderson et al. (2003)]. Comparative approaches have
demonstrated a significant increase in performance at the level
of exons (i.e. correctly identifying matching pairs of splice
sites on exon boundaries), but their accuracy at the full tran-
script level (with the start site, all splice sites and the stop
codon correct) is far from perfect (Brent and Guigo, 2004).

We propose a new, flexible framework to incorporate
supplementary information sources into an HMM-based
gene finder. Our new gene finder exploits information from
proteins, ESTs, genome–genome comparisons and sequence
repeats to achieve better performance than several well-known
programs (ROSETTA, SLAM, TWINSCAN). Our experi-
ments also show that no one information source alone is suf-
ficient to achieve the same performance as their combination.

We model individual sources of information as probabilistic
statements with different levels of granularity. For example,
a region covered by an EST match is probably a coding or
untranslated region. On the other hand, for a protein–DNA
alignment, we can make a stronger statement: it is likely that
the region is coding. Such statements, with different gran-
ularity, cannot be combined by traditional methods such as
linear combination (Tax et al., 2000). We have developed a
new combination method based on quadratic programming,
generalizing the linear combination method to such state-
ments. Interestingly, the method used in TWINSCAN is a
special case of our framework. When we have no comparat-
ive evidence at all, the system performs in the same way as the
HMM alone.

The performance of comparative approaches to gene find-
ing depends on the choice of informant genome (Brent and
Guigo, 2004). In our system we can handle sources at differ-
ent evolutionary distance differently, assigning them different
levels of granularity or probability values.

Related work. Recently, systems that exploit syntenic
genomic sequences from multiple species have emerged [e.g.
ExoniPhy by Siepel and Haussler (2004)]. Such systems
combine probabilistic models of the intron–exon structure
of genes with phylogenetic models allowing for sequence
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divergence. They often require multiple alignments of syn-
tenic DNA sequences from multiple species for both training
and annotation of novel sequences. However, such datasets
have only recently become available with the completion of
the rat genome (Rat Genome Sequencing Project Consortium,
2004) and through targeted sequencing of sequences ortholog-
ous to a short section of the human genome (Thomas et al.,
2003). The scarce availability of such data is a major obstacle
in practical gene finding using such methods, especially for
species attracting less interest than human.

Some other gene finding programs use several sources of
information. HMMGene (Krogh, 2000) and GENIE (Kulp
et al., 1997) are based on HMMs. Both differ from our
framework significantly: instead of combining the available
information, only one source is chosen to influence the score
at each particular sequence position. EuGène (Schiex et al.,
2000) is based on probabilistically motivated directed acyc-
lic graphs. The information from ESTs and protein matches
is incorporated by direct modification of the edge weights in
the graph. Despite their attempts, neither approach reports
successful inclusion of ESTs in the predictions.

Combiner (Allen et al., 2004), a new gene finder for
Arabidopsis thaliana, combines the predictions of several
gene finding programs with sequence alignments, using
decision trees and dynamic programming. However, our
approach allows the exploration of more possible gene
structures, and it may ultimately choose one that does not
appear optimal before incorporating additional evidence.

2 GENE PREDICTION WITH NUMEROUS
INFORMATION SOURCES

Gene finders label each position in a given DNA sequence
as intergenic, or from an intron, exon (in all six different
reading frames), donor site, acceptor site, start codon or stop
codon. An HMM for gene finding defines a conditional prob-
ability distribution over all possible annotations (sequences
of labels) of a specific sequence. Biologically meaningless
annotations receive zero probability. To predict genes, we find
the annotation A∗ that maximizes Pr(A∗| sequence).

Combining an HMM with other supplementary sources of
evidence (genome–genome sequence comparison, EST or
protein alignments, etc.) is challenging. In our framework,
each source of evidence yields one or several advisors. These
are first combined into a superadvisor, which gives a prob-
ability distribution defining Pr(A|evidence) over all annota-
tions A. The two probability distributions Pr(A|evidence)
and Pr(A|sequence) are then combined using Bayesian
principles, and we find the annotation A∗ maximizing
Pr(A∗|sequence, evidence).

We use the two-step combination to avoid making inde-
pendence assumptions about the advisors. Often, a linear
combination approach is used to combine multiple predic-
tions (Tax et al., 2000). Here, we extend this principle to

allow advisors to provide only partial information about the
probability distribution they are supposed to predict. In this
way, each advisor gives only the level of detail appropriate
for its source of evidence, and other advisors or the HMM
complete the rest.

We demonstrate how to incorporate the two probability dis-
tributions by extending the well-known Viterbi algorithm. The
resultant variation still takes time linear in the length of the
sequence to find the most probable annotation of the sequence.

2.1 Advisors
In our model, supplementary information is represented in
advisors. For each position in the sequence, an advisor spe-
cifies a probability distribution over annotation labels. For
simplicity, we assume that the labels of different positions in
the sequence are independent. (This assumption is, of course,
false; we address this point in Section 2.3.) Then, the probabil-
ity of a particular annotation is the product of the probabilities
of labels at the individual positions.

Some sources of information make it hard to estimate a
complete probability distribution. For example, an advisor
based on genome–genome comparison may reliably distin-
guish between coding and non-coding bases, but may not
identify, for non-coding bases, whether they are intronic or
intergenic. Therefore, loosely motivated by the Dempster–
Shafer theory of evidence (Shafer, 1976), we allow the advisor
to provide only partial information as follows.

Definition 1 (Advice of an advisor). Let � be the set
of labels. The advice of advisor a at position i is a partition
πa of the set � and a probability distribution pa(S) over all
partition elements S ∈ πa . The value pa(S) is an estimate of
the probability that the correct label at position i is in set S,
given the information available to advisor a.

In the genome comparison example above, the advisor
can specify the probability of a position being an ‘intron or
intergenic position’ (i.e. a non-coding position), instead of
specifying each label’s probability separately. The partition
πa may be different at different positions in the sequence.
For example, an advisor based on homology information
may issue vacuous predictions (πa = {�}, pa(�) = 1) at
unaligned positions.

2.2 Combination of advisors
Next, we integrate all advice into a single superadvisor pre-
diction. For each position in the sequence, independently, we
create a full probability distribution over all labels, resolv-
ing conflicts between the advice of different advisors. The
superadvisor prediction at a particular position is a probabil-
ity distribution over all labels x∗ = (x1, . . . , xn), where xi is
the probability of the ith label from �, given all advice.

We may view each advisor’s advice as a restriction on the
distribution x∗. If these restrictions were compatible, then for
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each advisor a, and for each set S in partition πa , the sum of
the probabilities in x∗ for all labels in S should equal pa(S).

In practice, however, the advice often conflicts, and no dis-
tribution x∗ can satisfy all constraints. Therefore, we want to
recover a distribution x∗ which is close to all advice. We have
chosen to do this by minimizing the sum of the weighted L2

distances between the advice and x∗. For one advisor a, this
distance is defined as follows:

dista(x
∗) =

∑
S∈πa

1

prior(S)
·

pa(S) −

∑
j∈S

xj




2

, (1)

where prior(j ) is the prior probability of label j , and
prior(S) = ∑

j∈S prior(j). We estimate the prior probabil-
ity as the proportion of the genome annotated with a given
label. Using 1/prior(S) as the weight on labels in S gives
greater impact to the same absolute change in the probability
of labels with small prior. Now advisor combination can be
formulated as a convex quadratic program (see Fletcher, 1987
for a reference):

minimize
∑

a

wa · dista(x
∗)

subject to
∑
j∈�

xj = 1,

xj ≥ 0 for all labels j ∈ �. (2)

Although using quadratic programming to combine the
advisors may not seem intuitive, we observe that in important
special cases, our approach exhibits reasonable behaviour.2

The quadratic program also allows for non-negative weights
wa to be assigned to the advisors to represent their reliability.

Lemma 1. Consider two labels j and k, and suppose that
all advisors assign them to the same partition element. If we
add an advisor whose advice is the prior probability for each
label, then, in the superadvisor prediction, xj /xk will be equal
to prior(j )/prior(k).

Proof. Consider how the objective function of the quad-
ratic program (2) changes as we vary the ratio of xj and
xk while keeping their sum xj + xk equal to a fixed s. The
only terms in the objective function that change are the ones
corresponding to the added advisor, predicting the prior with
weight w:

w

prior(j)
(prior(j) − xj )

2 + w

prior(k)
(prior(k) − xk)

2. (3)

By setting xk = s − xj and differentiating, this expression
is minimized when xj = s · prior(j)/(prior(j) + prior(k)).
Then the ratio of xj and xk is prior(j)/prior(k). �

2This was not the case for other combination methods and distance measures
we attempted.

Thus, when there is no information about the distribution
of probability among a set of labels, the probability in the
superadvisor prediction is distributed according to the prior
probabilities. We have added an advisor whose advice is
this prior probability for each label, with small weight wa .
Because of its small weight, it does not influence the final
prediction much, but it allows us to resolve in a reasonable
way those cases where no information exists.

The following lemma investigates the special case when
several advisors predict probability distributions over the same
partition of labels.

Lemma 2. Assume that all members of a group of advisors
issue advice over the same partition of labels. They can
be replaced by a single advisor whose advice is a linear
combination of the predictions of all the advisors in the group.

Proof. We will prove the lemma for two advisors a and b

with the same partition; the proof for more advisors follows
directly. Let us assume that advisors a and b both have set S in
their respective partitions πa and πb. The objective function
thus contains terms

wa

prior(S)
·

pa(S) −

∑
j∈S

xj




2

+ wb

prior(S)
·

pb(S) −

∑
j∈S

xj




2

.

(4)

This expression can be rearranged as follows:

wa + wb

prior(S)
·

pa(S)wa + pb(S)wb

wa + wb

−
∑
j∈S

xj




2

+ wawb(pa(S) − pb(S))2

prior(S)(wa + wb)
. (5)

The constant term not depending on x can be dropped
without changing the solution of the quadratic program. Thus,
advisors a and b can be replaced by a single advisor c with
weight wc = wa + wb, partition πc = πa = πb and pre-
dictions pc(S) = (pa(S)wa + pb(S)wb)/(wa + wb). Note
that this defines a proper advisor since the values of pc(S) are
non-negative and sum to one. �

For example, suppose all advisors use a complete partition
of labels. Then the superadvisor is a linear combination of
individual advisors. Often, linear combination is used to com-
bine distributions when independence assumptions cannot be
made (Tax et al., 2000). Thus, our framework is a generaliza-
tion of this linear opinion pool framework to predictions with
incomplete distribution characterization.

In our implementation, we add more boundary conditions to
the quadratic program to avoid extreme probability values for
thexj , so none is set to zero or one. In particular, we enforce the
rule that changes of label probabilities with respect to the prior
values may be at most 100-fold. Changing this limit can tune
the influence of the advisors on the overall prediction.
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2.3 Combining the superadvisor and the HMM
For a sequence seq, the HMM defines Pr(A|seq) for annota-
tions A. Similarly, for supplementary evidence ev, the super-
advisor defines Pr(A|ev). In sequence-based prediction using
HMMs, we seek the annotation A∗ maximizing Pr(A∗|seq).
In our case, we seek the most probable annotation given the
sequence and supplementary evidence. The probability can
be computed by Bayes’ rule:

Pr(A|seq, ev) = Pr(seq, ev|A) · Pr(A)

Pr(seq, ev)
. (6)

We assume that the supplementary evidence and the inform-
ation contained in the sequence alone are independent given
annotation A. This assumption is not true in practice, but we
try to limit dependencies by avoiding using the same features
of the sequence in both the HMM and the advisors. Note
that we do not make any independence assumptions between
individual advisor predictions. In the HMM, we focus on short
windows of the sequence (signals, local coding potential, etc.),
whereas the advisors represent repeats and database searches.

Under this conditional independence assumption bet-
ween HMM prediction and superadvisor prediction,
Pr(seq, ev|A) = Pr(seq|A) · Pr(ev|A), and we may simplify
Equation (6) to

Pr(A|seq, ev) ∝ Pr(A|seq) · Pr(A|ev)

Pr(A)
. (7)

Since we seek only the most probable annotation A∗, we
need not compute the normalization factor. Also, since we
have made our previous positional independence assumption
in Section 2.1, Pr(A|ev) can be computed by multiplying
superadvisor probabilities position by position. The prior
probability of annotation A is computed similarly.

If there is no non-vacuous advice available for the sequence,
according to Lemma 1 the prediction x

(i)
j of the superadvisor

for label j at position i is equal to prior(j). In such a case,
Pr(A|ev)/Pr(A) = 1, so the prediction according Equation (7)
will be the same as the prediction obtained using the HMM
alone. This reasonable behaviour also extends to more com-
plicated cases where absence of supplementary information
does not allow reliable advisor predictions on some subsets
of labels at some positions in the sequence.

The most probable annotation according to Equation (7) can
be recovered using a simple modification of the well-known
Viterbi algorithm, given the positional independence assump-
tion in our superadvisor model. It is sufficient to multiply the
emission probability at position i in the state j by the factor
x

(i)
�(j)/prior(�(j)), where �(j) is the label assigned to state j .

The running time of the modified algorithm remains linear in
the length of the sequence.

Relationship to TWINSCAN. TWINSCAN (Korf et al.,
2001) enhances the prediction of an HMM by addition of

a separate conservation sequence composed of characters
representing matched, mismatched, and unaligned bases in
the alignments with the informant genome. This can be seen
as a special case of the advisor framework.

Lemma 3. TWINSCAN can be implemented in our archi-
tecture with a single advisor, making advice based only on
6mers in the conservation sequence. If the underlying HMM
is the same, the predictions of both systems are also the same.

Proof. To incorporate the conservation sequence c1 · · · cn

into the predictions, TWINSCAN adds a separate emis-
sion probability in each state of the HMM, emitting the
symbols of the conservation sequence independently of the
DNA sequence, depending only on the five previous positions
in the conservation sequence. The probability of annotation
A = �1 · · · �n given the DNA sequence and the conservation
sequence defined by TWINSCAN is

PrT (A|seq, c) ∝ Pr(A|seq) ·
∏
i

Pr(ci |�i , ci−5, . . . , ci−1).

(8)

We create an advisor which at position i uses the 6mer
ci−5, . . . , ci from the conservation sequence. The advisor will
predict a complete partition of labels, where for each label �,
the probability is defined as follows:

p(i)(�) = Pr(ci |�, ci−5, . . . , ci−1) · prior(�)

Z(ci−5 · · · ci)
, (9)

where Z(ci−5 · · · ci) is a normalization constant needed to
achieve

∑
�′ p(i)(�′) = 1. Note that Z(ci−5 · · · ci) does not

depend on �. When we combine this advisor with an HMM
by our combination rule, the conditional probability of
annotation A will be

PrA(A|seq, c) ∝ Pr(A|seq) ·
∏
i

p(i)(�i)

prior(�i)

∝ PrT (A|seq, c)∏
i Z(ci−5 · · · ci)

∝ PrT (A|seq, c). (10)

Notice that
∏

i Z(ci−5 · · · ci) is a constant for a fixed con-
servation sequence and does not depend on the annotation A.
Thus, the conditional distributions defined by TWINSCAN
and by the advisor model agree. �
2.3.1 Positional independence assumption So far we have
assumed positional independence in the advisor predictions.
However, this assumption is obviously false. For example,
homology information comes in intervals, with strong depend-
encies between nearby positions in the sequence.

To deal with this problem, we replace most predictions of
the superadvisor with vacuous predictions, so that all non-
vacuous predictions are at least 50 positions apart. Somewhat
analogously, GenomeScan uses only a few sites from each
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Fig. 1. Length distributions. (a) Length distribution of low GC content internal exons from the AUGUSTUS training set. The approximation
used by the HMM is a combination of an arbitrary head distribution and a geometric tail. (b) Intergenic regions from chromosome 22 with
low GC content. The inset shows part of the distribution in greater detail, highlighting the step-function nature of the approximation we use.

alignment. We choose the set of non-vacuous predictions
with dynamic programming, maximizing the sum of scores
measuring the ‘informativeness’ of each position, where
each position’s score is maxj | log(xj /prior(j))|. That is, we
choose positions for the superadvisor that give a large change
compared with the prior.

2.4 Extended HMM for gene structures
We have used a generalized HMM similar to that of
GENSCAN (Burge and Karlin, 1997) or AUGUSTUS (Stanke
and Waack, 2003) to model the basic gene structure and
sequence composition properties of different sequence ele-
ments, length distributions and signals. We limit our descrip-
tion of the model to a few notable differences between
traditional models and ours.

2.4.1 GC content Model transition and emission probab-
ilities depend on GC content level, estimated from a 1000 bp
window around the current position. Other gene finders, such
as GENSCAN, vary parameters based on the GC content
level of the whole input sequence. Our approach is appro-
priate because, even within a single gene, GC content level
can vary significantly between coding and non-coding parts.
We use four GC content levels; each covers roughly 25% of
the sequence.

2.4.2 Signal models We use higher order trees (HOT)
models (Brejova et al., 2003) of order 2 to model donor
and acceptor site signals. HOT models capture signific-
ant non-adjacent intrasignal dependencies. Compared with
other models, HOT models offer only a small improve-
ment in discrimination power. However, they provide more
accurate probability estimates than other models, and thus
are appropriate for use with generative probabilistic models
such as HMMs.

2.4.3 Length distributions We model length distributions
of exons and introns with a technique developed by Brejova

and Vinar (2002). The length distribution is decomposed
into two parts: a head with arbitrary distribution and a
geometrically decaying tail (Fig.1). This decomposition
allows use of a modified Viterbi algorithm running in O(nd)

time, where d is the length of the head region of the dis-
tribution. Both exon and intron lengths can be modeled
accurately with small values of d, making the algorithm prac-
tical. GENSCAN cannot model non-geometric intron length
distributions; an intron model similar to ours was recently
used by AUGUSTUS.

We further extended this approach to states that generate k

characters at a time, and thus produce only lengths that are
multiples of k, in O(nd/k) time with O(n) preprocessing
time. The submodel for an intergenic region consists of two
states: a generalized state generating a non-geometrically
distributed number of k-mers, followed by a state with emis-
sion length distributed uniformly over the range from 1 to k.
Such a submodel requires O(n(d/k + k)) inference run-
ning time. Setting d ≈ 10 000, k ≈ 100, we can now model
non-geometrically distributed intergenic lengths in a practical
running time (Fig.1). This was not possible in GENSCAN or
AUGUSTUS.

3 CONSTRUCTION OF ADVISORS
The previous section describes a general framework for
including various supplementary sources of evidence into an
HMM-based gene finder as advisors. Here, we present the
specific advisors used in our human gene finder, ExonHunter.

ExonHunter currently incorporates information from
protein databases (human, mouse, chicken and Drosophila),
ESTs (human and mouse), genome–genome comparison
(mouse and Drosophila) and repeats found by RepeatMasker.
In the future, we will include information from more sources,
both traditional (more ESTs and proteins from various
organisms related to humans) and less traditional (protein
families, transcription factor binding sites, CpG islands, etc.).
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3.1 Homology search results as intervals
For each homology search (e.g. genome–genome comparis-
ons, EST search, protein similarity), we represent the results
as a set of intervals with their associated scores, with each
interval typically corresponding to the region covered by a
local alignment. The parameters of the homology search pro-
gram and the definition of the score vary with the source of
the information and are described below.

The advisor will, for each position, give either vacuous
advice, if it is not covered by any interval, or otherwise use
a fixed binary partition π = (X, � − X) for some subset X

of all labels. For positions within an interval, we estimate the
probability pX that the true label is in set X, depending on
the score of the interval and the distance to the nearest inter-
val boundary. The score represents the overall quality of an
alignment. The distance from the boundary is used because,
for example, alignments covering exons may extend to neigh-
bouring non-coding regions. If the site is covered by multiple
intervals, we choose the interval maximizing pX.

The values of pX are estimated from the training dataset.
To limit the number of parameters, the score range and the
distance range are each partitioned into several buckets, creat-
ing a two-dimensional bucket grid. For each two-dimensional
bucket (i, j), the probability pX is estimated as the true posit-
ive rate, or the fraction of sites in the bucket labeled by a label
from X. To bucket the distances, we first pick a threshold
T so that 40% of intervals achieve length at least 2T . Then
we make one bucket for each value from 1 to T , and one
for all distances greater than T . The scores are then divided
into a prespecified number of buckets (in most cases, we have
chosen five) by a simple dynamic programming algorithm to
minimize the entropy in the bucket partitions similar to Fulton
et al. (1995).

3.1.1 Proteins We used 11 072 human, 7778 mouse, 1085
chicken and 2047 fruit fly proteins from SwissProt Release
44 (July 2004). Each species yields a separate set of advisors.

We use BLASTX (Gish and States, 1993) with increased gap
penalties to find regions of the input DNA sequence homo-
logous to the proteins. We discard alignments containing long
gaps potentially spanning introns, and remove two codons
from each side to further avoid non-coding regions. The first
advisor uses these alignments to predict coding regions and
the reading frame. Each alignment is turned into an interval
with score corresponding to the BLOSUM62 score per posi-
tion. The second advisor uses alignments from adjacent pro-
tein regions to non-adjacent genome regions to predict introns
in the gaps between the alignments in the genomic sequence.

The third advisor predicts the start codon label if the
alignment includes a protein’s start codon. It also predicts the
intergenic label at positions −100 . . . − 1. The fourth advisor
predicts stop codons analogously.

3.1.2 Expressed sequence tags We used the TIGR human
gene index (release 13, October 2003, consisting of 843 769

ESTs) and TIGR mouse gene index (release 12, October 2003,
with 669 402 ESTs), with each creating two EST-based
advisors: one for exons, one for introns.

To improve speed, we filter ESTs against the input sequence
using PatternHunter (Ma et al., 2002), with a seed enhancing
homologous coding region sensitivity (Brejova et al., 2004).
We realign ESTs with significant alignment using SIM4
(Florea et al., 1998), producing intervals of presumed exons
and introns (gaps between neighbouring alignments from the
same EST). The score is the percentage identity of SIM4
alignments.

ESTs often include untranslated regions, which are hard to
separate from the coding parts of the ESTs. We experimented
with ESTScan (Iseli et al., 1999) with unsatisfactory results.
Therefore, in human ESTs, the exon intervals are used to pre-
dict ‘exon or intergenic’, and intron intervals predict ‘intron
or intergenic’. Untranslated regions are not as well conserved
from human to mouse: far fewer intron intervals from mouse
ESTs occurred in intergenic regions. Therefore the mouse
intron advisor predicts only the ‘intron’ label.

Another problem arises from alternative splicing. The same
position can be covered by both intron and exon intervals.
Instead of attempting to isolate ESTs corresponding to a single
splicing variant, we remove the EST predictions for sites
covered by both intron and exon intervals. In this way, we
leave the choice of the splicing variant to the HMM. If a pre-
diction lower than the prior probability should be made for
some position, that prediction is removed.

3.1.3 Genome to genome comparison We included two
advisors based on genome–genome comparison: one for
Drosophila (release 3 from fruitfly.org) and one for the mouse
genome (from genome.ucsc.edu, October 2002).

We used PatternHunter with the coding region detection
seed to locate significant alignments between the genome
and the input sequence. We rescored the alignments in all
six frames with the BLOSUM62 matrix, chose the best
frame and located the highest-scoring segment after remov-
ing frameshifts (gaps that are not multiples of three). To avoid
alignments in non-coding regions, we removed seven codons
from each side. The score of each interval is the BLOSUM62
score per position.

Advice from the Drosophila genome includes the frame
implied by the re-scoring. For the mouse genome, about
one-third of the frame predictions by BLOSUM62 scoring
were wrong on the training set; therefore, the advisor predicts
‘exons’ without specifying the frame. Moreover, the intervals
in the training data often included non-coding parts; therefore,
we used only very strong matches, removing all advice that
raised the exon probability less than 10 times above the prior.

3.2 Repeats
Gene finding programs usually either mask the original
sequence for repeats or ignore repeats altogether. Instead,
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Table 1. Comparison on the ROSETTA set (%)

GENSCAN ROSETTA SLAM TWINSCAN TWINSCAN.p SGP-1 EH EH-nh

Gene Sn 44 — — — — — 74 68
Gene Sp 41 — — — — — 66 62
Exon Sn 82 83 78 84 86 70 91 89
Exon Sp 73 83 76 77 82 76 83 81
Nucleotide Sn 98 94 95 98 96 94 99 99
Nuclrotide Sp 88 98 98 89 94 96 93 93

The results for ROSETTA, SLAM, TWINSCAN, TWINSCAN.p (alignments from known orthologs only) and SGP-1 are from Alexanderson et al. (2003) (the authors did not report
gene statistics). The EH column gives the results achieved by ExonHunter with all advisors. The EH-nh column corresponds to ExonHunter results without advisors originating in human
datasets. We used standard definitions of sensitivity (Sn) and specificity (Sp) [e.g. Alexanderson et al. (2003)]. We evaluated the data with the eval program by Keibler and Brent (2003).

we base an advisor on a list of likely repeats produced by
RepeatMasker (Smit et al., 2002, http://www.repeatmasker.
org). We have divided the repeats into four categories,
each handled separately. Low complexity repeats and simple
repeats whose periodicity is a multiple of three are ignored:
significant portions of these occur in coding regions. Satellites
form the second category. At positions annotated as satel-
lites, the repeat advisor predicts the ‘intergenic’ label. Simple
repeats whose periodicity is not a multiple of three form the
third category, boosting the probability of a position being
‘intron or intergenic’. Finally, the fourth category consists of
all other repeats. At such positions we again predict ‘intron or
intergenic’.

4 EXPERIMENTAL RESULTS
Our primary testing set is the ROSETTA set of 117 human
single-gene sequences developed by Batzoglou et al. (2000).
This data set was recently reused by Alexanderson et al.
(2003) to compare SLAM against other gene finders, and we
reuse the results of their experiments for comparison. We also
experimented with human chromosome 22 (Sanger annota-
tion, release 3.1b, 2002). We used half of the chromosome as
a supplementary training set and the other half as a testing set.

We trained the HMM on a training set of 1284 human single-
gene sequences created by Stanke and Waack (2003). We
removed 81 sequences from this set owing to significant sim-
ilarities to the ROSETTA set. We trained intergenic region
lengths and all parameters for advisors on the chromosome
22 training set. For these, we need a significant amount of
intergenic sequence.

Comparison with other programs. Table 1 shows the com-
parison of ExonHunter with other gene finding programs
evaluated by Alexanderson et al. (2003) on the ROSETTA
dataset. ExonHunter used advisors based on human and mouse
ESTs, human, mouse and chicken protein alignments, and
mouse and Drosophila genome–genome comparison. On this
dataset, we have outperformed all other tested programs at
both exon and nucleotide levels, except for nucleotide spe-
cificity. At the gene level, our program identifies more than
two-thirds of genes in the dataset completely correctly.

One could object to this test because many of the genes in the
ROSETTA set are also found in the database of human ESTs
or proteins. Therefore, we also evaluated the program without
advisors based on human information. We still maintain the
highest sensitivity on both exon and nucleotide levels, with
only a 2% drop in exon specificity; the change mostly affects
the gene statistics.

ExonHunter on chromosome 22. To test ExonHunter on
longer genomic sequences, we ran the program on the testing
set from human chromosome 22 and compared the results
with those of GENSCAN. Here, the general trend is similar
to the observations for the other similarity-based gene finders
by Parra et al. (2003) and Chatterji and Pachter (2004): the
sensitivity stays roughly the same, but the number of exons
and coding nucleotides predicted decreases significantly. The
numbers from our experiments (data not shown) do not dir-
ectly compare with those of Parra et al. (2003) or Chatterji and
Pachter (2004) since we used different subsets of chromosome
22 and different version of the annotation.

Comparison with GenomeScan. To compare ExonHunter
with GenomeScan (Yeh et al., 2001), we submitted the
ROSETTA set to the GenomeScan web server, together
with the protein sequences used by ExonHunter. In general,
GenomeScan offered higher specificity at both exon level
(sensitivity 91%, specificity 86%) and gene level (sensitiv-
ity 76%, specificity 74%). However, we note that the training
set for GENSCAN (the HMM underlying GenomeScan) con-
tains sequences with high similarity to 56 sequences in the
ROSETTA testing set (about 48%). Our experience suggests
that such a large overlap may artificially increase prediction
accuracy as a result of overfitting. It is not feasible to exclude
these sequences from the ROSETTA set, since predictions of
other gene finders are not available for the smaller set, and
such a small sample size would make statistical comparison
of results much less possible.

Contribution of individual advisors. Table 2 shows that
the most influence on the final result comes from the
protein-based advisors, followed closely by the combin-
ation of EST advisors. Mouse ESTs work significantly
better than human ESTs, most probably because of low
conservation in untranslated regions between human and
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Fig. 2. Predictions on human gene HSU30787. Similarity matches processed by Drosophila and mouse advisors help to find the correct start
site, even though it is not directly covered by any of the matches.

Table 2. Contribution of various combinations of advisors on the ROSETTA
dataset (%)

Advisors used Exon Sn Exon Sp

Repeats only 77 74
Genomes: D 77 74
Genomes: M 80 74
ESTs: H 79 77
ESTs: M 85 79
ESTs: HM 85 80
Proteins: HMDC 88 82
Genomes: D; proteins: DC 80 76
ESTs: H; proteins: H 90 84
ESTs: M; proteins: M; genomes: M 89 81
All advisors 91 83

H—human; M—mouse; C—chicken; D—Drosophila. Proteins and ESTs alone con-
tribute comparable amounts of information. The combination of all advisors performs
better than advisors individually.

mouse. The contributions of Drosophila and chicken together
appear comparable to the contribution of human ESTs.
Finally, the combination of all advisors performs better than
each of the advisors alone.

Cooperation of advisors with the HMM. Figure 2 shows
the ExonHunter annotation on human gene HSU30787.
Both GENSCAN and ExonHunter without advisors pre-
dict most splice sites correctly, but both annotations miss
the first exon completely: GENSCAN extends the gene
into the intergenic region, and ExonHunter starts inside
the second exon. We added advisors based on mouse EST
alignments, mouse and Drosophila protein alignments, and
Drosophila genome–genome comparison, resulting in very
clean superadvisor advice for all exons except the first, which
was not covered by any alignment. This helped the HMM to

extend the second exon correctly and locate the alternative
start site and the first exon, resulting in a completely correctly
predicted gene.

5 CONCLUDING REMARKS
We have introduced a probabilistic framework for incorpor-
ating many sources of supplementary information into an
HMM-based gene finder, resulting in a practical gene finder
with promising performance on human sequences.

Our framework is based on probabilistic statements made
using various sources of information, called advisors.
Advisors create advice with varying granularity and force-
fulness, to avoid making uninformed predictions. Thus, they
cannot be combined by traditional expert combination meth-
ods. We developed a quadratic programming-based method,
extending a traditional linear combination approach, and
adapted the Viterbi algorithm to our domain. TWINSCAN’s
approach to incorporating human–mouse comparison can be
seen as a special case of our framework. We also developed
a novel method for modeling intergenic length distributions
in HMMs.

Our gene finder, ExonHunter, outperforms several other
programs such as SLAM, TWINSCAN and ROSETTA, even
if all supplementary information originating from human-
based advisors is withdrawn. We also evaluated the contri-
bution of individual advisors, finding that protein and EST
databases are the two largest contributors toward the final
result. However, no one source performs better alone than
all in combination.

Although our method allows the incorporation of a wide
range of information sources, we do not require all sources
to be available. When no additional information is available,
the system performs as a typical ab initio gene finder, and
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adding more information helps to improve the prediction
accuracy. This makes our system applicable to a wide range of
datasets.

Our approach is becoming ever more relevant as more
EST sequence collections for organisms related to humans
are built (TIGR currently maintains libraries for eight such
organisms). We implicitly allow for variability in handling
informant species with varying evolutionary distance from
the reference organism. The method easily transfers to other
species since it does not require special species-specific data
sets.

Finally, in our experiments on the ROSETTA set we
observed that more than two-thirds of genes were predicted
exactly correctly. Improvement in this measure allows better
analysis of structure and function of the encoded protein, for
example using computational protein folding. As such, our
results are a tangible step in moving toward fully in silico
analysis of newly sequenced genomes and their proteins.
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