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Abstract. We present sharper upper and lower bounds for a known
polynomial-time approximation scheme due to Li, Ma and Wang [7] for
the Consensus-Pattern problem. This NP-hard problem is an abstrac-
tion of motif finding, a common bioinformatics discovery task. The PTAS
due to Li et al. is simple, and a preliminary implementation [8] gave rea-
sonable results in practice. However, the previously known bounds on its
performance are useless when runtimes are actually manageable. Here,
we present much sharper lower and upper bounds on the performance
of this algorithm that partially explain why its behavior is so much bet-
ter in practice than what was previously predicted in theory. We also
give specific examples of instances of the problem for which the PTAS
performs poorly in practice, and show that the asymptotic performance
bound given in the original proof matches the behaviour of a simple
variant of the algorithm on a particularly bad instance of the problem.

1 Introduction

Bioinformaticists often find themselves with several different DNA or protein
sequences that are known to share a particular function, but where the origin
of the function in the sequence is unknown. For example, suppose one has the
DNA sequence of the region surrounding several genes, known to be regulated
by a particular transcription factor. Here, the shared regulatory behavior may
be caused by a sequence element common to all, to which the transcription
factor binds. Discovering this experimentally is very expensive, so computational
approaches can be helpful to limit searches.

The motif discovery problem is an abstraction of this problem. In it, we
are given n sequences, all of length m, over an alphabet Σ. We seek a single
motif, of length L that is found approximately as a substring of all sequences.
Several variants of this problem exist. One can seek to minimize the maximum
Hamming distance between the motif and its instances in all strings (e.g. [10, 2]),
maximize the information content (minimize the entropy) of the chosen motif
instances (e.g. [3, 1, 6]), or minimize the total of the Hamming distances between
the motif and its instances [7]. This latter problem can be formally defined as
follows:



Definition 1 (Consensus-Pattern). Given: n sequences s1, . . . , sn, each of
length m and over an alphabet of size A. Find a substring ti of a given length
L in each of the sequences and a median string s of length L so that the total
Hamming distance

∑

i dH (s, ti) is minimized.

Li, Ma and Wang [7] give a very simple polynomial-time approximation
scheme (PTAS) for this combinatorial motif problem. For a given value of r,
consider all choices of r substrings of length L from the n sequences. We note
explicitly here that the sampling is made with replacement, so that the same
substring may occur multiple times. For each such collection C of substrings, we
compute its consensus by identifying the most common letter in the first position
of each chosen substring, the second position, and so on, producing a motif MC .
It is easy to identify for a given motif MC its closest match in each of the n se-
quences, and thus its score. We do this for all nr(m−L+1)r possible collections
of r substrings, and pick the collection with the best score. The algorithm has
O(L(nm)r+1) running time, and thus runs in polynomial time for any particular
value of r. Li et al. also give an upper bound on the worst-case approximation
ratio of this algorithm for r ≥ 3:

1 +
4A− 4√

e
(√

4r + 1− 3
) , (1)

where A is the alphabet size. For example, if r = 3, this approach gives an
algorithm that runs in O(L(nm)4) runtime, but whose approximation guarantee
for DNA sequences (where A = 4) is approximately 13. To achieve a reasonable
approximation ratio, 2, we would have to use r ≥ 8 for DNA sequences, or r ≥ 27
for protein sequences (A = 20), giving hopelessly large running times. The high
value of the proven bound would seem to suggest that the algorithm will be
useless in practice.

However, many successful combinatorial motif finders do work by generaliz-
ing from small samples in this way, such as SP-STAR [10] and CONSENSUS
(samples of 1) [3], COMBINE (samples of 2 to 3) [9], COPIA (samples of arbi-
trary size) [8]. Here, focusing on Li et al.’s PTAS, we show tighter bounds on its
performance that are much closer to reasonable numbers for practical values of r.
We also provide the first substantial lower bounds on the PTAS’s performance,
by identifying specific examples of the problem for which the algorithm performs
poorly. In the general case, for a binary alphabet, we find that the variant of
the algorithm that works by sampling without replacement performs poorly on a
particular bad example, and we conjecture that our example will also be difficult
for the original Li et al. algorithm that samples with replacement.

Our results are summarized in Table 1.

2 Basic Observations

We begin our discussion of the algorithm by noting that it is sufficient to look
at the performance of the PTAS when run on the actual instances of the motif
(which are sequences of length L), rather than on the m-letter input strings.



New results Previous

Condition Lower bound Upper bound upper bound

r = 1 2 2 N/A

r = 3 1.5 ≈ 1.528 ≈ 1 + 4.006 · (A− 1)

general r 1 +Θ(1/r2) 1 +Θ(1/
√
r)

binary alphabet conjecture: 1 +Θ(1/
√
r)

(proved for sampling without
replacement)

general r 1 +Θ(1/r2) 1 +Θ(A/
√
r)

general alphabet conjecture: 1 +Θ(1/
√
r)

(proved for sampling without
replacement)

Table 1. Overview of the results.

Lemma 1. Suppose that the PTAS of Li et al. achieves approximation ratio α
for a given set s1 . . . , sn of input sequences, motif length L and sample motif size
r. Suppose also that the instance of the optimal motif in sequence si is ti. Then
the PTAS, if run only on the sequences t1, . . . , tn, would achieve approximation
ratio at least α.

Proof. We begin by noting that if m = L, the actual problem is trivial: the
optimal motif s∗ is the consensus of all of the input strings.

However, the PTAS still is well defined in this case, even though the actual
optimization problem is trivial. It examines all sets C of r strings, including ones
where the same string is chosen multiple times, and for each of them, computes
its consensus MC. Then, the central motif MC∗ with smallest total Hamming
distance to all si is chosen as the motif center.

This motif center can be no better than the one found by the PTAS when run
on the entire m-letter strings, because the set of substrings we have considered
in the truncated problem is a subset of the set of substrings we would have
examined in the full problem. As such, if the original algorithm would have
found a solution whose approximation ratio is α, we can only have done as well
or worse in the truncated problem.

This lemma is useful because if we can show that, for given values of L,
n and r, and when run only on the optimal motif instances, the PTAS has
approximation ratio at most β, then its approximation ratio on longer strings
can still be no worse than β.

To simplify notation, we assume that the alphabet is {0, 1, . . . , A−1}. In the
special case we focus on, where m = L, we also always renumber the characters
in each column, so the consensus for that column is 0. This causes the overall
optimal motif to be s∗ = 0L. This transformation only works when m = L; it
does not work when m > L.

Finally, we can encounter the problem of ties, that is, a situation when the
consensus string u of some collection C is not unique. Consider for example r = 3
and input strings 01, 02, 10, and 20. The optimal motif is 00, with cost 4. If C



contains the first three strings, the consensus MC can be any of the strings 00,
01, and 02. The first of them is optimal, but the latter two have cost 5.

It is not realistic to assume that the PTAS will always guess the best of all
possible consensus strings; their number can be exponential in L. For simplicity,
we assume that the PTAS will choose the worst consensus string, and study the
performance of this “unlucky” motif finding algorithm, which in our example
would choose either 01 or 02.

3 Upper Bounds

In this section, we give better worst-case bounds on the approximation guarantee
of the algorithm in the cases where r = 1 or r = 3, corresponding to algorithms
with quadratic or quartic bounds on their runtime.

Theorem 1. The approximation ratio of the PTAS is at most 2 for all values
of r, including r = 1, and for any alphabet size A.

Proof. Let c be the cost of the optimal motif 0L, that is, the total number of
non-zero elements in all sequences. Let ai be the number of non-zero elements
in sequence si. If the PTAS chooses sequence si as the motif (which will happen
when the r samples from the n sequences are all of si), the cost will increase
by at most n for every column where si has non-zero element. Therefore the
cost will be at most c + nai. The sum of this quantity over all sequences si is
nc + n

∑n

i=1 ai = 2nc. Since the sum of costs for n different potential motifs
si is at most 2nc, at least one of these has cost at most 2c, which means the
approximation ratio is at most 2.

Theorem 2. The approximation ratio of the PTAS for r = 3 is at most (64 +
7
√
7)/54 ≈ 1.528 regardless of the size of the alphabet.

Proof. Let p be the proportion of zeroes and q = (1 − p) be the proportion of
non-zeroes in the input sequences. The optimal cost is therefore qnL. Let bj be
the number of non-zeroes in column j.

The algorithm will examine all possible samples consisting of 3 rows, choosing
the one with the best consensus string. To get an upper bound, we will consider
the expected cost of the consensus string obtained by sampling 3 rows uniformly
at random.

For each column, we can estimate the expected cost of the column. The
consensus in a particular column will only be non-zero if two or three of the
chosen rows contain non-zero entries. If the column contains b non-zero entries,
there are b3 + 3b2(n − b) such samples. Each of these samples will incur cost of
at most n in this column. The consensus will be zero for samples with two or
three zeroes (their number is (n − b)3 + 3(n− b)2b). Each of these samples will
incur cost b in this column.

Thus the expected cost E(b) for a column with b non-zeroes is at most
C(b)/n3, where C(b) is the sum of costs over all triples of rows:



C(b) = [b3+3b2(n−b)]n+[(n−b)3+3(n−b)2b]b = 2b4−5b3n+3b2n2+bn3. (2)

From linearity of expectation, the expected cost over all columns is

E(b1, . . . , bL) =

L∑

j=1

E(bj) =
1

n3
·

L∑

j=1

C(bj). (3)

There must exist a sample with cost at most E(b1, . . . , bL). Such a sample
achieves approximation ratio E(b1, . . . , bL)/qnL.

We will prove by induction on L that E(b1, . . . , bL) ≤ HqnL, where H =
(64 + 7

√
7)/54. This implies that H ≈ 1.528 is an upper bound on the approxi-

mation ratio for r = 3.
For L = 1, the approximation ratio is

E(qn)/qnL = 2q3 − 5q2 + 3q + 1. (4)

The maximum of this ratio, which is equal to H , is reached when q = 5−
√

7
6 .

Now, assume that the induction hypothesis is true for L− 1. We will prove
that it is also true for L. The expected cost of the first column is E(b1), which can
be computed with Equation 2 above. By our induction hypothesis, the expected
cost of the remaining L−1 columns is at most (qnL−b1) ·H . Note that qnL−b1
is the optimal cost for the remaining L− 1 columns. Therefore:

E(b1, . . . , bL) ≤ E(b1)+(qnL−b1)·H =
2b4 − 5b3n+ 3b2n2 + (1−H)bn3

n3
︸ ︷︷ ︸

(∗)

+HqnL

(5)
We want to prove, that (*) is never positive for b in the range 0 ≤ b ≤ n.

Indeed, (*) can be simplified as (b/(108n3)) ·(6b−(5+2
√
7)n) ·(6b−(5−

√
7)n)2.

The first and third factors are always non-negative, and the second factor is
non-positive for all b < n. Therefore the whole term (*) is never positive on the
interval.

It is, in fact, possible to easily characterize the “worst-case” scenario that
maximizes E(b1, . . . , bL): this is achieved when the non-zero elements are dis-
tributed equally among a subset of the columns as follows.

Lemma 2. For a given q, n, and L, E(b1, . . . , bL) is maximized, when for some
k ≤ L, b1, . . . , bk = 0, and bk+1 = bk+2 = . . . = bL ≤ n (if we allow b1, . . . , bL to
be non-integral).

Proof. (by induction on L). For L = 1, the hypothesis holds trivially.
Let us assume that the hypothesis holds for all L′ < L. Without loss of

generality, we assume that the columns are sorted by bj . If b1 = 0, the hypothesis



holds trivially from the induction hypothesis. Let b1 > 0. Then, by the induction
hypothesis, all the rest of the columns must by distributed equally (there are no
columns with bi = 0, since b1 is the smallest). The cost will be therefore:

C(b1) + (L− 1) · C
(
qnL− b1
L− 1

)

, (6)

where nL(q−1)+n ≤ b1 ≤ qn, and b1 > 0. This is indeed maximized for b1 = qn,
as can be shown by straightforward algebraic manipulation.

4 Lower Bounds

In this section, we present examples of inputs for which the Li et al. PTAS
performs poorly. These examples give lower bounds on the approximation guar-
antee. For small values of r, we are able to give lower bounds which almost match
our upper bounds the from previous section. For general values of r, we show
an example where the PTAS has approximation ratio 1 + Θ(1/r2). Finally, we
conjecture that lower bound on approximation ratio matches asymptotically the
upper bound 1+Θ(1/

√
r) for a constant-size alphabet; to support this claim, we

present an example for which a slightly modified algorithm has approximation
ratio at least 1 +Θ(1/

√
r).

Theorem 3. For r = 1, the approximation ratio is at least 2, even for binary
inputs.

Proof. We set L = n. The input will be the n× n identity matrix In, with ones
on the diagonal and zeroes everywhere else. The cost of the optimal solution is
n. The result of the PTAS for r = 1 will be one of the matrix rows, with cost
2n− 2. The approximation ratio is therefore 2− 2/n, which converges to 2 as n
grows without bound. This shows that the upper bound 2 is tight for r = 1.

Theorem 4. For r = 3, the approximation ratio is at least 3/2.

Proof. For given k, consider the input with n = 2k, L = 2 containing for every
i = 1, 2, . . . , k strings 0i and i0. For example for k = 2 the input will be the
following:

0 1
0 2
1 0
2 0

The optimal solution is 00, with cost 2k. However, assuming that the PTAS
breaks ties in the worst possible way, it will find motif 0x or x0, with cost 3k−1.

Theorem 5. The approximation ratio of the PTAS is at least 1+Θ(1/r2).



Proof. For any odd r, we create n = r+2 sequences, each of length L = (r+5)/2.
The first L− 1 columns of the first L− 1 sequences will be an inverted identity
matrix, with zeroes on the diagonal and ones everywhere else. The last column of
these sequences contains zeroes. The remaining n−L+1 sequences have zeroes
in the first L− 1 columns and one in the last column. For example for r = 5 we
have the following input:

0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

The optimal solution 0L has cost c = (r+1)(r+5)/4. Any solution that has
a single one in it will have cost c + 1, and it is clear that by choosing the last
row r times, the algorithm will find a motif at least as good as 0L−11. We show
that the PTAS cannot find the optimal solution.

Assume that the PTAS can obtain the optimal solution 0L. Then there must
be some collection C of strings such that each column has more than r/2 zeroes.
In particular, for the last column, more than half of these strings are chosen from
the first L− 1 sequences of the input. Thus, to achieve more than r/2 zeroes in
any other column i < L, we have to include at least one copy of sequence i (less
than r/2 copies of the last n − L + 1 sequences are included). That means we
need to include each of the first L− 1 sequences. But then all of the first L− 1
columns contain at least L− 2 = (r+1)/2 ones, and we will not find the correct
motif. This is a contradiction. Therefore the PTAS cannot achieve the optimal
solution.

Therefore the approximation ratio is (c + 1)/c = 1 + 4/[(r + 1)(r + 5)] =
1 +Θ(1/r2).

We were unable to obtain a lower bound matching the original upper bound
of 1+Θ(A/

√
r) of Li et al. [7]. However, we conjecture this upper bound is tight

for a constant-size alphabet; to support this conjecture, we offer a lower bound
of 1 +Θ(1/

√
r) for a modified algorithm.

In the original PTAS, the samples from which the possible motifs are gen-
erated are performed with replacement, so that a given substring can be chosen
multiple times. Here, we will consider a variation of this, which requires that the
same substring be chosen only once. In our context, where L = m, this means we
will choose all subsets of size r of the n input strings, compute their consensus
sequences, and take the best of these possible choices. Note that this modified
algorithm will always give the same or worse results as the original PTAS.

We conjecture that this algorithm also forms a PTAS with similar bound
to the original, and we conjecture that bad examples of the problem for this
algorithm will also be bad examples of the problem for the Li et al. PTAS, with
similar lower bounds.



Theorem 6. Consider a modification of the PTAS, where we allow only a single
sample from each input sequence. This modified algorithm has approximation
ratio at least 1 +Θ(1/

√
r), even for a binary alphabet.

Proof. We will give instances that give this bound in the limit as r goes to
infinity. Let r be of the form (2k + 1)2, and let n = 2r. Our problem instance
will have L =

(
2r

r+
√

r

)
columns: all possible columns with r−√r ones and r+

√
r

zeros. The optimal solution 0L will have score L · (r −√r).
The modified PTAS will examine all possible subsets of r sequences (sampling

without replacement). Note that in this particular example, any combination of
r rows will give rise to a consensus string with the same cost. This is because
any combination of r rows can be transformed to any other such combination
by rearranging columns. Therefore every combination gives a consensus string
with the same number of ones.

Since all samples are equivalent, we could as easily study a random sample
of size r chosen from the 2r sequences, and identify the expected number of ones
in the consensus string. Considering a single column, let pr be the probability
that the consensus for this column will is 1. That is, pr is the probability that a
random sample without replacement of size r from the population of r−√r ones
and r +

√
r zeros will contain more than r/2 ones. By linearity of expectation,

the expected number of ones in the consensus string will then be L · pr.
Since the symmetry argument shows that all solutions have the same value,

all samples will identify a consensus string with L · pr ones, and so will the
algorithm. Thus, the modified PTAS will give a solution with value L · pr ·
(r +

√
r) + L · (1− pr)(r −

√
r). Since the optimum has value L · (r − √r), the

approximation ratio is 1 + 2pr

√
r

r−
√

r
> 1 + 2pr/

√
r. Thus, if we can show that, as

r → ∞, pr is greater than some constant ε, this will suffice to prove that the
algorithm has approximation ratio at least 1 +Θ(1/

√
r).

We prove this by using the Central Limit Theorem for Finite Populations
(e.g. [11, Section 3.4]). This is the variation on the Central Limit Theorem for
sampling from finite populations without replacement. Specifically, it implies
that if we sample r times from a population of r +

√
r zeros and r − √r ones,

then as r → ∞, the number of ones picked converges to a normal distribution,
with mean µ = 1/2(r −√r) and variance σ2 = r/8− 1/8 ≥ r/16.1

We are interested in the probability pr that the number of ones in the sample
is at least r/2. Note, that in the normal distribution N(µ, σ), r/2 ≤ µ+2σ, and
therefore, for r above some threshold,

pr ≥ Pr(N(µ, σ) ≥ µ+ 2σ) = Pr(N(0, 1) ≥ 2) ≈ 0.023,

1 There is a technical condition required for the theorem to hold, which is that

lim
N→∞

M(N −M)S(N − S)
N3

=∞,

where N is the size of the population, M is the number of ones in the population,
and S is the size of the sample. This condition holds trivially in our case.



as r → ∞. Therefore pr has a constant lower bound, which is what we wanted
to show.

The expected cost of the consensus can be computed using similar method for
the original PTAS as well. However, the symmetry argument does not hold any
more, and therefore there might be samples with cost lower than the expected
cost. Thus the proof presented above cannot be directly extended to the original
PTAS.

5 Conclusion and open problems

We have given lower and upper bounds for the performance of an extremely sim-
ple polynomial-time approximation scheme due to Li et al. [7] for theConsensus-

Pattern problem, which is an abstraction of a common biological sequence
motif detection problem. The PTAS examines all choices of r substrings of the
input sequences, computes the consensus sequence of the substrings, and then
finds the best matches to this consensus in all strings. After examining all pos-
sible choices, it chooses as the motif the consensus substring chosen with best
overall performance.

Our bounds give a partial explanation for why algorithms based on sampling
substrings of the input give good performance in practice. While they do not
improve the upper bounds on the approximation ratio for large sample sizes,
they do show that, for small sample sizes r, such as 3, the extremely simple
PTAS can guarantee performance ratios of at most 1.528, as compared with
bounds much larger with the original Li et al. proof.

We have also given new lower bounds on the best possible approximation ratio
of the PTAS, by showing examples for which the PTAS has poor performance. In
the case of 1-substring samples, our bad example gives an approximation ratio
converging to 2, which matches our upper bound. In the case of 3-substring
samples, we show that the best approximation ratio is at least 1.5, which is very
close to our upper bound of 1.528. In the more general case of a binary input
alphabet and arbitrary sample size r, we show an instance with lower bound
1 +Θ(1/r2). We also show that the slight variation on the PTAS that does not
allow sampling with replacement, but only without replacement can only achieve
ratios of at least 1 + Θ(1/

√
r), by applying limit theorems for samples of finite

populations. We conjecture that this bound, which asymptotically matches the
proven upper bound due to Li et al. for the original PTAS, also applies when
sampling is allowed with replacement.

We should note that our worst-case bounds may have little applicability to
real instances of motif-finding problems in practice. Indeed, in a quite different
direction than we have gone in this work, many authors (e.g. [4, 5]) have focused
on probabilistic models of sequences, and on the information content of sub-
tle motifs, to identify the probability that a particular algorithm will correctly
identify a motif implanted in them. In particular, these authors have focused on
the probability of identifying weak motifs, whose score is not much higher than



“decoys” in the sequence. Our results, which show that decoys are certain to
be found by the PTAS, are for similarly weak motifs, but with no probabilistic
basis.

Open problems. Numerous open problems still remain in this area. We would be
interested in developing sharper bounds for the case of larger input alphabets.
While our bounds on binary alphabets naturally carry to the case of larger
alphabets, the upper bound grows with the size of the alphabet. It is possible
that the true upper bound does not depend on the alphabet size, rather than
that the current lower bound is too small. This is also supported by our upper
bound for r = 3 of 1.528 regardless of the size of the alphabet (in fact, this upper
bound also holds for all values of r greater than 4).

The other open problem we would suggest is to determine whether the algo-
rithm based on sampling without replacement needed for the proof of Theorem
6 can be proven to be a PTAS with the same guarantee, or whether our bad
example or one like it can be used to prove an analogous lower bound for the
original PTAS.
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