The Most Probable Annotation Problem in
HMDMs and Its Application to Bioinformatics

Brona Brejova P, Daniel G. Brown?, Toma§ Vinaf "

aDavid R. Cheriton School of Computer Science, University of Waterloo,

200 University Ave W, Waterloo, ON, N2L3G1, Canada

bDept. of Biological Statistics and Computational Biology,
Cornell University, Ithaca, NY 14853, USA

Abstract

Hidden Markov models (HMMs) are often used for biological sequence annotation.
Each sequence feature is represented by a collection of states with the same label.
In annotating a new sequence, we seek the sequence of labels that has highest prob-
ability. Computing this most probable annotation was shown NP-hard by Lyngsg
and Pedersen [15]. We improve their result by showing that the problem is NP-hard
for a specific HMM, and present efficient algorithms to compute the most probable
annotation for a large class of HMMs, including abstractions of models previously
used for transmembrane protein topology prediction and coding region detection.
We also present a small experiment showing that the maximum probability anno-
tation is more accurate than the labeling that results from simpler heuristics.

1 Introduction

We present several contributions to improve the understanding of the most
probable annotation problem in hidden Markov models (HMMs) and its im-
pact on bioinformatics. We document the importance of this problem, show
it is NP-hard for a specific HMM, and then present algorithms that solve the
problem in polynomial time for several important classes of HMMs.

Hidden Markov models are often used in bioinformatics for sequence annota-
tion tasks. In this domain, the goal is to identify various functional features in

Email addresses: bbrejova@cs.uwaterloo.ca (Brona Brejovd),
browndg@cs.uwaterloo.ca (Daniel G. Brown), tvinar@cs.uwaterloo.ca
(Tomés Vinar).

Preprint submitted to Elsevier Science 12 January 2007

biological sequences. We represent our knowledge of the probabilistic proper-
ties of a domain in an HMM, which embodies the joint probability distribution
of possible sequences and annotations. Then, for a new unannotated sequence
we seek an annotation of that sequence with high conditional probability.

For many HMMs, computing the maximum probability annotation of a se-
quence is equivalent to finding the maximum probability state path for that
sequence, easily found by the classical Viterbi algorithm [9]. However, this
happy state of affairs is not the case for many HMMs used in bioinformatics
applications, where multiple state paths correspond to the same annotation.
To deal with this problem, application designers typically use a variety of
heuristics to decode new sequences, which do not always yield the optimal,
maximum probability annotation.

One might wish to be able to decode all HMMs optimally. Unfortunately, it
is unlikely that a polynomial-time algorithm computing the most probable
annotation exists: Lyngsg and Pedersen [15] showed that the problem is NP-
hard (see also earlier work on a related model by Casacuberta and de la
Higuera [4]). However, one possible opening does exist: the proof of Lyngsg
and Pedersen [15] assumed that both the HMM and its sequence were part
of the input. In our typical applications, though, the HMM is fixed and the
input is just the sequence. Perhaps, for each fixed HMM, an algorithm whose
runtime is polynomial-time in the length of the sequence, but exponential in
the size of the HMM can be found.

We show that this is not the case, unless P = NP. We present an HMM
of modest size, for which finding the most probable annotation of an input
sequence is NP-hard. Still, the most probable annotation problem is not hard
to solve for all HMMs. We present a range of algorithms with increasing
running time that can compute the most probable annotation for increasingly
larger classes of HMMs; the fastest algorithm in our set is the classical Viterbi
algorithm. However, the problem of deciding whether a particular HMM is NP-
hard to decode, or whether there exists a polynomial-time decoding algorithm
for it, is still open.

2 Background and related work

An HMM is a generative probabilistic model composed of states and transi-
tions [17]. We denote the set of states of a hidden Markov model as V. For
each state v € V| e,(x) is the emission probability of symbol z in state v,
and a(v,w) is the transition probability from state v to state w. The gener-
ative process, starting in a designated start state mp, first emits a random
symbol according to the emission probabilities of the current state, and then

transitions to a new state determined randomly according to the transition
probabilities. The process is repeated n times. The probability of generat-
ing sequence x ...z, by state path m ...m, is Pr(zy,..., 2., 7, ..., ™) =
en (1) - 20 a(mi—1,) - ex,(x;). If the sequence is clear from the context, we
call this probability the probability of state path m ... m,. (The conditional
probability of a state path given a sequence, Pr(my, ... m,|x1,..., z,), is pro-
portional to the joint probability, so maximizing one maximizes the other.)
The Viterbi algorithm [9] computes a state path of highest probability, in
time linear in n.

For notational convenience, we also introduce silent states, which emit no
symbols (see, e.g., [6, Section 3.4]). An HMM is well-defined only if there is
no directed cycle composed of silent states.

When we use HMMs for sequence annotation, we label each state with the
feature to which it corresponds. We denote the label of state v by A(v). For a
given sequence I ... I,, a sequence annotation is a sequence of n labels. Each
state path 7 ..., corresponds naturally to its annotation A(m)...A(m,).
However, in some HMMs this mapping is not one-to-one; many state paths
may correspond to the same annotation. Such HMMs have the multiple path
problem. These state paths represent alternative explanations with the same
semantic meaning. If we are trying to find the most probable meaning, or an-
notation, for the sequence, we should add all their probabilities. Formally, the
probability of a given annotation L = \;...\, is the sum of the probabilities
of all state paths m; ...m, with annotation L. The most probable annotation
problem is to find the annotation L with maximum probability.

In our diagrams, we display hidden Markov models as graphs with states as
vertices and non-zero probability transitions as edges. Vertex color corresponds
to the label of the state. Silent states are indicated by smaller size.

Choosing labels is an important step in creating models where there are dif-
ferent classes of features. If we assign the same sets of labels to all classes
of a feature, the most probable annotation decoding will find the most likely
overall feature structure. On the other hand, we can also assign separate sets
of labels to each class, in which case the most probable annotation will also
distinguish between these classes.

The most widely used annotation method is the Viterbi algorithm [9] that
finds the state path of maximum probability for the sequence, and reports the
annotation of that path. For HMMs without the multiple path problem, the
Viterbi annotation is the maximum probability annotation.

For HMMs with the multiple path problem, the most probable state path does
not necessarily correspond to the most probable (or even a high probability)
annotation. Consider, for example, the simple HMM in Figure 1 with one

b:0.8
b:0.5 e

Fig. 1. The most probable path can differ from the most probable annotation

state labeled o and two states labeled 3. The most probable state path for
the string (ab)"a is always a*"*1; it has probability 0.09" - 0.5. However, the
most probable annotation for the sequence (ab)"a is always o(fFa)”, which has
higher probability, 0.14™ - 0.5, even though the highest probability single path
with this annotation has probability exponentially smaller, just 0.08™ - 0.5.

Differences between the most probable path and the most probable annotation
are a cause for concern. In our example, as n grows, the number of paths
forming the most probable annotation grows exponentially. The probability
of each path with the most probable annotation is very low compared to the
probability of the most probable path, though the most probable annotation
is exponentially higher in probability than the most probable path.

Previous authors [3, 13] noted the discrepancy between finding the most prob-
able state paths, easily done in polynomial time, and finding the most probable
annotations in HMMs with the multiple path problem, which is much harder.
Their proposed heurisitcs are quite diverse.

A simple (but rarely implemented) suggestion is to compute the k& most prob-
able paths in the HMM, which provide k candidate annotations [6]. These
can be found efficiently using an algorithm of Eppstein [8]. For each path,
we identify its corresponding annotation and compute the probability of that
annotation, and then choose the most probable of these k annotations. This
approach will often fail when the probability of each path in the most probable
annotation may be small, as in Figure 1.

A different heuristic, the N-best algorithm, was introduced by Schwartz and
Chow [19] and used in the context of biological sequence analysis by Krogh
[13]. It maintains a pool of several candidate annotations and guarantees only
that the probability of the chosen annotation is at least the probability of the
most probable state path, not that it finds the most probable annotation.

Or, one can apply a posteriori decoding and compute the most probable label
for each sequence position. However, no state path may correspond to this
annotation, so it may not be consistent with the biological constraints of the
model. To complete the heuristic, a second step is required to modify such a
labeling to obtain a plausible annotation (see, e.g., [16]).

long

non-cyt.
loop
cytoplasmi non-cyt. cytoplasmi ::)Tcyt.
loop loop loop loop
transmembrane transmembrane
helix helix
(a) without multiple path problem (b) with multiple path problem

Fig. 2. Simplified topology of an HMM for transmembrane topology prediction

3 The multiple path problem in bioinformatics applications

In this section, we discuss several scenarios from common bioinformatics ap-
plications of hidden Markov models where the multiple path problem arises.
Then, in a small experiment, inspired by vertebrate gene finding, we show that
computing the maximum probability annotation gives better decoding accu-
racy than the annotation corresponding to the maximum probability path.

3.1 Bioinformatics applications with the multiple path problem

HMDMs are used in the most successful software for predicting the topology
of transmembrane proteins, or segmenting a protein sequence into transmem-
brane helices (parts traversing the membrane), cytoplasmic loops (parts inside
the cell), and non-cytoplasmic loops (parts extending outside the cell). Figure
2a shows a simplification of an HMM for this task. The topology enforces the
simple physical constraint that cytoplasmic loops must be separated from non-
cytoplasmic loops by transmembrane helices. Krogh et al. [14] used a similar
topology in TMHMM. They create separate modules for short and long non-
cytoplasmic loops, though, since these exhibit different statistical properties
(as in Figure 2b). This change creates the multiple path problem, as there is
an overlap in the loop lengths generated by both modules.

The second problem we examine is modeling feature length distributions in
HMMs. A common method of modeling longer sequence features in HMMs is
by a state with a self-loop transition as shown in Figure 3a. The number of
consecutive symbols from the white state (the length of the white feature) will
be geometrically distributed. This distribution may not necessarily match the
true distribution. One approach to resolving this problem, suggested by Durbin
et al. [6] and recently re-examined by Johnson [11], is to replace the single state
with a gadget of states, as in the example in Figure 3b. In such a modified
HMM, the length distribution of a feature is no longer geometric, but can be

p p p
i &l 6 Hiointiis
-/ -/ -/
) without multiple path problem (b) with multiple path problem

Fig. 3. One-state and three-state models of feature length distribution

0 0

non-coding coding non-coding coding

(a) without the multiple path problem (b) with the multiple path problem
Fig. 4. Simplified model of the HMM used in ESTScan [10]

increasingly complex. However, the probability of generating segments of a
given length within such a gadget is the sum of the probabilities of many low-
probability paths; this trick lets the model achieve the non-geometric length
distribution. Such an HMM has the multiple path problem, and applying the
Viterbi algorithm to decode it yields surprising and seemingly paradoxical
results [21].

Another problem commonly addressed by HMMs is protein coding region pre-
diction. In mRNA molecules (such as those used to produce expressed se-
quence tags, or ESTs), proteins are encoded by a sequence of triples of RNA
nucleotides. To distinguish coding regions from surrounding non-coding re-
gions, we might propose the HMM in Figure 4a. It has three different states
labeled black (for coding), but does not have the multiple path problem since
each annotation of an mRNA sequence has one path through the HMM.

The model in Figure 4a will not work well for real EST sequences, which
routinely include insertions and deletions in them. Iseli et al. [10], in their
program ESTScan, add transitions to the simple model for insertions and
deletions; as in Figure 4b. A path in this model may include some combination
of insertions and deletions, and many paths yield the same annotation, so it
has the multiple path problem.

The situation gets more complicated if we want to predict protein coding re-
gions in genomic sequences. In such sequences, the coding part of a gene can
be interrupted by several non-coding regions called introns. During transcrip-
tion, introns are removed from mRNA, and the remaining coding regions are
concatenated and translated to protein. A simple HMM for such genomic se-

O

Non- coding intron Non- coding intron intron
codi ng codi ng tail
(a) without multiple path problem (b) with multiple path problem

Fig. 5. Simple model of exon/intron structure

quence is shown in Figure 5a. There are three identical intron models included
to maintain the three-periodicity of the DNA code across intron boundaries.

This model represents introns by a single state, thus introducing an assump-
tion that the composition of introns is homogeneous. However, vertebrate in-
tronic sequences contain a variable-length tail rich in the nucleotides C and T
3], with composition is very different from the rest of the intron. Its presence
provides strong support that an intron boundary may be nearby. To incorpo-
rate this information into the HMM topology, we can include a second intron
state representing the tail, as shown in Figure 5b. This creates the multiple-
path problem: there are several high-probability sites for the transfer from the
intron state to the tail state.

3.2 The multiple path problem can cause bad annotations

All of our examples of the previous subsection developed the multiple path
problem when we increased the faithfulness of the model to what is found in
reality. However, if we use the Viterbi algorithm for decoding such models, we
find a single most probable path through the model, not the most probable
annotation. Will this result in bad annotations? Here, we show a simple syn-
thetic example, motivated by the intron tail scenario in Figure 5. Using Viterbi
decoding can lead to decreased accuracy of predictions, relative to what would
result from computing the maximum probability annotation.

The HMM A in Figure 6 emits symbols over the alphabet {0, 1}, where the
numbers inside states represent the emission probability of the symbol 1. This
HMM outputs alternating white regions of mean length 20 and gray regions
of mean length 34. The distribution of symbols (the composition) in the white
regions is constant, while in the gray regions, it changes towards their right
ends. The gray regions are bounded by a two-symbol signal, always 11, on
both sides. We used this HMM to generate 5,000 binary sequences of mean
length about 500 for various combinations of the parameters p; and ps.

0.95 0.95 0.9
Y o0

NN
E[length| Ellength] E[length]
=20 =20 =10

Fig. 6. HMM A: A simple HMM with the multiple path problem

0.95 0.97

& 007 -0
E[length] Elength]
=20 =30

Fig. 7. HMM B: Simplified model of HMM A, with no multiple path problem, but
with uniform composition throughout gray regions

Then we annotated these sequences with three decoding algorithms. We iden-
tified the annotation corresponding to the maximum probability path using
the standard Viterbi algorithm, we computed the maximum probability an-
notation using our Extended Viterbi Algorithm, described later in Section 5,
and we identified the annotation corresponding to the maximum probability
path through the simplified HMM B, shown in Figure 7. In this simplified
model, we replaced the two gray-labeled states, with probabilities p; and ps
of emitting a 1, by a single state and set the emission and transmission pa-
rameters of that state to maximize the likelihood of it generating sequences
from model A. The gray state of model B has probability approximately 0.97
of a self-loop, and emits the symbol 1 with probability p’ = (2p; + p2)/3. The
simplified HMM B does not have the multiple path problem, so the Viterbi
algorithm yields the most probable annotation of a sequence.

For each sequence, we compared the annotation found by our three annotation
algorithms to the true annotation, the labels of the states that generated the
sequences. The error rate is the percentage of mislabelled positions. Figure 8
shows our experimental results.

We have observed two trends in the data. First, computing the most proba-
ble annotation in model A increases the accuracy, compared to applying the
Viterbi algorithm to model A. Second, the Viterbi algorithm, applied to the
simplified model B, often performs better than the Viterbi algorithm applied
to the true model A. This behavior is counter-intuitive: since the data were
generated by model A, one would expect that decoding sequences using it
would give best results. However, Viterbi decoding, using a less correct model,

p2=0.1 p2=0.4

0.4 0.4 e
,’:
m m
B B
S 021 S o02-
i : i
7 —— most prob. annot. —— most prob. annot.
--+--Viterbi on HMM A --+--Viterbi on HMM A
--=-- Viterbi on HMM B --=-- \/iterbi on HMM B
00 T T T T T 00 T T T T T
01 02 03 04045 01 02 03 04045
pl pl

Fig. 8. Error rate of different decoding methods

without the multiple path problem, actually gives better results.

We verified the statistical significance of our experimental results with simple
sign test. For a given pair of decoding methods, we count for how many of
the testing sequences one method has lower error rate than the other. We
compare these counts with the uniform distribution by a chi-squared test.
The differences in prediction accuracy shown in Figure 8 are significant at the
0.001 significance level, except for the difference between the two versions of
the Viterbi algorithm for p, = 0.1 and p; = 0.4, and the difference between
most probable annotation and the Viterbi algorithm on HMM B for p, = 0.4
and p; = 0.4.

4 Finding the most probable annotation is NP-hard

Our experiment shows that most probable annotation decoding achieves better
results than picking the annotation corresponding to the Viterbi path, for
HMMs with the multiple path problem. In this section, we show that finding
the most probable annotation is unfortunately NP-hard in general. Lyngso
and Pedersen [15] proved the NP-hardness of this problem by reduction from
the maximum clique problem. From a graph with n vertices, they construct an
HMM with ©(n?) states and a sequence of length ©(n), forming an instance of
the most probable annotation problem. This does not correspond to our typical
scenario of sequence annotation: we fix an HMM, and annotate sequences
according to that HMM. Our new, stronger NP-hardness proof shows that
finding the most probable annotation is NP-hard, even for a specific small
fixed HMM.

@) @) @) O O consistent paths
O O) O 2 consistent paths
®)) O O 6 consistent paths (best layer coloring)

Fig. 9. A layered graph and three layer colorings

4.1 Layered graphs and the BEST-LAYER-COLORING problem

For a given sequence, we can represent the HMM by a layered weighted di-
rected acyclic graph, whose vertices conjoin sequence positions with HMM
states. With appropriate edge weights, paths in this graph correspond to HMM
state paths. In this section, we consider an unweighted version of such graphs,
which we call layered digraphs. We show that a path counting problem, di-
rectly analogous to the most probable annotation problem in HMMs, is NP-
complete. This proof will form the basis for the NP-hardness proof of the most
probable annotation problem.

Definition 1 (Layered digraphs and colorings) A colored proper layered
digraph s a directed graph, with its vertices arranged in layers Ly, Lo, . .., Ly,.
FEach edge connects a vertex in a layer L; to a vertex in layer L;. 1. Fach vertex
15 colored white or black.

A layer coloring is an assignment of a color (white or black) to each layer of
such a directed graph. A directed path from layer Ly to layer L, is consistent
with a layer coloring if the colors of the vertices on the path match the colors
of the layer coloring.

Figure 9 shows an example layered digraph with four layers. No paths are
consistent with layer coloring o o o o, but six paths are consistent with
o @ o o. The BEST-LAYER-COLORING problem asks a natural question.

Definition 2 (BEST-LAYER-COLORING problem) Given a colored proper
layered digraph G and a threshold T, is there a layer coloring with at least

T consistent paths?

Theorem 3 BEST-LAYER-COLORING is NP-complete, even for graphs where
each layer has at most 30 vertices.

10

(| ENCODE |y i

- & EQ(z,y1)? & EQ(z, y2)? \ \ EQ(T, Ym)?

Mo

O SAT(c1,y1)? F=| SAT(c2,y2)? F— =" —={SAT(Cp, Ym)7 O
assignment assignment assignment N assignment
Z Y1 Y2 Ym

Fig. 10. Overview of NP-completeness proof of BEST-LAYER-COLORING

PROOF. BEsST-LAYER-COLORING is in NP; for a given layer coloring, the
number of consistent paths is at most exponential in the number of layers and
can be computed by simple dynamic programming.

To prove NP-hardness, we reduce SAT to BEST-LAYER-COLORING. Consider
an instance of SAT: a formula in conjunctive normal form with n variables
U, U, . . ., Uy, and m clauses ¢y, ¢, ..., Cp.

We give an overview of the construction in Figure 10. The boxes in the fig-
ure represent components of the colored layered digraph for the SAT instance.
Lines connecting components represent subgraphs of the final graph that prop-
agate the same number of paths from left to right regardless of the layer
coloring chosen in those layers. If p paths through the layered digraph are
compatible with the first ¢ layers of a layer coloring, and such a line is entered
after ¢ layers, then no matter what colors are chosen in the layers correspond-
ing to the line, p paths are compatible with it at the end of the line. We use
one black and one white vertex in each layer of the subgraph, and join both
nodes from each layer of the subgraph to both nodes in the next layer.

The graph consists of m + 1 blocks 0,1,2,...,m, each with 2n layers. The
blocks from 1 to m correspond to the m clauses in the instance, while the
zeroth block maintains consistency. The layer coloring of each block represents
a truth assignment for the variables uq, ..., u,. The truth assignment of each
variable is encoded by the color of two consecutive layers: o o for “false” or
o e for “true”. Layer colorings not of this form will have no corresponding
paths, so we will not need to consider them; this allows us to speak of the layer
coloring and truth assignment of a block interchangeably. We will represent
truth assignments by numbers in binary representation (with u; as the highest-
order bit and wu, as the lowest-order bit). Let x be the number representing
the truth assignment of block 0 and let y1, ..., y,, be those for blocks 1,...,m.

In a “yes” instance of SAT, all m + 1 truth assignments x, vy, ..., vy, must
be the same satisfying truth assignment of the SAT formula. If the problem
is satisfiable, and we consistently use the same satisfying truth assignment in

11

each block, our construction produces 2m(4™ — 2" + 1) + 1 paths consistent
with the corresponding layer coloring. If the assignments chosen in each block
are not all the same, or if we ever choose an assignment that does not satisfy its
clause, we will not have that many paths corresponding to the layer coloring
chosen. This reduces SAT to BEST-LAYER-COLORING.

Figure 10 decomposes the structure of the graph into several components,
each of them having several inputs and outputs; we will further decompose
these in what follows. An input of a component is the number of consistent
paths ending in a designated vertex on the left-most layer of the component.
Similarly, an output of a component is the number of consistent paths ending
at a designated vertex on the right-most layer of the component. Let A - B
denote a component that transforms a vector of inputs A to a vector of outputs
B, when the layers of the component have coloring .

The component ENCODE(x) in Figure 10 encodes the truth assignment z,
of block 0 as a vector of three integers, v(z), on its output. In blocks i =
1,2,...,m, we test if the truth assignment of that block, y;, is the same as z
in the component EQ(z,y;). The input of this component is the vector v(x)
that comes from the ENCODE(z) module in block 1. If z and y; are the same
truth assignment, EQ(x,y;) outputs the number 2K (n), where K(n) = 4" —
2"t 4+ 1, if # y;, then the module EQ(z,%;) outputs a number smaller
than 2K (n). Finally, the component SAT(¢;,y;) outputs its input if the truth
assignment y; satisfies clause ¢;, or 0 otherwise. The input to SAT(c1,y;) is
a single path; because the SAT modules connect in series, there is one path
that exits the SAT modules exactly when the truth assignment chosen for all
blocks 7 satisfies clause ¢;. An additional layer before the first block and after
the last block ensure the proper start and end of each consistent path.

We now describe the components. Lemma 4 shows how to create the compo-
nent SAT(¢;,y;); Lemma 5 shows the construction of ENCODE(z) and EQ(x, ;).
The total number of vertices in each layer of this construction is at most 30,
so an instance of SAT can be reduced to BEST-LAYER-COLORING with that
constant number of nodes per layer. O

Lemma 4 For any clause ¢, there exists a component SAT(c,y) with a con-
stant number of vertices in each layer that outputs its input if truth assignment
y satisfies clause ¢, and 0 otherwise.

PROOF. The component has two parallel lanes, one corresponding to the
clause being satisfied, the other to it being unsatisfied. There is one 2-layer
section for each variable of the truth assignment. The structure of the ith
section depends on whether variable u; is present in the clause ¢; as the positive
literal u;, the negative literal —u; or not at all. If the variable is present and

12

clause unsatisfied

o ,O/©< f mﬁf\o
clause satisfied

Fig. 11. Assembly of SAT components for the formula (u; V ug) A (—ug V us3)

— 72 _ 2
1 SQUARE K(n)—=x K(n)—=z
2 2 2zy Sum:
—= > MULT MULT p———
. 2K (n) — (v —y)?
1 1 square L) Y
ENCODE(z) EQ(z,y)?

Fig. 12. Overview of ENCODE and EQ

its assignment satisfies the clause, the path switches from the “unsatisfied”
lane to the “satisfied” lane. The single input to the component comes to the
first vertex of the “unsatisfied” lane and the single output of the component is
the last vertex of the “satisfied” lane. Figure 11 shows an example of a chain
of two SAT components. Gray vertices represent vertices that can be used
in a path for either layer color. These vertices are used only to simplify the
drawings: each can be replaced by a white and a black vertex with the same
incoming and outgoing edges. O

Lemma 5 There exist components ENCODE(x) and EQ(z,y), with a constant
number of vertices in each layer, such that the if we use the output of ENCODE(x)
as the input to EQ(z,y), the output of EQ(z,y) is 2K (n), if x = y, and smaller
otherwise.

PROOQOF. Let x be the number whose binary representation encodes the
truth assignment of variables uq,...,u,. We encode x as a vector with the
ENCODE(z) component; if this encoding is used as the input of EQ(x,y), the
output of EQ(z, y) will be 2K (n)—(z—y)?, which is equal to 2K (n) if z = y and
is less than 2K (n) otherwise. To this end, the ENCODE component computes
the three element vector ENCODE(z) : 1 — (K (n)—2?,2x, 1) and the EQ com-
ponent computes the scalar value EQ(z,y) : (o, 8,1) =% K(n) —y> +3-y+a.
An overview of the structure of these two components is shown in Figure 12.

These two required components can be constructed as a combination of two
subcomponents, MULT(x) : o — ax and SQUARE(x) : 1 - K(n) — 22, as
shown in Figure 12. Both MULT(x) and SQUARE(z) consist of identical 2-layer
sections, each processing one bit of x.

13

. /;\/;\{/;\im/;

Fig. 13. Component MULT(z) : o — o

Consider the section of component MULT(x) processing the k-th bit of the
truth assignment x. Let w be the binary representation of truth assignment
of the first k — 1 variables, t be the truth assignment of the k-th variable, and
z = 2w +t be the truth assignment of the first k& variables.

The section has two inputs and outputs: (o, aw) —— (o, @z). The value oz
can be computed from the values aw, a, and t by the following equation:

20w, ift=0
az = (1)
2w + a, if t =1

Figure 13 shows the component MULT(z) for an assignment with four variables.

Similarly, we can design the component SQUARE(z). Section k of this compo-
nent has four inputs and outputs (1, B(k —1),C(w, k — 1), D(w, k — 1)) ——
(1, B(k),C(z,k), D(z,k)), where functions B, C, D are defined as follows:

B(k) =22 — 4, (2)
C(z,k)=B(k) — 4z, (3)
D(z, k) =4% — 2kt 11 - 22, (4)

The values of B, C, D can be computed bit by bit using the following recur-
rence relations:

B(k)=2B(k — 1) + 4 (5)
o 20(w, k — 1) +4,if t =0 ©
o 20w k—1), ift=1

+B(k—1)+1,ift =0
+Cw k—1), ift=1

The graph for one section, based on the recurrences (5), (6), (7), is depicted
in Figure 14. Graphs of n such identical sections can be assembled into the

14

Fig. 14. One section of component SQUARE(z) : 1 —— K(n) — 2

component SQUARE(z). Since B(0), C'(0,0), and D(0,0) are all zeroes, there
are no paths entering these inputs in the first section. The output D of the
last section is the output of the whole component, and it has value D(x,n) =
K(n) — 22, as desired. O

Now, with all the required components, our proof is complete. We have given
a layered directed graph for the SAT instance. The layer with the largest
number of vertices has four lines carrying previously computed values (with
two vertices in each of them), one component EQ (consisting of MULT with
at most four vertices per layer, SQUARE with at most 12 vertices per layer,
and a line carrying a previously computed value with two vertices), and one
component SAT (with at most four vertices per layer). Therefore each layer
has at most 30 vertices.

4.2 Constructing a small HMM that is NP-hard to decode

In this section, we use ideas from the proof of Theorem 3 to reduce SAT to
most probable annotation, obtaining a small HMM that is NP-hard to decode.
The SAT instance will be encoded in the sequence to annotate.

If the SAT formula contains m clauses with n variables, then the sequence will
consist of (m + 1) blocks of (n + 1) symbols, terminated by a special symbol
I"as follows.

The first block is a string 0"#. Each of the next m blocks encodes one clause
of the formula. The ith symbol is 1 if the clause contains the positive literal of
the ith variable, 0 for the negative literal, and — if the clause does not contain
the ith variable. Each block is terminated by a special symbol $. For example,
the formula z1 A (22 V —x3) is encoded as 000#1— —$— 103!

15

Formula: x1 A (22 V —x3)

Encoding of the formula: Ooo0oo0o#1--9%-10 8%
Satisfying assignment: x1: true, xo: true, xs3: false
The assignment as an annotation. 0 0 0 # 1 - - $ - 1 0 ¢ !

Fig. 15. Encoding formulas and assignments for HMM solving SAT

The HMM will have two labels: white and gray. For satisfiable formulas, the
most probable annotation will represent a satisfying assignment, in which the
special characters are labeled white, variables with value “true” are labeled
gray, and variables with value “false” are white. In the most probable annota-
tion representing a satisfying assignment, the same pattern will repeat m + 1
times, and in each clause at least one symbol “0” will be labeled white, or one
symbol “1” will be labeled gray. Figure 15 shows an example of a satisfying
assignment as an annotation.

Figure 16 shows the schema of the HMM. Each state emits only the symbols
depicted inside the state with equal probability. Multiple edges join some pairs
of states; the multiplicity of an edge is noted at the tail of the edge (if not
explicitly stated, it is 1).

We want all non-zero probability paths in this HMM to have the same prob-
ability, so we transform the diagram in the figure to an HMM by removing
silent states and introducing an error symbol, and an error state (not shown
in the figure). The error state emits only the error symbol and has only one
outgoing transition, a self-loop. The error symbol can be emitted in each of the
states; emissions of this symbol, and transitions to the error state, normalize
the probabilities, so that every ordinary symbol emission, and every transition
between two ordinary states, have the same probabilities. Once we have made
this transformation, every path has the same probability, so we only need to
count the number of paths produced by each particular annotation.

To understand the HMM, we relate it to the layered graph of Figure 10.
Each path in this layered graph is represented by a path in the HMM, and the

coloring of the path in the layered graph will be represented by the annotation
(state labels) in the HMM.

For a given annotation and given formula with n variables and m clauses, let
x be the truth assignment implied by the annotation of the first block, and
y; be the truth assignment for the annotation of block 7 + 1, representing the
1-th clause.

Sub-model A always carries exactly one path, corresponding to the top-most
level in the layered graph. From time to time, paths split off from the path

16

start

T

A: store 1 l
. B: new clause
5 3 R,
44 /a2
27(n+2)-444y F: 2/(pi+2)-4 C: unsatigfied

J: K(n)-y"2

L: sto}g K(n)—x"2 : sum and store || M: 2xy

@ a@

Fig. 16. HMM solving SAT

sto

carried by sub-model A, and propagate to other blocks. All non-zero proba-
bility paths must end in the stop state after (m + 1)(n + 1) + 1 steps since
analyzed sequences always end with !, emitted only by that state.

The sub-models B,C, D of the HMM contribute one path to the final an-
notation if all block annotations represent satisfying assignments; thus, they
embody the SAT modules of the graph.

At the beginning of each clause, if all previous clauses were satisfied, one path
is in sub-model C. It is transferred to sub-model D once a variable is found
whose truth assignment, as represented in the annotation, satisfies the clause.
After the clause is terminated with the symbol “$”, this path is transferred
back to the sub-model B, if there was a satisfied variable, or it is discontinued
in sub-model C|, if the clause is not satisfied. Thus, the function of sub-model
B is characterized by the following lemma.

Lemma 6 Upon emission of the symbol “$”, terminating block i + 1 repre-
senting the i-th clause, sub-model B contains one path if the first i clauses are
satisfied by their assignments vy, ...,y;, or zero paths otherwise.

17

Sub-models E, F,G, H, J, L, M, and N enforce that all clause blocks of the
input sequence are annotated with the same value assignment of the variables.
The combination of these sub-models mimics the function of the components
ENCODE(z) and EQ(z, y;) in Figure 10. In particular, sub-model £ corresponds
to C'(z, k), sub-model F' corresponds to B(k), and sub-model J corresponds to
D(z, k) from Recurrences 5-7 on page 14. The following lemma characterizes
the intermediate number of paths in sub-model N and its correctness follows
directly from these recurrences.

Lemma 7 After emitting the symbol “$”7 terminating block i + 1 of the se-
quence corresponding to the i-th clause of the formula, the number of paths
contained in sub-model N s

ijlmn) () (®)

L("?

Upon emitting the symbol terminating the sequence, the final “stop” state
will receive all the paths accumulated in sub-model N. If every clause has the
same assignment y; = x, sub-model N contributes 2mK (n) paths; otherwise,
it contributes some smaller number. The “stop” state also receives one path
from sub-model B if all clauses are satisfied by their assignments.

Therefore, a satisfying annotation that is consistent over all the clauses will
yield 2mK(n) + 1 paths. Any other annotation yields a smaller number of
paths, so a satisfying consistent annotation is the most probable annotation,
if such an annotation exists. Therefore, if we can solve the most probable
annotation problem for the HMM in Figure 16, we can use it to solve SAT
in polynomial time. After removing the silent states and introducing the error
state, the resulting HMM has 34 states.

We will see in the following section that this HMM is hard to decode because
states with different labels are distributed all over the HMM, with many edges
between states of different labels. For HMMs with only a few edges leading be-
tween states of different labels, we will introduce polynomial-time algorithms.

5 Computing the most probable annotation

In the previous section, we showed that it is NP-hard to compute the most
probable annotation for some HMMs. However, for special classes of HMMs,
the most probable annotation can be computed efficiently. For example, HMMs
without the multiple path problem have one state path per annotation. The
Viterbi algorithm, finds the maximum probability path in O(nm?) time, where

18

@ &=
Fig. 17. An HMM with two critical edges, A — B and B — A.

n is the length of the sequence, and m is the number of states; this path’s
labeling is the most probable.

In this section, we give a collection of algorithms with increasing running time
that can compute the maximum probability annotation for increasingly wider
classes of HMMs; the Viterbi algorithm is the first and fastest such algorithm.
For each algorithm, we give a sufficient condition for membership in the class
of HMM topologies that can be decoded properly using the algorithm. While
our algorithms may not always find the most probable annotation, they will
return an annotation with probability at least as high as the probability of
the most probable state path, even if the input HMM does not belong to the
class of HMMs guaranteed to be decoded correctly by the algorithm.

5.1 Most probable extended annotation

So far, we have been considering the partition of all state paths into equivalence
classes corresponding to paths with a common labeling, and our goal has been
to search for the equivalence class (annotation) of highest probability. Now, we
consider a possibly finer partition of the set of all paths and call the equivalence
classes in this new partition extended annotations. The additional division is
based on which edges in the path join states with different labels.

In the following definitions we assume for ease of presentation that the HMM
has a designated start state s and a designated final state f. Let in(u) for any
state u be the set of states with a transition into state w.

Definition 8 (Extended annotation) A critical edge is a transition be-
tween two states of different label. The extended annotation of a state path
1Ty . .. Ty 08 the pair (L, C'), where L = Ay, \a, ..., A, is the sequence of labels
of each state in the path and C = ¢y, ca, ..., ¢ 1S the sequence of all critical
edges in the path.

For example, the HMM in Figure 17 has three states, two different labels, and

two critical edges: A — B and B — A. The state paths ABCB and ABBB
both have the same extended annotation, (O ,A— B).

The following extended Viterbi algorithm (EVA) computes the most probable
extended annotation.

Theorem 9 (Extended Viterbi algorithm) For a given sequence S = xy ... x,

19

and an HMM with m states, it 1s possible to compute the most probable ex-
tended annotation of S in time O(n*m?).

PROOF. Our algorithm is an extension to the classical Viterbi algorithm,
which computes the most probable state path in the HMM using dynamic pro-
gramming. In the Viterbi algorithm, we compute values V'[u, i|, the maximum
probability of a state path for the sequence x; ...z; over all paths ending in
state u, or max Pr(zy...x;,m = 8, Mo, ..., Tp_1, T = U).

To compute a particular value of V'|u, i|, the dynamic programming algorithm
uses the following recurrence, examining all possible options for the second-
to-last state:

Viu,i] = max Viv,i—1]-a(v,u) - e,(z;). (9)

vein(u)

In the extended Viterbi algorithm (EVA), we instead compute maximum prob-
ability extended annotations for the first i characters, ending in a particular
state w; let L[u,i] be defined as L[u,i] = maxPr(z;...z; (L,C),m; = u),
where the maximum is taken over all extended annotations (L, C') of sequence
x1 . ..x; where the generating process starts in state s and ends in state u.

As in the Viterbi algorithm for HMMs with explicit state duration [17], we
examine all possible durations of the last segment with the same label. Instead
of choosing the single most probable path in that segment, we compute the sum
of all possible state paths in this segment. If the segment starts at position
Jj < i of the sequence, let Plv,u,j,i] be this sum; it is the probability of
generating the sequence z;...x;, starting in state v, and ending in state u,
using only states with label A\(u). This gives the following recurrence:

Llu,i| = max max max
Jj<i viA(v)=A(u) wein(v):A(w)#A(v)
(Llw,j =1} -a(w,v) - Plv,u, j, i) (10)

We compute values of L in order of increasing i. For each i, we compute
all relevant values of P(v,u, j, 1) in order of decreasing j, using the following
recurrence:

P[U>u>j>i] = Z 6v(xj) 'G(U,M)'P[W,U,j-}-l,’é] (11)
w:wein(w),A(v)=A(w)

When the computation of L is finished, we can reconstruct the most probable
extended annotation via backtracking, as for the Viterbi algorithm. O

20

The probability of the extended annotation returned by the algorithm is al-
ways at least as high as the probability of the most probable state path II
found by the Viterbi algorithm, as the probability of the extended annotation
corresponding to II must be at least as high as the probability of II itself.

5.2 The critical edge condition

In this section, we study a class of HMMs for which we can prove that the
algorithm defined above computes the most probable annotation. This class
contains many HMMs with the multiple path problem that cannot be de-
coded simply by using the Viterbi algorithm. Here is a sufficient condition for
membership in this class.

Definition 10 An HMM satisfies the critical edge condition for an input
sequence s if any two paths for s with the same annotation have the same
sequence of critical edges. An HMM satisfies the critical edge condition in
general if for all input sequences s, the critical edge condition is satisfied.

The significance of the critical edge condition is shown by the following claim.

Corollary 11 If an HMM satisfies the critical edge condition for a sequence
s, then the EVA computes the most probable annotation of sequence s.

The hidden Markov model in Figure 17 clearly satisfies the critical edge con-
dition, since for each transfer between the two labels there is only one critical
edge which can be used. Several of the HMMs from Section 3 with the multiple
path problem satisfy the critical edge condition, specifically those in Figures
3b, 4b, 5b, and 6.

On the other hand, the HMM in Figure 18a does not satisfy the critical
edge condition: the annotation 0" 'O has two possible extended annotations:
(OF0,A — B,B — A) and (00 0,A — C,C — A). However, we can add
silent states to construct the equivalent HMM, in Figure 18b that satisfies the
critical edge condition, as we leave each label class via a common exit. Simi-
larly, the HMM in Figure 2b can be modified by addition of two silent states
to satisfy the critical edge condition. Thus, in our case, the silent states are a
crucial modeling tool. However, the silent state technique is not universal: the
HMM in Figure 18c cannot be transformed to comply with the condition.

We can test algorithmically whether a given HMM topology (where we only
consider the existence or absence of transitions with nonzero probability) will
satisfy the critical edge condition for every input sequence. We first use depth-
first search to build a set S, of all pairs of states that are reachable from the
start state by the same annotation. We start from the pair (s, s) € S, and in

21

5 8 6.
28 @ ® g 50

(a)

Fig. 18. Usefulness of silent states

each step we add a new pair (u,v) if A(u) = A(v), and there exists (u',v") € S
such that v’ € in(u) and v € in(v). Similarly, we also build a set S of all pairs
of states from which the final state can be reached by the same annotation.
For the critical condition to be violated, there must exist a pair (u,v) € Sy and
(u',v") € Sy such that A(u) # A(v'), and (u,u’) and (v,v") are two different
transitions. The algorithm takes O(m?) time.

It is possible to modify this verification algorithm to verify the critical edge
condition in O(m*|X]?) time, if the emission probabilities are given. Note that
this test may yield a different result, since some states may not produce some
alphabet symbols, so two different paths with the same extended annotation
cannot generate the same string; hence, this extension identifies even more
HMMs that satisfy the condition.

And finally, we can also verify the condition for a given HMM and input string
in O(nm*) time. In that case, we build a set of state pairs that can be reached
by the same annotation for each position in the sequence.

A simplified version of these algorithms can also test if an HMM has the
multiple path problem. We build the sets S and S as before and then test if
there is a pair (u,v) in the intersection of Sy and Sy such that u # v. Finding
such a pair means that for the same annotation there exist two state paths:
one going through state v and one through state v.

5.8 Generalizing the EVA and the critical edge condition

We have seen two classes of HMMs for which the most probable annotation
can be found in polynomial time. If there is a one-to-one mapping between an-
notations and state paths, then the Viterbi algorithm, whose runtime is linear
in the sequence length n, finds the most probable annotation. Or, if the HMM
comes from the larger class of HMMs that satisfy the critical edge condition,
then the extended Viterbi algorithm (EVA), whose runtime is quadratic in the
sequence length, finds the most probable annotation.

In this section we extend the critical edge condition and the EVA to growing
classes of HMMs. As the configuration of critical edges in HMM gets more

22

complex, the running time of the decoding algorithms also increase.

Definition 12 (Generalized extended annotation) A generalized exten-
ded annotation is a pair (L,C), where L = Mg ...\, is a sequence of labels,
and C = ¢y, ca, ..., cp contains for every transition between different labels in
L either a critical edge that can be used for that transition or the symbol * (a
masked critical edge).

A generalized extended annotation matches the state path mymy ... 7w, if the
labeling L corresponds to the labels of the states, and if every critical edge in
C' matches the one used on the path (masked critical edges can be arbitrary).

A generalized extended annotation is of order d if there are no blocks of d
consecutive masked critical edges in it.

One path can be matched by several generalized extended annotations, since
different critical edges can be masked.

Our extended Viterbi algorithm (EVA) can be extended to the domain of
generalized extended annotations as well. The EVA of Theorem 9 is a special
case of the following algorithm for d = 1.

Theorem 13 (Generalized EVA) For a given sequence S = xy ...z, and
an HMM with m states, it is possible to compute the most probable generalized
extended annotation of order d in time O(n®™m*2). We call the correspond-
ing algorithm the generalized EVA of order d.

PROOF. In Theorem 9, we used dynamic programming to compute the val-
ues of L[u,], which is the maximum probability of an extended annotation of
the first ¢ symbols of the sequence, ending at state u. Our recurrence decom-
posed the problem of computing L[u,i| into subproblems depending on the
last critical edge used.

We can further modify the algorithm to account for short blocks of masked
critical edges in generalized extended annotations. The dynamic programming
algorithm will compute values of Lg[u, i]: the probability of the most probable
generalized extended annotation of order at most d of the first ¢ symbols
ending in state u. We decompose the problem into subproblems depending on
the position j of the last unmasked critical edge. We also consider all possible
annotations of the region of the sequence z; . .. z; with at most d—1 transitions
between different labels. In particular:

Lglu, | =max max Lylw,7—1|-a(w,v) -
d[] J<i,v wein(v):A(v)#A(w) d[J] ()

23

Py(v, j,u, i, Aj . N), 12
B8y PO T 08 A5 2 12

where L4(k) is the set of labelings of length k& with at most d — 1 transitions
between different labels, and Py(v, j, w, i, Aj ... \;) is the probability of labeling
the symbols z;...x; with labels A;...J;, if the model starts in state v for
position j and finishes in state u with position . For a given labeling, this
probability can be computed in O(nm?) with the backward algorithm.

For each tuple (v, j,u, i) there are O(n?"'m?=2) possible labelings A; . .. \;, and
for each pair u, 7 there are O(nm?) values of v,w and j. Therefore, to compute
the O(nm) values of Lg[u,i], we need a running time of O(n®+2ma*3).

This running time can be reduced by careful organization of how the values
of Py(v, j,u,i,A;...\) are computed. The labelings that need to be explored
for a given pair (u,i) can be organized in a tree. The root is a labeling with
only the single label A(u). The children of each node either extend this la-
beling backward with the same label as their parent, or change the label to
a different label; such extensions are done until either the beginning of the
sequence is reached, or the threshold d — 1 of allowed label changes is reached.
If the computation of the values of P is organized using this tree, only O(m?)
time is needed to compute the desired probabilities for each labeling from the
probabilities of its parent labeling. Thus, for a given u and ¢, we can compute
all relevant values of P; in O(n9m?*1) time and the overall running time is

O(nd+1md+2). O]

We can now generalize the critical edge condition, which gave a sufficient
condition for membership in the class of models for which the EVA gave
maximum probability annotations, giving a sufficient condition for the class
of HMM topologies that can be decoded by the generalized EVA.

Definition 14 (Consensus generalized extended annotation) For a set
of U extended annotations {(L,C4),(L,Cs),...,(L,Cy)}, all sharing the same
labeling L, but differing only in their critical edges, their consensus generalized
extended annotation is the generalized extended annotation (L, (¢1,ca,. .., Ck))
where ¢; = ¢, if the ith critical edge of all of Cy,Cs, ..., Cy is the same edge c,
and ¢; is masked to * otherwise.

Definition 15 (Generalized critical edge condition) An HMM satisfies
the generalized critical edge condition of order d, if for any sequence s, and
any non-zero probability annotation L of s, the consensus generalized extended
annotation of all non-zero probability extended annotations (L,C) of s is of
order at most d.

The condition holds if for every non-zero probability annotation L of sequence

24

5 -

Fig. 19. An HMM that satisfies the generalized critical edge condition of degree 2

9 00
O<g6 0—0

(a) can be decoded in polynomial time (b) no known polynomial-time decoding
Fig. 20. Two small HMMSs that cannot be decoded by the generalized EVA

s, there can never be a block of d transitions between labels where none of
these transitions is restricted to being only a single edge. Note that the critical
edge condition is a special case of the generalized critical edge condition where
d=1.

Corollary 16 If an HMM satisfies the generalized critical edge condition of
order d, then the generalized EVA of order d finds the generalized extended
annotation corresponding to the most probable annotation.

The HMM in Figure 19 does not satisfy the critical edge condition: there
are two critical edges leading from states with the white label to states with
the gray label, B — C' and D — FE. It does satisfy the generalized critical
edge condition for d = 2. For example, the annotation = OO 000 has
only two possible sequences of critical edges in an extended annotation: (F' —
A B—C F— A)and (F — A, D — E,F — A). This yields the consensus
annotation (F' — A, x, ' — A), consistent with the generalized critical edge
condition of order d = 2. Corollary 16 shows that the most probable labeling
for this HMM can be found by the generalized EVA in running time O(n®*m?).

5.4 Beyond the generalized critical edge condition

Figure 20 shows two small HMMs which do not satisfy the generalized critical
condition for any constant d, and therefore cannot be exactly decoded by
the generalized EVA algorithm. The HMM in Figure 20a can be decoded in
polynomial time by a completely different strategy.

HMMs like the one in Figure 20a are characterized by being divided into
k components, where each component contains exactly one state with each
label (though that state may have no incoming transitions), and there are no
transitions between different components. We pick which component generates

25

a sequence using a single silent start state connected to at least one state in
each component. For example, the HMM in Figure 20a has two components
with two states each.

Let ¢ be the number of labels and o the size of the alphabet. Let v; y be the
state of label A in component j. Any annotation in such an HMM has at most
one corresponding path within each component. The probability of such an
annotation is

k
PI‘([L’l oo Tp,)\1 Ce)\n) = Z (CL(S, 'Uj7)\1) H evM (Zlf)fo\’x) H CI,(’U]'7)\, 'Uj7>\/)f()\’>\))
j=1 A\,x

AN

where f(A,x) is the number of positions where symbol z is labeled by label
A, that is, where \; = A and z; = z, and f(\,) is the number of positions
where label A is followed by label . The probability of a given annotation is
determined solely by A; and the configuration of the frequencies f(\, z) and
f(A, N). Each of these counts is between 0 and n. Therefore, even though there
are (" annotations, they can have at most £-(n+ 1)5"“2 different probabilities.

For a given string, we can compute the set of all possible configurations of
these frequencies by a simple search through all prefixes of the string. For
each of these configurations, we can evaluate the probability, and choose the
best configuration, and consequently compute the most probable annotation.
If o and ¢ are constants, this algorithm works in polynomial time.

Unfortunately, this strategy does not work for the HMM shown in Figure 20b,
since in this HMM, the probability of an annotation is a sum of exponentially
many path probabilities. We do not know a polynomial-time algorithm to
decode this HMM.

6 Conclusion

We have investigated the most probable annotation problem in HMMs. We
showed that the problem is NP-hard even for a specific small HMM, in contrast
to the previous NP-hardness proof by Lyngsg and Pedersen [15], where the
constructed HMM depended on the input SAT instance.

Even though the problem is NP-hard in general, we can compute the most
probable annotation for many HMMs in polynomial time. If there is only a
single feasible state path for every possible annotation, the problem can be
solved by the Viterbi algorithm. Otherwise, the HMMs have what we have
termed the multiple path problem, and we need to use different methods to
decode them.

26

We have presented several biological applications where the multiple path
problem arises: predicting the topology of transmembrane proteins, predict-
ing protein coding regions in mRNA sequences, and finding genes in DNA se-
quences. In all of these applications, the multiple path problem can be solved
by applying our O(n*m?) extended Viterbi algorithm, either directly or using
silent states. This is an acceptable runtime for protein and mRNA sequences.

In contrast, gene finding in DNA sequences is typically performed on longer
sequences, potentially on entire chromosomes. A runtime quadratic in the
lengths of these sequences is not feasible, since for example the smallest human
chromosome is approximately fifty million symbols long. To capture the C/T-
rich tail in the intron model (as seen in Figure 5) and still keep the running
time linear in the length of the sequence, HMM-based gene finders typically
model this intron tail by a state generating a fixed number of nucleotides at
the end of the intron [3, 20, 2|. Such a model does not have the multiple path
problem, and therefore can be decoded by the linear-time Viterbi algorithm.
We demonstrated by a simple experiment that when computing the most
probable annotation is infeasible, simplifications that exclude the multiple
path problem may be preferable to using the Viterbi decoding algorithm on
the more complex model.

We can further generalize our extended Viterbi algorithm and the critical edge
condition and use increasingly slower decoding algorithms to decode increas-
ingly wider classes of HMMs. Finally, Figure 20a shows an example of an
HMM that cannot be decoded by any of these algorithms, though it can be
decoded in polynomial time by a completely different approach.

The multiple path problem in HMMs is closely related to structural ambiguity
in stochastic context-free grammars (SCFG). Such grammars are commonly
used in bioinformatics for RNA secondary structure prediction [7, 12]. Dowell
and Eddy [5] demonstrated that ambiguity can cause significant deterioration
of prediction accuracy in this application.

In general, the problem of ambiguity is harder in SCFGs than in HMMs.
Determining whether a given SCFG is structurally ambiguous is undecidable
[18]; the best positive result uses techniques from compiler construction to
determine that some commonly used SCFGs are unambiguous [18, 1]. On the
other hand, we can test whether an HMM has the multiple path problem in
O(m?) time (see Section 5.2). Because HMMs are a special case of SCFGs,
our hardness results also show that at least for some structurally ambiguous
SCFGs, determining the most probable structure is NP-hard.

Several problems remain open. First, we do not know at present any polynomial-

time algorithm for finding the most probable annotation for the model shown
in Figure 20b. This is one of the smallest such examples, since all HMMs

27

with at most three non-silent states can be decoded by the techniques we
have shown. Is decoding this HMM NP-hard, or can we find yet another class
of polynomial-time decoding algorithms? Second, are there HMM topologies
(other than ones without the multiple path problem) that can be decoded
in sub-quadratic time? Such models may be useful in applications where the
input sequence is long. Finally, the HMM we have constructed in Section 4
can be very well approximated: any annotation that satisfies each clause by a
potentially different truth assignment differs from the optimal annotation by
at most one path. In contrast, Lyngseg and Pedersen [15] show that the most
probable annotation is NP-hard to approximate within any constant when
the HMM is part of the input. The logical question is whether there is a fixed
HMM that is hard to approximate.

Acknowledgements

This research was supported by grants from the National Science and Engi-
neering Research Council of Canada. Most of the work was done while BB
and TV were at the University of Waterloo. The authors would like to thank
Ming Li and Prabhakar Ragde for fruitful discussions, and the anonymous ref-
erees for their comments that helped to improve this article. The early version
of this paper appeared in Workshop on Algorithms in Bioinformatics 2004.

References

[1] Brabrand, C., Giegerich, R., Mgller, A., May 2006. Analyzing ambiguity
of context-free grammars. Tech. Rep. RS-06-09, BRICS.

[2] Brejovd, B., Brown, D. G., Li, M., Vinat, T., 2005. ExonHunter: a com-
prehensive approach to gene finding. Bioinformatics 21 (Suppl 1), 157165,
Intelligent Systems for Molecular Biology (ISMB 2005).

[3] Burge, C. B., 1997. Identification of genes in human genomic DNA. Ph.D.
thesis, Department of Mathematics, Stanford University.

[4] Casacuberta, F., de la Higuera, C., 2000. Computational complexity of
problems on probabilistic grammars and transducers. In: ICGI 2000:
Grammatical Inference: Algorithms and Applications. Vol. 1891 of LNCS.
Springer, pp. 15-24.

[5] Dowell, R. D., Eddy, S. R., 2004. Evaluation of several lightweight
stochastic context-free grammars for RNA secondary structure predic-
tion. BMC Bioinformatics 5, 71.

[6] Durbin, R., Eddy, S., Krogh, A., Mitchison, G., 1998. Biological sequence
analysis: Probabilistic models of proteins and nucleic acids. Cambridge
University Press.

28

Eddy, S. R., Durbin, R., 1994. RNA sequence analysis using covariance
models. Nucleic Acids Research 22 (11), 2079-2088.

Eppstein, D.; 1998. Finding the k shortest paths. SIAM Journal on Com-
puting 28 (2), 652-673.

Forney, G. D.; 1973. The Viterbi algorithm. Proceedings of the IEEE 61,
268-278.

Iseli, C., Jongeneel, C. V., Bucher, P.; 1999. ESTScan: a program for
detecting, evaluating, and reconstructing potential coding regions in EST
sequences. In: ISMB 1999: Seventh International Conference on Intelligent
Systems for Molecular Biology. pp. 138-148.

Johnson, M. T., 2005. Capacity and complexity of HMM duration mod-
eling techniques. IEEE Signal Processing Letters 12 (5), 407-410.
Knudsen, B., Hein, J., 2003. Pfold: RNA secondary structure prediction
using stochastic context-free grammars. Nucleic Acids Research 31 (13),
3423-3428.

Krogh, A., 1997. Two methods for improving performance of an HMM
and their application for gene finding. In: ISMB 1997: Proceedings of
the 5th International Conference on Intelligent Systems for Molecular
Biology. pp. 179-186.

Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E. L., 2001. Pre-
dicting transmembrane protein topology with a hidden Markov model:
application to complete genomes. Journal of Molecular Biology 305 (3),
567-570.

Lyngsg, R. B., Pedersen, C. N. S., 2002. The consensus string problem and
the complexity of comparing hidden Markov models. Journal of Computer
and System Sciences 65 (3), 545-569.

Martelli, P. L., Fariselli, P., Krogh, A., Casadio, R., 2002. A sequence-
profile-based HMM for predicting and discriminating beta barrel mem-
brane proteins. Bioinformatics 18 (S1), S46-53.

Rabiner, L. R., 1989. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE 77 (2), 257—
285.

Reeder, J., Steffen, P., Giegerich, R., 2005. Effective ambiguity checking
in biosequence analysis. BMC Bioinformatics 6, 153.

Schwartz, R., Chow, Y.-L., 1990. The N-best algorithms: an efficient and
exact procedure for finding the N most likely sentence hypotheses. In:
ICASSP: Acoustics, Speech, and Signal Processing. pp. 81-84, vol. 1.
Stanke, M., Waack, S., 2003. Gene prediction with a hidden Markov model
and a new intron submodel. Bioinformatics 19 (S2), [1215-11225.

Vinar, T., 2005. Enhancements to hidden Markov models for gene finding
and other biological applications. Ph.D. thesis, University of Waterloo.

29

