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1.1 INTRODUCTION

One of the most basic tasks of bioinformatics is to ident#fgttires in a biological
sequence. Whether those features are the binding sitesrofeirp the regions of a
DNA sequence that are most subject to selective pressuiesimg sequences found
in an expressed sequence tag, this phase is fundamental ppabess of sequence
analysis.

While a variety of computational tools have been used owectiurse of the time
that people have been needing to perform this task, thertlyr@ominant tool in
biological sequence annotation is the hidden Markov mod#). HMMs have
been used in so many contexts over the course of the lastififesgs that they almost
require no introduction. They are used in computationakgerders, to predict the
structure of genes in newly sequenced genomes. They areérupestein sequence
analysis, to identify substructural elements. They arel usediscover regulatory
sequences in DNA, to identify ancestry patterns in pedigraad truly for almost
any feature detection problem in biological sequences.

As such, it may seem that their use is so routinized that tlsen®thing more
to learn about them: that fifteen years of their use in bigalgsequence analysis
mined the field for all of its interesting problems many yesge. Fortunately, this is
anything but the case. As the fields of genomics and proteoateance, a variety
of new challenges have come to fore in the algorithmic amalgs HMMs. For
example, if we have a large amount of training data, and eam&an HMM to closely
model the many complex features of the data, will that nesdgsmprove the
quality of our predictions on new data? How can we properlgeaithe distributions
of the lengths of complex sequence features in HMMs? How carinaorporate
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... CATCATGGTGCAT. . . GGCAGGTAAGCA. . . TTCATAGGCTCC. . . CACTGAGITATCT. . .

... XXXXCCCCCCCCC. .. cCcCCCiiiiiii...iiiiiiicccee. .. CCCCCOXXXXXXX. . .
upstream coding intron coding downstream
intergenic region 1 region 2 intergenic

Fig. 1.1 In gene finding, the goal is to label each nucleotide of a gb&A sequence as
coding (c), intron (i) or intergenic (X).

evolutionary conservation information into the creatibRlMMs that properly model
DNA sequences, and into the algorithms for their analysis?

This chapter considers the use of HMMs in sequence analtsiging from the
simplest cases (simple HMMs, with simple structures, sartphining algorithms
and simple decoding procedures), and moving to situatidrgreat complexity,
incorporating very recent ideas from machine learningthed/e present the basic
algorithms, and their extensions, and give suggestionlaoép where future research
can be most useful. Throughout, we make reference to thertamtcapplications
in which these algorithms are used, and to why the field hasrésqced continuous
advancement over the past many years.

1.2 HIDDEN MARKOV MODELS FOR SEQUENCE ANNOTATION

In this section, we illustrate the use of HMMs for biologic@guence annotation.
We will focus on a simplification of one of the most prominestea of HMMs in
sequence annotation: the problem of gene finding. Assumeengivgen a section of
a DNA sequence containing a single protein-coding genepandyoal is to locate
the regions of this sequence that code for a protein. In gokas, such regions may
be interrupted by non-coding segments, callgtbns Therefore, our task is to label
each nucleotide of the DNA sequence with one of three lalirdécating whether
the nucleotide comes from a coding region, an intron, or éergenic region (see
Figure 1.1).

More generally, the problem of labeling every symbol of aldujical sequence
with its functional category is theequence annotation problesuch a sequence of
labels is arannotationof a sequence.

For our gene finding problem, we use our knowledge of genetsireiand a col-
lection of training data to design an HMM that characteriggscal DNA sequences
and their gene annotations. Then we will use this model tafiadhighest probability
annotations for novel, unannotated DNA sequences.

1.2.1 Hidden Markov models

A hidden Markov model is a generative probabilistic modelrfodeling sequence
data that comes from a finite alphabet. An HMM consists of adfiset of states
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and three sets of parameters, called the initial, emissioth fransition probabilities.
The initial probability s is defined for each state of the model. The transition
probabilityay ¢ is defined for each pair of staték, /), and the emission probability
er,» 1S defined for each stafeand each symbdi of the output alphabet. The initial
probabilities form a probability distribution, as do tharisition probabilities, ¢ at
each staté and the emission probabilitieg ; for eachk.

An HMM generates a sequence step-by-step, one symbol ingaph First, a
start state is randomly generated according to the init@babilities. Then, in each
step, the model randomly generates one symbol and then rnaaegw state. Both
the new symbol and the next state depend only on the curratet sif the current
state isk, the symbob will be generated with probability; », and the next state will
be ¢ with probabilityay, ,.

In n steps, the HMM generates a sequed€e= x,,...,z, and traverses a
sequence of states (state path H = hq, ..., h,. For a fixed lengtm, the HMM
defines a probability distribution over all possible sequeesX” and all possible state
pathsH; in particular, the probability that the model will traverthe state patli/
and generate the sequentas the following product of the model parameters:

n—1
PI‘(H, X) = Shy (H ehiawiahi7hi+l> Chp,@n - (11)

=1

1.2.2 Choosing the topology and parameters of an HMM

To approach our gene finding problem, we will first build an HMMat models
DNA sequences and their corresponding genes. Our modehaii four states:
one state representing the intergenic region upstreameajé¢he, one representing
coding regions of the gene, one representing introns, aadaepresenting the region
downstream of the gene. Each state will emit symbols ovealfiieabet A,C,G,T}.

In this way, the sequence generated by the HMM will repreaddNA sequence,
with the corresponding state path identifying its correst@tation.

Transitions between some pairs of states should never .octhere will be
no transitions between introns and intergenic regions,batween the two states
representing upstream and downstream intergenic regiangsualize the structure
of the HMM (also called itstopology, we use a directed graph, where vertices
correspond to the states, and edges to non-zero probahidlitgitions (see Figure
1.2).

Next, we determine the emission and transition probadditor each state, using
a training setT' containing sequences with known annotation. Because we hav
designated each state in our model to represent a regioradfielpar function, we can
use these annotations to determine the proper statefdtir each of the sequences
X, in the training sef”. We would like our generative model to generate sequences
whose distributions and annotations are similar to thoseed in the training set
T. Formally, using themaximum likelihood estimatioprinciple, we want to set
the emission and transition probabilities to maximize tkelihood of the training
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Fig. 1.2 Topology of a simplified HMM for gene finding.

data: thatis, to maximizE[, Pr(H;, X;), over all possible parameters for the model.
To maximize this probability, it is sufficient to count theefuency of using each
transition in the training set to estimate the transitioshabilities, and the frequency
of emission of each symbol in each state to estimate the Emipsobabilities. In
other contexts, this training process can be quite a bit mamglicated; for example,
when the training sel’ is unannotated, or when a given sequence and annotation
could correspond to multiple paths in the HMM; we discuss #tienario in Section
1.6.

However, in our simple case, we have created a probabitistitel of sequences
and their annotations. In the next section, we show how tothiseprobabilistic
model to annotate a novel DNA sequence.

1.2.3 HMM decoding: the Viterbi algorithm

Once the HMM topology is set, and its parameters trained amaise it to find genes
in a new unlabeled DNA sequendée That is, we seek an appropriate state gth
that best explains how the model could have producethis process is calledMM
decoding

The simplest measure of “best” is to find the path that has taeimum prob-
ability in the HMM, given the sequenc&. Recall that the model gives the joint
probabilitiesPr(H, X) for all sequence/annotation pairs; as such, it also gives th
posterior probabilityPr(H|X) = Pr(H, X )/ Pr(X), for every possible state path
H through the model, conditioned on the sequeiceWe will seek the path with
maximum posterior probability. Given that the denomindofX ) is constant in
the conditional probability formula for a given sequen¢emaximizing the poste-
rior probability is equivalent to finding the state path that maximizes the joint
probabilityPr(H*, X).

The most probable state path can be found in time linear inghjgence length by
the Viterbi algorithm (Viterbi, 1967; Forney, 1973). Thisnple dynamic program-
ming algorithm computes the optimal paths for all prefixesXxgfwhen we move
from thei-length prefix to thgi + 1)-length prefix, we need only add one edge to
one of the pre-computed optimal paths for tHength prefix.

For every positioni in the sequence and every statethe algorithm finds the
most probable state path ... h; to generate the firgtsymbols ofX, provided that
h; = k. The valueV[i, k] stores the joint probabilityr(h; ... h;, x1 . .. x;) of this
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optimal state path. Again, if; ... h; is the most probable state path generating
x1 . ..x; that ends in statk,, thenh, ... h;_1; must be the most probable state path
generating:; ... z;—1 and ending in statg; ;. To computé/|i, k], we consider all
possible states as candidates for the second-to-last/state and select the one that
leads to the most probable state path, as expressed in kbwifa recurrence:

. o Sk * €k,aq if 1 = 1,
VIi. k] = { maxy Vi —1,0] - agk - exz, Otherwise. (1.2)

The probabilityPr(H*, X) is then the maximum over all state®f V[n, k], and the

most probable state paffi* can be traced back through the dynamic programming

table by standard techniques. The running time of the alyoris O(nm?), where

n is the length of the sequence amds the number of states in the HMM.

1.2.4 More complex HMMs

We have demonstrated the basic techniques needed to use HMMequence
annotation. However, the models actually used in practieerere complex than the
one shown in Figure 1.2. We rarely have only one state for &sathire in the HMM,
and it is quite possible that we need to incorporate moreipasi dependencies into
the probabilities of the HMM. We will explain this in the caxt of our gene-finding
example.

First, note that coding regions are composed of codons#chtencode one amino
acid. Therefore it is advisable to model coding regions byred-state cycle rather
than a single state, to properly keep this structure. Codanse interrupted by an
intron, so we use multiple copies of the intron submodelchn@ue that originated
in finite state machines, to enforce that the next codingregfter the intron starts
at the proper codon position. Boundaries of coding regisasvaarked by special
sequence signals which require additional states in theem&thally, DNA sequence
usually contains multiple genes on both strands. Figuretio@s an HMM topology
that encodes all of these additional constraints.

And, as noted, we may want to incorporate positional depacidsinto the HMM.
This is most often done by allowing higher-order states. biade of ordep, the
probability of generating the characteis a function of the previously generated
characters (all states in a standard HMM are of order zerbg éimission table has
the formey s, ... 5,5, Whered~, exs,....0,,5 = 1, for a fixed staté: and characters
bi,...,b,. INan HMM with all states of order, Formula (1.1) generalizes as follows
(we ignore the special case of the fisstharacters):

n—1

Pr(H’ X) = Shl (H ehiawioa---7miahihi+l> ehnawnfo;--wmn' (1'3)

=1

The Viterbi algorithm for finding the most probable statehpaan be adapted
easily to handle higher order states with the same running.tiSimilarly, training
the parameters of higher-order HMMs by maximum likelihosdsiraightforward
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Fig. 1.3 Topology of a simple HMM gene finder. The acceptor and dorgiores correspond
to the signals at the ends and beginnings of introns.
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using procedures analogous to those shown in Section HRIRIs for gene finding
typically use states of order between two and five.

1.2.5 More examples of biological sequence annotation withHMMs

The use of HMMs in sequence annotation is not limited to gemdirfg, of course;
they have been used in a host of applications across the field.

One of the first applications of HMMs in bioinformatics wassegment DNA
sequences into regions with similar GC content levels (Etilly 1989). Similarly, we
can partition sequence to homogeneous regions based arcatbaa, for example
the degree of sequence conservation in multiple speciepéband Haussler, 2003).

In DNA sequences, eukaryote and prokaryote gene findingid@dminant HMM
application. In eukaryotic organisms the difficulty in theoblem stems from the
presence of introns and the often small, and highly varjgieportion of protein
coding sequence in the genome (Krogh, 1997; Burge and Kd9i97; Stanke and
Waack, 2003). The existence of alternative splicing alsopaates the field, as
individual positions of a sequence may be found in both mtand exon, depending
on the transcript, though recent work (Cawley and Pach®&32Allen and Salzberg,
2006) has moved in this direction. Gene finding in prokary@ted viruses needs
to handle overlapping genes and the problem of insufficiaiing data in newly
sequenced genomes (Larsen and Krogh, 2003; McCauley amg 20£16). HMMs
can also be used for other tasks related to gene finding, suptoanoter detection
(Ohler et al., 2001).

Proteins are generally hard to analyze from sequence ombe gheir function
is determined largely by their fold. Amino acids that aretali$ in the sequence
may interact once the protein is folded, because they arsiqddly close. However,
HMMs can be successfully applied to recognize aspects aéjpréunction that are
governed by motifs located in contiguous stretches of thjeaece.

One such example is transmembrane protein topology piedicfransmembrane
proteins are partially embedded inside the cellular men#rahe topology of such a
protein identifies which regions are found in transmembtetiees (parts traversing
the membrane), cytoplasmic loops (parts inside the ceit),reon-cytoplasmic loops
(parts extending outside the cell).

Figure 1.4 shows an overview of a simple HMM that could be deegredicting
these topologies. The HMM topology enforces the simple @iay€onstraint that
cytoplasmic loops must be separated from non-cytoplasrojud by transmembrane
helices. Krogh et al. (2001) and Tumdy and Simon (1998) used similar HMMs in
their topology prediction tools. A special class of trangmbeane proteingz-barrel
proteins, are also successfully modeled by HMMs (Marteliale, 2002; Fariselli
et al.,, 2005). More generally, we can try to predict the sdeoy structure of
arbitrary proteins, labeling each amino acid as a part af-4uelix, 3-sheet or loop
(Goldman et al., 1996; Bystroff et al., 2000; Aydin et al.0B).

HMMs are closely related to the problem of aligning two DNA motein se-
guences. In Section 1.5 we discuss pair HMMs, which providaababilistic
framework for scoring pairwise alignments.
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Fig. 1.4 Simplified topology of an HMM for transmembrane topologygiction

delete states
insert states

match states

Fig. 1.5 A section of an profile HMM with three match states. Deletéestare silent, that
is, they do not emit any characters.

In protein sequence analysis, HMMs are often used to alignrélsidues of a
newly sequenced protein to a model of a family of homologawsgins. This is
most typically done using a prominent class of hidden Markmdels called profile
HMMs (Krogh et al., 1994). A profile HMM has a regular strueuronsisting
of a match state for every conserved column of the multipignatent and insert
and delete states that model insertions and deletions ialignement, as shown in
Figure 1.5. Thanks to their regular structure, they can bated automatically and
stored in a database, such as Pfam (Finn et al., 2006). Cormgpgbe maximum
probability path in a profile HMM is equivalent to optimizirgvery simple form of
multiple alignment.

We can also create a hand-crafted topology for recognizipgrticular signal,
protein family or fold. Examples include models to idensfgnal peptides (Nielsen
and Krogh, 1998), and for discovering coiled-coil protefBelorenzi and Speed,
2002) and glycolipid-anchored membrane proteins (Gildai. £2006).

Schultz et al. (2006) use profile HMMs to detect recombimatioHIV strains.
They build a profile HMM for each known subtype, adding tréinsis with a low
probability between states corresponding to the profileiffafrent subtypes. In their
formulation, the annotation of a given query sequence ifiesitvhich parts belong
to which subtype.

Another interesting recent use of HMMs that incorporatesmbination is due
to Rastas et al. (2005), who use an HMM to assist them in hgmdhference and
in discovering recombination points in genotype data. Fganotype data, they
train a hidden model to represent approximations of araestiplotypes, and allow
transitions between these due to recombinations over iseof evolutionary time
scales. Given a genotype, which is the conflation of two hgipks, each of which
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represents a path through the network, they compute thenmuaxiprobability pair
of paths that can give rise to that genotype. The sequenmestfrese two paths are
then the inferred haplotypes.

Finally, we note that although the focus of this chapter @dgical sequence
annotation, hidden Markov models are used for similar tasksther domains.
Speech recognition was one of the first HMM application arf@ebiner, 1989).
In natural language processing, HMMs were applied to sévasés, for example
tagging the words with their parts of speech (Church, 1988)mentation of text to
topics (Yamron et al., 1998) and information extractiony/8ere et al., 1999). They
can also be applied to areas as diverse as music composgnitémo (Pollastri and
Simoncelli, 2001) and fire detection (Mer, 2001).

1.3 ALTERNATIVES TO VITERBI DECODING

The Viterbi decoding algorithm is widely used, due to its glicity and efficiency.

It is not the only appropriate decoding algorithm for all HM#pplications. This
section presents several alternative decoding contexdssapropriate algorithms for
them.

1.3.1 Maximizing the number of correctly explained statesposterior
decoding

Posterior decodingocuses on individual positions in the sequence, and toes t
maximize the probability that they are properly explainethis is in contrast to
Viterbi decoding, which computes the globally optimal stptith. The most simple
posterior decoding question is: what state most likely getieel symbol in the
HMM output?

The most probable path is not necessarily helpful in answettiis question.
Many different state paths in the HMM can generate the sameesees, and in
positions, it is possible that many of them will agree on the same stEde&ompute
the posterior probability’(h; = k| X) of statek at position:, conditioned on the
entire sequenc&’, we add the probabilities of all paths using statat positioni.
The posterior probability can be decomposed as follows:

Fz(k,X) c Ak Bi+1(£, X)
Pr(X) ’

Pr(hi=k|X)=>_

Y4

(1.4)

where F;(k, X) = Pr(h; = k,z1...x;), the probability of generating the first
symbols ofX and ending in the state is called thdforward probabilityof statek at
position:, andB;1(¢, X) = Pr(h;41 = 4,241 - . . ), the probability of starting
in state/ and generating the rest of the sequenge; . .. z,, is called thebackward
probability of statef at positior + 1. The forward probabilities for a given sequence
X and a given hidden Markov model can be compute®{nsm?) time using the
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standard forward algorithm (Baum and Eagon, 1967); thewarkprobabilities can
be computed by the backward algorithm in the same running.tim

Using Formula (1.4) and the results of the forward and bacéabgorithms, we
can compute the posterior probabilities of all states gi@gitions of the sequencé
in O(nm?) time. Note that the posterior probability of the whole sewpePr(X),
which is the denominator in Formula (1.4), is also obtained aide product of the
forward algorithm: itisy, F;, (¢, X).

We can use the posterior probabilities in a number of ways.ufkdm user can
simply examine them to look for interesting features; Kregtal. (2001) display a
plot of the posterior probabilities of individual statesmd with the most probable
annotation. The plot highlights which parts of the annotatre most certain and
what other hypotheses might be reasonably likely. We cancalsipute the posterior
probability of an entire candidate sequence feature, ssieln @xon, by summing the
probabilities of all paths sharing that feature in a spediftation of the sequence.
Genscan (Burge and Karlin, 1997) provides a list of the mosbable alternative
exons, including ones not found on the most probable pates@kxons can be then
tested experimentally or used as an input for further prgings Larsen and Krogh
(2003) go one step further and compute the statistical fidgnice of discovered
genes, computing the expected number of genes with a giwsa gtat would occur
in a random sequence of certain length.

Or, we can decode sequences using posterior probabilitiggsterior decoding
we choose the highest posterior probability state at easlipo of the sequence:
hf = argmaxy Pr(h; = k| X). This approach maximizes the expected number
of positions in the decoding that have the right state. Bytrast, Viterbi decoding
maximizes the probability of the entire state path, evemdhathis path may have
exceedingly low probability. It may be the case that the grast decoding has better
overall quality.

Still, the posterior decoding can be a composition of urteeldigh probability
paths. This can reach a point of ridiculousness: two adjsstates in the posterior
annotation may not even be connected by an edge in the HMM.prdigability
of such a sequence of states being the source of the quergrsaxjis zero: it is
inconsistent with the basic assumptions encoded in the hhapi@ogy.

Different authors have addressed this concern througmgddpost-processing
step where we attempt to maximize a different objective fionc After computing
all posterior state probabilities, using the forward-baatd algorithm, we restrict the
choice to the paths that use only transitions present in MdHopology. Kall et al.
(2005) find the path that maximizes the sum of the poster@e gtrobabilities, trying
to maximize the number of correctly predicted states. Tione by straightforward
dynamic programming, similar to the Viterbi algorithm, ime O(nm?). Using a
similar method, Fariselli et al. (2005) maximize the pradf@osterior probabilities
in the postprocessing step.
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non-  coding intron non- coding intron intron
coding coding tail
(a) without multiple path problem (b) with multiple path problem

Fig. 1.6 Simple models of exon/intron structure

1.3.2 Maximizing the annotation probability: the multiple path problem

Each state in an HMM used to annotate sequences is labeletheiteature to which
it corresponds. In gene finding, we label states as comimg &wons, introns and so
on. Each state path naturally corresponds to a sequenckai$ |@r amannotation
This annotation encapsulates the semantic meaning givémetsequence by the
HMM path.

This mapping between state paths and annotations is noyslome-to-one:
several state paths may correspond to the same annotatioch ths provide
“alternative origins” of the sequence, but have the sameséimmeaning. Thus, if
we seek the most probable meaning, or annotation, for theeseg, we should add
probabilities of all of these state paths.

We will describe an HMM that has multiple state paths withghene annotation
as having thenultiple path problemFigure 1.6a shows a simplified HMM for gene
finding with its state labels depicted by the state colorthédfstart state of the HMM
is fixed, this HMM does not have the multiple path problem retreough multiple
states share the same color. Given an annotation, we catifydehich single state
corresponds to each black and gray position.

However, if we move to a slightly more complex model, thingscly change.
The model in Figure 1.6a embodies the assumption that thieetide composi-
tion of introns is homogeneous. However, vertebrate intreaquences contain a
variable-length tail that is rich in nucleotides C and T (@&and Karlin, 1997). To
incorporate this information, we can include a second m#tate representing such a
tail, as shown in Figure 1.6b, where the new state has sutastadifferent emission
probabilities from the first. This change creates the migijath problem because
there are always several high-probability alternativeslie transfer from the “in-
tron” state to the “tail” state. The probabilities of all tise paths may be quite low,
and Viterbi decoding may thus lead us to a completely diffegeene structure that
results from fewer paths.

Even though the model in Figure 1.6b is a more truthful regm&ation of real
sequences than the one in Figure 1.6a, it may provide wossétsevhen used with
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the Viterbi algorithm (Brejo& et al., 2004). This paradoxical conclusion results
because we will be biased towards annotations with fewes ofséne intron module,
since each use of that module tends to greatly drop path pildilees.

In practice, gene finders often solve this problem by fixing tlumber of nu-
cleotides in the pyrimidine-rich intron tail (Burge and Kay 1997; Stanke and
Waack, 2003; Brejoa et al., 2005). The resulting model does not have the meiltipl
path problem and can be decoded by the Viterbi algorithm.

Sometimes, though, the multiple path problem is not easityaved. In these
cases, we would like to compute the most probable annotdiiectly. Unfortunately,
this is not feasible for all model topologies. Brefost al. (2004) constructed an HMM
with 34 states for which it is NP-hard to compute the most plidé annotation. As
such, we are not likely to find an efficient algorithm to find tim®st probable
annotation.

We can respond to this negative conclusion by resortinguastéc algorithms, not
guaranteed to find the most probable annotation, that perietter than the Viterbi
algorithm. A popular example is th¥-best algorithm (Schwartz and Chow, 1990),
which was shown to give good results in several biologicpliaptions (Krogh, 1997;
Krogh et al., 2001). We can also use posterior decoding, &eation 1.3.1, and
thereby join together all of the many paths that go througjbtates with the same
label. Still, this approach will be prey to all of the othanltations of the posterior
decoding technique.

However, we can characterize special classes of HMMs fockuie most proba-
ble annotation can be computed efficiently. For exampleifdMs that do not have
the multiple path problem, we can find the most probable atiwot by the Viterbi
algorithm inO(nm?) time. Vind (2005) has shown a hierarchy of algorithms that
can decode increasingly wider classes of HMMs, but at a daetoeasing running
time O(n®*1md+2) for a parameted. In the rest of this section, we describe the
most practical of these algorithms which rungitn?m?) time.

This running time is feasible for analyzing protein or mRN&geences, which
are much shorter than genomic DNA. This algorithm can findrtfuest probable
labeling for a wide class of models with the multiple pathigem, including the
gene finding HMM shown in Figure 1.6b and models used for ptadj the topology
of transmembrane proteins and finding coding regions in mRBduences. It can
also be applied as a heuristic to HMMs outside of its targetssimuch as the N-best
algorithm can.

The main observationis that many HMMs with the multiple gatbblem still have
a fair amount of structure in the way that sequence featuresffom one to another.
Specifically, for these HMMs, while many paths may repreflemsame annotation,
the edges used to transition between the sequence featutks annotation are
always the same for all of the paths. We call the edges thagitian between states
of different labelritical edges

The extended annotationf a state patthihs...h, is the pair(L, C), where
L = M\, Aa,..., \, IS the sequence of labels of each state in the path(anrd
c1,co,. .., ck IS the sequence of all critical edges followed on that pather& can
be several state paths with the same extended annotati@xgmple in Figure 1.6b,
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these are the paths that differ only in position of enterireggibtron tail state; they all
follow the same edge from grey to white.

We can extend the Viterbi algorithm to compute the most potshaxtended
annotation. Fortunately, many HMMs (including the one Fegl.6b) have one-to-
one correspondence between extended annotations andtomstand thus can be
decoded by this algorithm. We can even test automatica#lygizfen HMM has this
property (Brejowa et al., 2004), called theritical edge condition

The algorithm again uses dynamic programming, summing #leopaths within
every feature, to obtain the maximum probability extendatbéation. In the Viterbi
algorithm, we compute the valué&g;, k], the maximum probability of a state path
for the sequence; ... x; over all paths ending in state In the extended Viterbi
algorithm, we instead computg[s, k|, the maximum probability of an extended
annotationL, C') of the sequence; . . . z;, where the model is in stateat position
i;thatis,L[i, k] = maxPr(zy ... 2, (L, C), h; = k).

At each step, we examine all possible durations of the laghsat with the same
label and instead of choosing the single most probable pathat segment with
that length, we compute the sum of all possible approptetgth state paths in this
segment. If the segment starts at positjoof the sequence, I€®[j, i, k, ¢] be this
sum; it is the probability of generating the sequenge. . x;, starting in staté;, and
ending in staté, using only states with the same labe(both states: and/ must
also have this same label). We get the following recurrence:

L[i, k] = mgxmzaxxngaxL[j — 1,0 ap- Plj,i, 0, K] (1.5)
J<i !
We compute the values df in order of increasing. For eachi, we compute all
relevant values of’[j, i, k, ¢] in order of decreasing by the following recurrence
(this is similar to the standard backward algorithm):

Plj,i k() = > ek, are - P0G+ 1,1] (1.6)
¢ with label A

This algorithm finds the most probable extended annotatiany HMM in O (n2m?)
time.

1.3.3 Finding many paths: sampling from the posterior distibution

Instead of finding the most probable state path, we can afeplsaa collection of
state paths according to the conditional probability distion Pr(H | X) defined
by the HMM. The following algorithm for sampling from HMM wastroduced by
Zhu et al. (1998).

We first pre-compute all values & (k, X) by the backward algorithm as outlined
in Section 1.3.1. In the first step, we randomly choose indiate /,, where the
probability of starting in statg is proportional tos;. - By (k, X ). After that, in thei-th
step, we choose the next stdtg,with probability proportional tay,, , »,-B;(h;, X).
The probability of choosing pathl = hy, ..., h, by this randomized algorithm is
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exactlyPr(H | X), so we are sampling from the conditional distribution oftesta
paths, given the output sequenke

Sampling may be useful if we need to provide several alterma@nnotations,
instead of a single prediction. For example, several pteskilgh-probability anno-
tations may be needed for the purpose of experimental vaidit. In gene finding,
genes may have several splicing variants; the same DNA eequgtranscribed into
multiple proteins using different combinations of splicees. SLAM (Cawley and
Pachter, 2003) and AUGUSTUS (Stanke et al., 2006a) use thilkad to generate
multiple gene annotations as potential alternative traptsc On the other hand, as
each of these will likely have extremely low probabilityethare likely unreliable as
overall predictions for the entire sequence.

1.4 GENERALIZED HIDDEN MARKOV MODELS

The lengths of features found in biological sequences canecfsom extremely
complex distributions. Unfortunately, simple HMMs are netessarily effective at
modeling these distributions. For example, the simplest twamodel a region of
variable length is with a single HMM state that has a traositp itself (a self-loop),
with transition probabilityp. The probability that the HMM stays in such a state for
exactly/ steps ig(1 — p)p’~!, so the distribution of lengths of regions generated by
this state will be geometric. However, length distributasf biological sequence
elements are far from geometric. Figure 1.7a shows lengthilalition of internal
exons in human genes and its best approximation by a geerdettiibution.

This section shows a variety of methods to address this gnobiSome involve
changes to the generative behaviour, to improve the abilityodel more complicated
distributions. The simplest such approaches can subalgriticrease the decoding
time, fromO(nm?) to O(n?*m?); for long DNA sequences, this order of magnitude
change is unacceptable. We thus present methods that camsprioetween modeling
accuracy and decoding time.

1.4.1 Generalized HMMs and explicit state duration

In generalized HMMsself-loop transitions are replaced by states generatiei t
state durations explicitly. Upon entering a state, the gativee model first chooses
the duration!, which is the number of symbols that will be generated indtase. For
each staté, the probability distributiord;, that determines these random variables
is explicitly represented in the model. Aftéisymbols are generated in the state, the
model follows a transition to a new state.

To compute the most probable state path that generates iaupartsequence
of symbols, we must modify the Viterbi algorithm. In eachpste#f the dynamic
programming, in addition to examining all potential lagtrtsitions, we also have
to consider all possible durations of the last statd/[If, k] is again the probability
of the most probable path generating the firsymbolsz, ..., z; and finishing in
statek, assuming that in the next step the model will transit outtafes: or finish
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Fig. 1.7 Length distribution of internal exons on human chromosorde @) Best fit by
geometric distribution. (b) Best fit by geometric-tail distition witht = 130.

the generation process, then the recurrence charactgti|rdynamic programming
must change as follows:

whereemit(k, j, 1) is the emission probability of generating the sequencembsys
xj,...,x; in statek. The straightforward implementation of this dynamic peogr
ming gives arO(n®m?) running time, where: is the length of the sequence amd
is the number of the states, since the computatiomot (v, j, i) takesO(n) time in
the worst case. However, it is possible to reduce the rurtiimgto O (n?m?) using

a pre-computation that requiré¥nm) time, after which it is possible to compute
emit(v, j,1) in constant time for anyand; (see Mitchell et al. (1995) for details).

This sort of runtime, which is quadratic in the length of theery sequence, is
reasonable for short sequences, such as proteins. It ieasibfe for long DNA
sequences. Two straightforward solutions to reduce thaingntime are used in
practice.

First, we can place an upper bounddbn the number of characters produced
by each state (as in Rabiner (1989)). Then, the running titiderO(ndm?). In
speech recognition applications, it is usually possibliestep the bound relatively
small, as the state durations may be phonemic duration$isapproach yields a
reasonable decoding algorithm with practical running titdewever, such a bound
is often hard to find in biological applications.

Second, we observe that we can stop our dynamic programmamgtsfor lengths
that may be emitted by the current state wheneweit(k, j,4) = 0. For example,
this is a common stopping condition for exon states in gerdirfqn we can stop
searching upon reading an in-frame stop codon. Burge ankh4897) used this
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approach in their gene finder Genscan to model exons withrgkred states and
complex distributions, still achieving reasonable dengduntimes. Unfortunately,
this approach does not extend to intron distributions: eli®no common sequence
forbidden to them.

1.4.2 Distributions with geometric tails

One way of decreasing the running time, even when no uppeardon the length
of the state durations is available, is to restrict the fgrofl length distributions
allowed in the generalized states. One example of this agprs due to Brejow
and Vind (2002), which restricts the family of durations to oneshgéometric tails
Such distributions are robust enough to characterize tigghes of many important
biological elements effectively.

A geometric-tail distribution for the duration of a stateti® joining of two
distributions: the first part is an arbitrary length distitibn, and the second partis a
geometric tail. Specifically, there is a parameterhere, for values of less than or
equal tot, the probabilitys, (¢) is explicitly set, while for values of greater than,

61 (1) = 6,(t) - ¢;~". The values ofy(t) andg;, are set to maximize the likelihood of
the length distributions of training data, and the explicitbabilities found in(4)
for i < t are set to match observed values after smoothing.

Such distributions can model the lengths of many functisaghents of biological
sequences, even with small values of the tail start paramekor example, Figure
1.7b shows the geometric-tail distribution with= 130 that best approximates the
length distribution of human internal exons.

Brejova and Vind (2002) emphasize models with small values of the parameter
t because they also design an efficient decoding algorithin @itvmt + nm?)
runtime. The Viterbi algorithm for generalized HMMs in regence (1.7) explicitly
considers all possible durations of state For geometric-tail distributions, we can
reduce the running time by distinguishing between two cadesations less than or
equal toty, and durations longer thap.

In particular, letQ]:, k] be the probability of the most probable path generating
the firsti symbols of the sequence, and spending at least jasteps in state.
To compute the value af)[i, k], we consider two cases: either th¢h character
extends the duration of the statewhich was already at least, or generating the
i-th character brings the duration of statéo exactlyt; steps. The value af[i, k|
can be then used in computifids, k], instead of checking all durations longer thian

Qli, k], (duration at leasty,)
V[i,k] = maxq max [emit(k,i —d+1,4) - 6x(d) (1.8)
1<d<ty,

‘max Vi —d, 0] a] (duration less thaty,)
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Fig. 1.8 Step-function approximation of intergenic length disttibn in human chromo-
some 22. The right plot shows detail of the step-functiorratizr of the distribution.

Qi — 1,k - gk - ez, (duration more than,)

Q[’La k] = max Emlt(k,l _ tk + 1’ 7/) . 5k(tk) . m;lx V[Z —_ tk’g] Cagk (19)

(duration exactlyy,)

A straightforward dynamic programming algorithm implertezhbased on this
recurrence would také(ntm?) time, which Brejoa and Vind (2002) improve to
O(nmt + nm?) by precomputing values afiax, V'[i, £] - a(¢, k).

In gene finding, this technique was used in ExonHunter (B&egnd Vind, 2002;
Brejova et al., 2005) to model the length distributions of exonsiatrdns; the gene
finder Augustus (Stanke and Waack, 2003) uses a similar appshown in 1.4.3 to
model the length distributions of introns.

The distributions of much longer features can also be mddalan extension of
this approach. The gene finder ExonHunter (Brgjeval., 2005) models the lengths
of intergenic features, for which a simple geometric tadtdbution would require
t = 10%, by replacing a single-state model of intergenic regiomaitwo-state model
that allows one to approximate this distribution. The fitatesgenerates symbols in
blocks of lengthy/Z, where the number of blocks is determined by a geometric-tai
distribution, where the tail begins gft. The second state generates only up/to
symbols, with uniform length distribution. This method lages the original length
distribution with a step-function approximation, where gteps happen at intervals
of v/t, as shown in Figure 1.8. The model that represents thisllison can be
decoded irO(nm+/t + nm?) time, which is practical even for the large valueg of
needed to model intergenic regions.

1.4.3 Gadgets of states

An alternative way of avoiding the geometric length disitibns for individual states
in hidden Markov models is to model a single sequence elementultiple states
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Fig. 1.9 (@) A gadget of states generating non-geometric lengthildisions; (b) depending
on the number of states and probabifitydifferent distributions from a subclass of the discrete
gamma distribution§'(p¢, 1) can be generated.

instead of a single state. Durbin et al. (1998) (recently edsexamined by Johnson
(2005)) discuss several ways to model non-geometric laedigthibutions by replacing
a single state with a group of states that share the same sgtisdion probabilities.
Transitions are added inside this group so that the prababfl staying within the
group for¢ steps is close to the probability that the modeled featusdédrayth¢.

Consider the gadget in Figure 1.9a. The left-most transitiothe sole entry
point to the sub-model, and the right-most transition is ¢x&. If the gadget
consists ofn states, the probability of generating a feature of lengtly n is
f0) = ({4)p*="(1 - p)», which can be used to model a wide variety of gamma
distributions (see Figure 1.9b). One example of this apgras found in Larsen
and Krogh (2003), who used three copies of their codon maedelh with its own
self-loop, to model the length distribution of genes in leaet

The geometric-tail distributions with parameteliscussed in the previous sections
can be generated by a gadgetto$tates, shown in Figure 1.10; for< ¢, the
probability of generating a feature with lengtlis []._.(1 — p,)p;, while if i > ¢,
thendy, (i) = [T,y -1 (1 —py)g (1 —q).

Such a construction was used by Nielsen and Krogh (1998)@eim modeling
and by Stanke and Waack (2003) in gene finding. The modifiestblialgorithm for
geometric-tail distributions shown in the previous sati®essentially equivalent to
running the classical Viterbi algorithm on such an HMM, tghtit is more memory
efficient, since the Viterbi probabilitie®[i, k| are not stored for the extra states
within the gadget.

In general, one can use any topology of states in a gadgétjpditons that can
be represented in such a way are cald@dse-type distributionsand they play an
important role in queuing and systems theory (see CommaditMocanu (2003)

j<i
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Fig. 1.10 A gadget of states generating a geometric-tail lengthiigion witht = 4. The
black circle represents the first state of the next submddéledHMM.

for a recent overview). This approach of using phase-tyg#idutions suggests
what appears to be an ideal framework for modeling genengitiiedistributions in

HMMs: fix the number of states in each gadget depending on ¢s@eatl running

time, and then find the best approximation of the length idistion observed in

training data. With increasing size of the gadget, we canapmate any desired
length distribution arbitrarily well (Asmussen et al., 899

Unfortunately, most gadgets, such as the one shown in Fig@eg introduce the
multiple path problem discussed in Section 1.3.2, so Vigeboding is inappropriate
for them. Indeed, Vina(2005) showed that the result of decoding the HMM with
a gadget shown in Figure 1.9a with Viterbi decoding is edeivato the result
of decoding an HMM where the same feature has essentiallyomefic length
distribution.

This unhappy result leaves us with two options: compute tlostrprobable
labeling by the extended Viterbi algorithm from Section.2,®r use other decoding
strategy, such as posterior decoding. Note that since ttem@ad Viterbi runs in
guadratic time in the length of the sequence, the formeteglyais no better than
using arbitrary length distributions and the algorithnrmfr8ection 1.4.1.

1.5 HMMS WITH MULTIPLE OUTPUTS OR EXTERNAL INFLUENCES

In the previous sections, we have considered HMMs that nedldelsingle DNA or
protein sequence and its annotation. This approach, haoyiewnet appropriate to the
more contemporary domain in which we may have much extenfiairhation that
is helpful in annotating a sequence accurately. In thiSaecive consider a variety
of ways in which HMMs can incorporate such external evidenbtany of these
change the structure of the output of the HMM, while othefsience the decoding
algorithms.

Perhaps the most readily available source of informatiqndslicted evolutionary
homology. Great amounts of DNA and protein sequences arkicpuavailable in
databases such as GenBank (Benson et al., 2000). For a giyeerse of interest we
may find its likely homologs in a database and exploit typpagterns of evolution
to improve the annotation. Functionally important regiarssially evolve much
more slowly and are well conserved even between relativishault species; on the
other hand, random mutations often accumulate more quickiggions with fewer
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Fig. 1.11 Evidence supporting annotation of human URO-D gene. Sagnifialignments
from fruit fly genome, known mouse proteins, and mouse ES@ segresented as boxes.

functional constraints (Siepel et al., 2005). Another sewf evidence is the results
of biological experiments aimed at elucidating sequenatufes and their function.
For example, in gene finding, EST sequencing and tiling aesgyeriments may

confirm that certain regions of the genome are exons.

An example of additional information in gene finding is iliteged in Figure
1.11. The figure shows significant alignments of a distarlgted genome, known
proteins, and expressed sequence tags to a genomic regiotasning the human
URO-D gene. In this case, the additional evidence providhesi@an observer enough
information to have a very good idea about the structure efgtne. The process
of incorporating such information into the automatic amion that results from
decoding an HMM, on the other hand, is not necessarily nearlsimple: we must
design systems that are efficient to decode and efficietiiyed, and which are able
to accommodate errors and imprecisions in the externatesuwf information.

1.5.1 HMMs with multiple outputs

One way of incorporating additional evidence into HMMs isgpresent each source
of evidence as a neimformantsequence. We can then extend the HMM to generate
the informant sequences as part of its output, alongside thi¢ original query
sequence whose annotation we seek.

These extensions are perhaps most easily described irathevirork of Bayesian
networks. A Bayesian network is a generative probabilistarel whose output is
N variables. The dependencies among these variables aren ghovepresenting
the variables as the vertices of a directed acyclic graph. géfeerate values for
the variables in topological order, so that the values obathe variables that are
the predecessors of a variable are determined before ite.vab be more specific,
consider a variabl&, with parentsXy,..., X;. The parameters of the Bayesian
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Fig. 1.12 A hidden Markov model with second-order states, represeaga Bayesian
network. The top row of variables represents the state path, .., h,, through the
HMM. The bottom row represents the emitted DNA sequence,...,x,. The con-
ditional probabilities of the Bayesian network are defingdtbe initial, transition, and
emission probabilities of the HMMPr(h1) = sp,, Pr(h;|hi—1) = ap,p,_,, and
Pr(z;|hi, xi—1,%i—2) = €h;; ».3: 1,0, The observed variables, which indicate the
DNA sequence, are shaded in the figure.

network specify the conditional probabiliBr(X = x| X1 = x1,... Xi = zy), for
all combinations of the values 1, . .., z;. Once the values of the parent variables
are fixed, we can generate the valueXofrom this conditional distribution.

HMMs easily fit into this Bayesian network framework: an HMNat generates
a sequence of a fixed lengthcan be represented as a Bayesian network @ith
variables: for each emitted symbol, we have one variableesgmting the symbol
itself and one variable representing the hidden state iegpithe symbol (see Figure
1.12). We can also represent higher order states by indudiditional edges
between the observed variables as demonstrated in the.figure

One approach to incorporating external evidence into thevH#%o represent the
evidence sources by informant sequences, which also deyethé hidden states of
the network. We translate each external source into a segqud#n symbols from a
finite alphabet, where each symbol in the informant sequencs correspond to one
symbol of the query sequence. For example, we can encodecangeto-genome
alignment as a sequencefiymbols from the alphabdD, 1,.} by characterizing
each base of the query DNA sequence as “aligned with matghilgsl '1’), “aligned
with mismatch” (symbol '0’), or “unaligned” (symbol '); fiis is the encoding
scheme used in the gene finder TwinScan (Korf et al., 2001).

We can represent this approach by adding a variable for eéotmant sequence
at each sequence position to our Bayesian network. If we kavel external
information sources, the network will havék + 1) variables: n state variables,
n variables for the query sequence andariables for each of the — 1 informant
sequences. The simplest way to add these new variables akmtime symbols of all
k sequences conditionally independent given the state atmagition. Figure 1.13
shows such a model fdar = 2. Korf et al. (2001) used this approach to incorporate
genome-to-genome alignments into gene finding. Pavlewal. (2002) transformed
the outputs of a collection of gene finding programs into infant sequences, and
used this same sort of approach to join their predictions single prediction;
their system does not even involve the query DNA sequencaasfithe network’s
outputs.
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Fig. 1.13 A representation of the generative probabilistic modehefTwinScan gene finder
(Korf et al., 2001) as a Bayesian network. Thgvariables each represent one state of the
HMM,; variable x; represents one nucleotide of the query DNA sequenceyanepresents
the conservation between this nucleotide and some othengerover a special alphabet with
symbols for matched, mismatched and unaligned positidvginScan actually uses emission
tables of order five, which can be depicted by adding additiedges, as in Figure 1.12.)

Training and decoding of these extended HMMs is analogousgolar HMMs:
maximum likelihood parameters can be obtained by simptgueacy counting from
annotated sequences, and we can straightforwardly madaéfywiterbi algorithm
(and other decoding algorithms) to account for the multgi@ission probabilities
in each step. The main limiting factor of these models is hetrtalgorithms, but
is the assumption of conditional independence betweenridwhl output sequences,
which is clearly violated in most applications.

Instead, when the evidence consists of multiple alignmésequences known
to have evolved from a common ancestor, we canplsgogenetic HMMsa model
design that reflects known evolutionary relationships leetwthose sequences. In
particular, we can arrange the Bayesian network so thabfhadgy of the network
is identical to the phylogenetic tree representing the wgiahary history of the
sequences, as in Figure 1.14, which shows a model of a huneam seiquence, and
additional sequences from mouse, rat, and chicken. In tyyjg8an network, we can
partition all sequence variables into two sets at everytiposi: the set of observed
variablesO;, corresponding to the sequences in the leaves of the phydtigdree,
and the set of unobserved variablgs corresponding to the unknown ancestral
sequences.

The unobserved variables complicate both training anddlego To train the
model, we must use the EM algorithm instead of simple frequenunting (Demp-
ster et al., 1977). For decoding, at each positiand for each statk;, we need to
compute the likelihood of the corresponding tree subm®déD; | ;). This prob-
ability can be computed from the probability distributiBn(O;, U; | h;) defined by
the phylogenetic tree model by marginalizing unobserveihbtes:

Pr(0; |hi) = > Pr(0;,U;| hi) (1.10)
Ui
The number of terms in this sum is exponential in the numbarmafbserved

variables. However, since the generative model has a tnegtste, we can compute
this sum in time linear in the number of all variables by udigdsenstein’s peeling
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Fig.1.14 Asimple phylogenetic hidden Markov model depicted as a Bayenetwork. Each
variableh; represents one state of the HMM, the variablés M;, R;, C; each represent
single positions of human, mouse, rat and chicken from ohgnowo of a multiple genome
alignment, and the variables, b;, ¢; represent the unknown ancestral sequences. Observed
variables are shaded. For example, the valuélpfdepends on its ancestby and on the
HMM stateh;. The state determines mutation rate, since mutations agote frequently in
non-coding regions.

algorithm (Felsenstein, 1981), which performs dynamigpamming by starting at
the leaves and proceeding to the root of the tree.

We can introduce higher order states for the observed \asahs described
at the beginning of this section. However, introducing leighrder states for the
unobserved variables is more complicated: it requirestanbal modification of
the decoding algorithm (Siepel and Haussler, 2003), anduthiing time becomes
exponential in the order of the states.

Another modification of phylogenetic HMMs (Gross and Bre2@Q5) involves
rooting the phylogenetic tree in the query sequence ratlerith the common ancestor
(see Figure 1.15). The advantage of this approach is thaethdting probability
distribution can be decomposed into a product of two terrhg probability that
the HMM generates the query sequence and the contributam the variables
introduced by the other sequences. The emission and thstioanprobabilities
of HMM states can be trained and tuned separately as in aesgggjuence gene
finder, and the parameters required for including additieslence can be trained
afterward.

An important issue is the parametrization of random vaeslassociated with
the query and informant sequences. In phylogenetic HMMsstmariables have
two parents: the state variable and the parent in the phyktgetree. Thus if the
alphabet size ig, the number of states ix, and the number of sequencesNs
we must train@(Nmao?) parameters. We can reduce this number by employing a
nucleotide substitution model based on a standard conig\Warkov chain model
of evolution. For example, the simplest Jukes—Cantor métidtes and Cantor,
1969), which assumes a uniform rate for all single-pointatiahs, requires only
a single parameter per sequence and state. In more complaismaf evolution,
such as the general reversible model of Rodriguez et al 0)1 8% substitution rate
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Fig. 1.15 Modified phylogenetic hidden Markov model, with query seteespositioned at
the root of the phylogenetic tree.

matrix (requiring® (o) parameters for each state) is shared among all branches of
the phylogenetic tree, and one parameter correspondirgetbranch length of an
edge in the phylogenetic tree, needs to be trained for eaglesee and state. Using
such a model of evolution will reduce the number of paranset®® (Nm + mo?),

a substantial savings even for moderate number of species.

Phylogenetic HMMs were first introduced in evolution stwdigrang, 1995;
Felsenstein and Churchill, 1996). Goldman et al. (1996)ewtbe first to apply
them for sequence annotation, in the problem of secondargtate prediction. As
genomes of multiple organisms have become available, gbyketic HMMs have
been applied to genomic sequences, for tasks such as gemgyf{federsen and
Hein, 2003; McAuliffe et al., 2004; Siepel and Haussler, £0Gross and Brent,
2005) and identifying conserved elements in genomes (Sé¢pé, 2005). Phyloge-
netic HMMs are also useful for finding overlapping genes impact viral genomes
(McCauley and Hein, 2006).

The accuracy of HMM when used to analyze protein sequencesalsa be
improved by using multiple sequence alignments of severdkms that are known
to be homologous with a query sequence. However, we typidalinot know the
phylogenetic tree representing the evolution of thesegist Instead, researchers
have developed variants of HMMs that emit a profile specdyire relative frequency
of each amino acid at each position of the sequence. Unligioganetic HMMs,
these models do not capture the strong correlation betweselyg related sequences,
but only summarize the features of the many rows of the algmmHowever, they
require far simpler parameter estimation. HMMs emittingfiles were used to
predict secondary structure of proteins by Bystroff et2000), topology of3-barrel
membrane proteins by Martelli et al. (2002), and topologhelfcal transmembrane
proteins by Viklund and Elofsson (2004).

1.5.2 Positional score modification

We can incorporate external evidence into an HMM using othethods besides
Bayesian network approaches. In an HMM, the joint probgbitr(H, X) of se-
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guenceX and state patt{ is computed as a product of emission and transition
probabilities (see Equation (1.1)). The methods presdntdds section place addi-
tional factors into this product, while keeping the decaoditgorithm viable.

All possible annotations of a particular sequence are sgmited as different state
paths through the HMM. Consider a piece of additional evigdti. It can be seen
as a probabilistic hypothesis about the true annotatiomsetvalidity depends on
whetherE comes from a believable source: if the origin of the evidesit@istworthy
(with some probabilityPz), then only paths from some sHtz should be considered.
On the other hand, with probability — Pg, the evidence is untrustworthy and we
should disregard it.

For example, in transmembrane topology prediction, we nggya motif that
suggests that thieth amino acid in the query sequence is found inside the ta$op
Then the seH i consists of all paths through the HMM that mark & amino acid
as being from a cytoplasmic loop, and the probab(lity- Pg) is the probability that
the match is not a real functional occurrence of this motif] ae should disregard
the evidence entirely.

When given such an evidence, we recognize two evehts:(the evidence is
correct), andv_ (the evidence is wrong). We can write:

Pr(H,X |E) = Pg-Pr(H,X |Ey) + (1 - Pg) -Pr(H, X |E_)  (1.11)

Note, thatPr(H, X | E;) = 0 for pathsH not found in Hg; if the evidence
is correct, it is specifically eliminating certain pathsrfrdeing possible. If the
evidence is wrong, it should have no effect on predictiomsl therefore we say
Pr(H,X |E_) =Pr(H, X). Ifwe already know thal € Hp, additional evidence
does not give us any new information, and addition of suckexnde should not
change relative probabilities of paths; consequently, aesayPr(H | Hg, X ) =
Pr(H | E4+, X). Finally, we assume (obviously unrealistically) that threhzbility
of the sequence should be independent of the elfgentand we can sayr(X) =
Pr(X | EL).

Using these assumptions, we obtain after simple manipuldtie following up-
dated probability distribution over all possible annaias:

(1— Pg) - Pr(H, X), if H ¢ Hp,
Pr(H, X | E) = (1= P+ peiss ) - Pr(HLX), i H € Hp, (1.12)

Intuitively, the probabilities of all paths that agree wiitie evidence are multiplied
by a factor greater than one, and probabilities of all pdtasdo not agree with the
evidence are multiplied by a factor smaller than one. Theiked probability of paths
within each category remains unchanged.

The computational complexity of decoding under this newbgptilistic model
depends on the form of the sHiz of paths that are consistent with evidenceHlf
contains all the paths that annotate a point in the sequeitbeavparticular label,
or with any label from a set of labels, we can slightly modtig tviterbi algorithm
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to compute the most probable state path. The quaRiit¥/ | X) needed for the
bonus factor can be obtained by the forward—backward algori

This method was first derived and used in a gene finding pro@anomeScan
(Yeh et al., 2001) to incorporate protein homology into génding. The same
method was also used to improve prediction of transmemlpestein topology by
Xu et al. (2006a). In their case, the evidence was composedtf hits that indicate
strong preference for cytoplasmic or non-cytoplasmic ®ap certain sites in the
sequence.

A disadvantage of the GenomeScan approach is that it isamiotev to integrate
multiple pieces of additional evidence (such as multipletgin hits or multiple
motifs), particularly if they are not independent. In areatpt to solve this problem,
the next method incorporates evidence in the form of addfimultiplicative terms
at each position of the sequence. An important differentleasgiven a particular
alignment, GenomeScan method alters the probability aposiion only, while in
what follows, we boost the probability independently atrepasition covered by the
alignment.

Assuming independence between the sequéhemd all additional evidencg,
we can use Bayes'’ rule to obtain:

Pr(H | E)

Pr(H|X,E) xPr(H|X) - Pr(H)

(1.13)
Though this independence assumption is not true in praciieecan often limit
dependencies by avoiding using the same features of thesegin both the HMM
and the additional evidence. For example in gene findingHii& mostly models
short windows of the sequence (signals, local coding piatlerdtc), while the
additional evidence may represent database searchesasadignments to EST or
protein sequences.

Whether we can develop an efficient decoding algorithm daépenostly on
the family of probability distributions that we use to repeat the contribution of
the additional evidencBr(H | E)/ Pr(H). In the simplest case, we assume posi-
tional independence, for both the posterior probabilitydiboned on the evidence
Pr(H|E) = [[}_, Pr(h;| E) and the prior probabilitypr(H) = [[;_, Pr(h;).
To partially compensate for the positional independensaragtion, we can add a
scaling factor: < 1 as follows:

Pr(H|E)\”
Pr(H|X,E)o<Pr(H|X)-( Pr(H) > . (1.14)
In this particular scenario, we can easily modify the Vitalorithm to find the most
probable annotatiof/ given both sequenc& and evidence® in time linear in the
length of the sequence.

For a single source of evidence, we can directly estimateptisterior proba-
bilities Pr(h; | E) from a training data set. However, multiple sources of avide
would typically present many combinations of local infotioa, requiring exponen-
tial number of parameters to train. Brefet al. (2005) developed a method for
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expressing and combining information from several souofexiditional evidence
using partial probabilistic statements to express theizapibns of the evidence and
guadratic programming to combine all the statements coimga particular position
in the sequence into a posterior distribut®r(h; | E).

In the context of gene finding, the method of multiplyifg H, X) by additional
factors was successfully used to incorporate variety ofcsaiof information (such
as genome, EST, and protein alignments) in a single moded; examples are
HMMGene by Krogh (2000), and ExonHunter by Brejost al. (2005).

Stanke et al. (2006b) designed a method that tries to overdbm positional
independence assumptions. Let us assume that the evideiseexpressed as a set
of “hints”: intervals in the query sequence. In the simpteste, each hint supports a
single state of the generalized HMM (more complex variatiare possible). We say
that a given state path édmpatiblewith hint (z, j) if the part of the query sequence
x; ...x; is all generated in the state supported by the interval. 1@fise, we say
that the state path imcompatible For example in gene finding, we can represent
EST alignments as a set of intervals, each supporting angatain the HMM.

Each hint is assigned a position in the sequence at its right@nly a single hint
e; is allowed to end at each positian Also, if there is no hint ending at positian
we will saye; =, corresponding to a vacuous hint. We will create a modehtfilat
not only generate the sequenkebut also the sequence of hints as follows:

Pr(H, X, e1,...,en) = Pr(H, X) - [ [ Pr(e; | H, X) (1.15)
i=1

The probabilityPr(e; | H, X) is eitherg™, if the hint at positiori is h, or ¢*, if the
hintis compatible withHf, or ¢~ if the hintis incompatible witt. These parameters
are trained by frequency counting on the training data. Nbt this model is not
truly a generative model for hints, since we do not genehaddft ends of the hints;
yet, we use them to determine compatibility or incompatipibf each state path.
The Viterbi algorithm can be again easily modified to accomate these interval
hints, and ifg™ > ¢, it takes asymptotically no longer than the underlying dicg
of the generalized HMM.

The interval hints were used in the gene finder AUGUSTUS+n([&eet al.,
2006b). They enforce better consistency of final predistiwith the evidence, since
the bonus factog™ is not awarded for state paths that match an interval onlygbigr

1.5.3 Pair hidden Markov models

In the previous sections, we have reviewed several mettad$teak the problem
of sequence annotation into two steps. First, a generatis¢aol is used to identify

local alignments between the query sequence and a sequatatmse. Next, this
informationis incorporated using some HMM-based methdtk Main disadvantage
of the two-step approach is that the initial general-pug@gnment algorithm does
not take into account the structure of the annotation prable
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a,A: 1/4 a,a: 1/8 A a:
e, A 1/4 ce:1/8 A
g,\: 1/4 g,9: 1/8 A g
t,A:1/4 t,t:1/8 A
a,c: 1/24

a,g: 1/24

t,g: 1/24

Fig. 1.16 A simple pair HMM. The symbol in the emission probability tables represents
empty string. State B generates the ungapped portion oflitnenzent. State A generates
characters only in the first sequence, and state C generadescters only in the second
sequence. The alignment gaps induced by states A and C haweegieally distributed
lengths.

For example, in gene finding, alignments of a protein or ES thie query DNA
may extend beyond exon boundaries to surrounding intrartsaignments of two
homologous genes may have misaligned splice sites. Suthk®ssare propagated
to the second stage, and may affect the accuracy of genedindin

This problem can be avoided by simultaneously annotatirdy aigning two
sequences, in a single step. This process can be modelecpdy BIMM. Pair
HMMs are HMMs that generate two sequences at the same timeyHare a state
of a model can generate a character in one sequence or baterees. Pairs of
characters generated in the same step correspond to hamslpgsitions from the
two sequences. If only one character is generated in a giepniscorresponds to a
seguence position in that sequence with no homolog in ther séguence, due to an
insertion or deletion. Simple pair HMMs, such as the one guFé 1.16, can be used
to represent a traditional global alignment of two sequsr{Erirbin et al., 1998),
with a natural relationship between the logarithm of thebatmlity of a path in the
HMM and the score of an alignment according to traditionhksna. More complex
pair HMMs can represent pairwise alignments that incorgaraore flexibility in the
models of the lengths and conservation levels of differantspof the alignment.

Pair HMMs differ in an essential way from the multiple outpiNIMs introduced
in Section 1.5.1: those have an alignment of the output sempssfixed, and in each
step generate a character in each output sequence. If ¢imradnt contains a gap,
they generate a special character, for example a dash. Grhaehand, the output
sequences of pair HMMs do not identify which pairs of chazectvere emitted in
the same step; when we decode a pair HMM, the goaldsstmoversuch homologies.

The program SLAM, by Alexandersson et al. (2003), predietseg simultane-
ously in two homologous genomic sequences, under the assumtpat they have
the same exon structure. Their pair HMM has separate statesxbns, introns,
signals and intergenic regions, as in HMMs for gene findingctEstate emits pairs
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of sequences with conservation patterns typical for theiesece feature represented
by the state, but can also allow for insertions or deletiovisgre a position in one
sequence is not matched in the other. DoubleScan, by Meyebarbin (2002), is
similar, but can also predict genes with different exomentstructure. GeneWise,
by Birney et al. (2004), uses pair HMMs to align a protein same to a genomic
sequence. The non-coding states emit characters only greti@mic sequence, while
coding states emit a triplet of nucleotides in the genongeieace, and a single amino
acid in the protein sequence.

The main disadvantage of pair HMMs is their high running tim@iven two
sequences generated by a pair HMM, we do not know which phitsaracters from
these two sequences were generated at the same time; itfdsésiwhat decoding is
to discover. The modified Viterbi algorithm that finds the trqmebable alignment of
two sequences, and their annotations, is equivalent to tem&®n of classic global
alignment algorithms, and as for those algorithms, itsinn@tis proportional to the
product of the sequence lengths. Although such a runningisrnfeasible in many
situations, different heuristics can be used to make thehpsliM approach more
practical (Alexandersson et al., 2003; Meyer and Durbif§2)0 This approach is
also hard to extend to multiple sources of information beeais running time grows
exponentially with the number of sequences, again as iforugassical algorithms
for multiple alignment.

1.6 TRAINING THE PARAMETERS OF AN HMM

In the previous sections, we considered the simplest sceafHMM parameter
estimation: maximum likelihood training in an HMM withouté multiple paths
problem, on a completely annotated training set. This mieth@pplied if we can
determine the target state path for each sequence in théngaiet. In this case, it
is sufficient to count the frequency of each transition andssion to estimate the
model parameters that maximize the likelihood of the tragndata. Unfortunately,
HMM training is not always so simple.

In this section, we explore several other scenarios for HvR¥hing. First, when
only unannotated or partially annotated sequences aréabl&i we need to use
unsupervised or semi-supervised training to estimate #nanpeters of the model.
Second, often a single parameter set does not capture pesdiall query sequences
well, and we may want to adapt the parameter set to the qugngsee before making
a prediction. Finally, we may choose to use different optation criteria instead of
maximum likelihood principle.

1.6.1 Unsupervised and semi-supervised training

Supervised learning can be applied only when the annotaidmown for each
sequence in the training set, and there is a one-to-onespamelence between such
an annotation and the state paths in the HMM. If this is notds®, we need to apply
more complex methods for training. The task is, as in the istiged case, to find the



XXX ADVANCES IN HIDDEN MARKOV MODELS FOR SEQUENCE ANNOTATION

parameters of the HMM with a given topology that maximize likelihood of the
training set.

There is no general exact algorithm known for solving thisupervised training
problem efficiently; some modifications have even been shovioie NP-hard (Abe
and Warmuth, 1992; Gillman and Sipser, 1994). The method omwemonly used,
the Baum-Welch algorithm (Baum, 1972), is an iterative isigrand can be con-
sidered a special case of the general EM algorithm for lagrmiaximum likelihood
models from incomplete data (Dempster et al., 1977).

The Baum-Welch algorithm starts from an initial set of mop@tameterg. In
each iteration, it changes the parameters as follows:

1. Calculate the expected number of times each transitideamssion is used to
generate the training sgétin an HMM whose parameters aflg.

2. Use the frequencies obtained in step 1 to re-estimate ahemeters of the
model, resulting in a new set of parameté#s,; .

The first step of the algorithm can be viewed as creating aarewtatedraining
setT(®), where for eaclunannotatedsequenceX € T, we add every possible pair
(X, H) of the sequenc& and any state path, weighted by the conditional probability
Pr(H| X, 0y) of the pathH in the model with parametets, given the sequenck.
The second step then estimates new parameéiers as in the supervised scenario
based on the new training s&t*). The Baum-Welch algorithm achieves the same
result inO(nm?) time per iteration using the forward and backward algorghm
avoid explicitly creating this exponentially large traigiset. Details can be found,
for example, in Durbin et al. (1998, Chapter 3.3).

Baum (1972) has shown that the likelihood of the trainingregiroves (or stays
the same) in each iteration of this algorithm. However, tlies not guarantee that
the Baum-Welch algorithm reaches optimal model parameitemsay instead reach
a local maximum or a saddle point in the parameter space (Bemet al., 1977).

A modification of the Baum-Welch algorithm, call&fterbi training, is often also
used in practice. In the first step of the algorithm, insteflacbasidering all possible
paths through the model, we only consider the most probadle pHowever, this
algorithm is not guaranteed to increase the likelihood efdbserved data in each
step (Durbin et al., 1998, Chapter 3.3).

The Baum-Welch algorithm can also be used in the semi-sigegtgcenario. For
example, Krogh et al. (2001) train a transmembrane topgbogglictor on a data set
where the exact boundaries of transmembrane helices akaowh. Therefore, they
allow the boundary to occur anywhere within a short windowhaf sequence. We
can modify step 1 of the algorithm to include only paths tlgaea with such partial
annotations.

1.6.2 Adjusting models to query sequences

Supervised and semi-supervised training assume thatdhmeény and testing sets
contain samples independently generated from the samelyindedistribution of
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sequences and their annotations. In some situations su@samption is not
appropriate.

For example, Tusmdy and Simon (1998) argue that the amino-acid composition
of transmembrane helices cannot be adequately descrilibd bgme set of emission
probabilities for all transmembrane proteins. Insteag gfrepose to segment a given
protein so that the difference in distribution betweenxhatid non-helix regions is
maximized. This is essentially achieved by optimizing théNM emission probabil-
ities with respect to the query sequence using unsuperiraethg. We can train the
parameters not only on the single query sequence, but alge bamologs, assum-
ing that they represent independent samples, generatdtelgatme HMM. In this
way we can use the information from homologous sequencémutittonstructing
multiple sequence alignment and without assuming thatrthetation is the same in
all sequences. Tuéady and Simon (1998) use emission parameters estimated on an
annotated training set as pseudocounts in each step of tima-Béelch algorithm.

Chatterji and Pachter (2005) use a similar approach to fimkgén multiple
homologous genomic regions by biasing parameters of adlypibM gene finder
specifically to match the genes on the input. The parametéhnganodel and gene
predictions are iteratively improved by Gibbs sampling.u3hafter each iteration,
gene predictionsin all input sequences will tend to be mionédar to each other, and
the parameters of the model will fit the input sequences mosely.

We may also need to adjust parameters of a gene finder wheyirapipto a newly
sequenced genome. In such a case we rarely have sufficiardly fraining set of
manually annotated sequences. One approach is to ideasifyte find genes, such
as those with a strong protein match in a database and triH¥iM using those
genes (Larsen and Krogh, 2003). Korf (2004) has considadpséng parameters
trained on a different species by Viterbi training on the rspecies. Lomsadze et al.
(2005) have shown that a careful procedure can obtain paeasnef a eukaryotic
gene finder on a new species in a completely unsupervisetbfgdtarting with a
very simple set of manually created parameters.

1.6.3 Beyond maximum likelihood

So far, we considered algorithms that trained HMM paransdtgrmaximizing the
likelihood of the training set. A common criticism of the miaum likelihood
(ML) approach in the machine learning literature is that @ximizes the wrong
objective (see for example Krogh (1997)). Our goal in dexngds to retrieve the
annotationH that maximize®r(H|X), where the sequenck is fixed. Therefore,
instead of maximizing the joint probabilitr(H, X) of the training sequences,
this perspective argues that we should concentrate on n@rgrthe conditional
probability Pr(H|X), since the sequenck is fixed in the decoding phase, and it
does not matter whether its probability is low or high. Thigimization criterion is
known asconditional maximum likelihoo@CML).

In context of hidden Markov models, CML was used in applmasiin bioinfor-
matics (Krogh, 1997) and natural language processing fkdad Manning, 2002).
Even if the sequences are annotated, there is no known cfoseuila or EM
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algorithm that would estimate the parameters of the modeptamize the condi-
tional maximum likelihood. Instead, numerical gradienscknt methods are used
to achieve local maximum. In these studies, slight (Kleid &anning, 2002) to
significant (Krogh, 1997) improvement was observed contparenodels trained by
ML.

A theoretical analysis is available in the context of thepan data classification
problem, where a similar dichotomy occurs between the rizayes classifier (which
is equivalent to ML) and logistic regression (equivalenttdL). In this context, Ng
and Jordan (2002) have shown that even though using CML gisgsiptotically
lower error, ML requires significantly fewer training samgko converge to the best
model: it requires only a logarithmic number of samples wébpect to the number
of parameters, compared to the linear number of samplegeefor convergence in
CML. Thus ML training is appropriate if only a small numbeisaimples is available,
while it is better to use CML when the training set is larges Ilhot known whether
these results extend to the case of more complex models,auetMMs, where
we are doing more than merely classifying a sample into cailegs We may also
ask (and no known answer exists to this question) whethdsétier response to an
increase in training data is to switch from ML to CML, or to $eti to a more accurate
model of reality which requires a larger number of paranseter

One major disadvantage of HMMs optimized for CML is that théad to interpret
their emission and transition probabilities. The geneegirocess associated with the
HMM no longer generates sequences that look like sequenmesthe training set.
The probabilities no longer represent frequencies obsdatirectly in the sequence,
which makes it hard to incorporate prior knowledge aboutpghablem into the
probabilistic model by applying restrictions on parametdithe model, or by creating
a custom model topology.

For example, the HMM modeling the topology of transmembraraeins in
Figure 1.4 has two states representing transmembrane$eltanay be reasonable
to assume that since the sequences corresponding to thesates serve the same
function (membrane transition), that in an ML model, bothtes should share the
same emission probabilities. Based on this assumptionawestluce the number of
parameters (and thus the number of sequences requireaifoing) bytying those
parameters together, forcing them to be the same. On thelwthe, since in CML
method the emission probabilities are set to maximize timelitional probability of
the annotation given the sequence, rather than likelihddbdeosequence, it is not
clear that the emission probabilities in these two stateslstbe similar, even if the
sequences attributed to these states are similar.

Conditional random fields (Lafferty et al., 2001) furthemtioue in the direc-
tion of CML training, abandoning the probabilistic integgation of emission and
transition probabilities, replacing them with undirecteatentials that do not need
to be normalized to 1. They were applied in biocinformatiasrérognizing protein
structure motifs (Liu et al., 2006) and for finding genes (€l et al., 2005).

Some recent extensions abolish the probabilistic intéaiomn of HMMs alto-
gether. Instead, they consider the following problem diyeset the parameters of
the model (without normalization restrictions) so that thedel discriminates well
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between correct and incorrect annotations. These modeih, as hidden Markov
support vector machines (Altun et al., 2003) and convexdnddarkov models (Xu
et al., 2006b), are inspired by maximum margin training agah&l methods in sup-
port vector machines (Boser et al., 1992), which are a vaergessful method for the
classification problem.

1.7 CONCLUSION

On our tour through HMMs and their use in biological sequaaragotation, we have
seen both the most traditional HMM algorithms and their neasttic extensions. We
have seen extensions to the decoding algorithms to handaig cages where multiple
different paths through the HMM correspond to the same sémareaning, and
algorithms to handle generalized HMMs, in which the lengthfeatures may come
from complex, non-geometric, distributions. We have seemyrways in which
HMMs can operate on multiple sequences, and in all theses @asbave argued why
these extensions are useful in modeling and annotatingdid! sequences.

Many of these extensions rely upon the conceptual simplafithe basic HMM
framework: unlike the parameters of a neural network or ofigpsrt vector ma-
chine, the parameters of a hidden Markov model trained fodmmam likelihood are
extremely simple to understand. Even for their more compbdensions (such as
phylogenetic HMMs or pair HMMs), one can quickly determihe semantic mean-
ing of the parameters, and imagine ways to make them estimadee accurately, or
to change the topology of the HMM to more closely model rgdthiough, of course,
our discussion of the multiple path problem in Section 1sBi@ws that this may not
be entirely wise). Even the more complex decoding appraathbandle external
information, such as those of Section 1.5.2 can be seen ay afwaathematically
encoding sensible intuitive concepts.

Perhaps the most important question for the future of HMMent is whether
increasingly sophisticated HMM modeling, training, anata#ing procedures can
continue to maintain this conceptual simplicity while Istillowing the use of ever
more and more complex forms of sequence data. Can we in@igparuseful
understanding of the 3-dimensional geometry of molecudés HMM analysis?
Can we usefully train HMMs to understand the evolutionafatienships among
thousands of sequences? Can we annotate features andtsrdsfas biological
sequences that are allowed to overlap each other in compdgs,vand where a
feature is not simply a contiguous segment of DNA? Thesetiunss and numerous
others, will be the subject of the research of the next maays/m HMM analysis.
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