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1.1 INTRODUCTION

One of the most basic tasks of bioinformatics is to identify features in a biological
sequence. Whether those features are the binding sites of a protein, the regions of a
DNA sequence that are most subject to selective pressures, or coding sequences found
in an expressed sequence tag, this phase is fundamental to the process of sequence
analysis.

While a variety of computational tools have been used over the course of the time
that people have been needing to perform this task, the currently dominant tool in
biological sequence annotation is the hidden Markov model (HMM). HMMs have
been used in so many contexts over the course of the last fifteen years that they almost
require no introduction. They are used in computational gene finders, to predict the
structure of genes in newly sequenced genomes. They are usedin protein sequence
analysis, to identify substructural elements. They are used to discover regulatory
sequences in DNA, to identify ancestry patterns in pedigrees, and truly for almost
any feature detection problem in biological sequences.

As such, it may seem that their use is so routinized that thereis nothing more
to learn about them: that fifteen years of their use in biological sequence analysis
mined the field for all of its interesting problems many yearsago. Fortunately, this is
anything but the case. As the fields of genomics and proteomics advance, a variety
of new challenges have come to fore in the algorithmic analysis of HMMs. For
example, if we have a large amount of training data, and can train an HMM to closely
model the many complex features of the data, will that necessarily improve the
quality of our predictions on new data? How can we properly model the distributions
of the lengths of complex sequence features in HMMs? How can we incorporate
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...CATCATGGTGCAT...GGCAGGTAAGCA...TTCATAGGCTCC...CACTGAGTTATCT...

...xxxxccccccccc...ccccciiiiiii...iiiiiiiccccc...ccccccxxxxxxx...
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Fig. 1.1 In gene finding, the goal is to label each nucleotide of a givenDNA sequence as
coding (c), intron (i) or intergenic (x).

evolutionaryconservation information into the creation of HMMs that properlymodel
DNA sequences, and into the algorithms for their analysis?

This chapter considers the use of HMMs in sequence analysis,starting from the
simplest cases (simple HMMs, with simple structures, simple training algorithms
and simple decoding procedures), and moving to situations of great complexity,
incorporating very recent ideas from machine learning theory. We present the basic
algorithms, and their extensions, and give suggestions of places where future research
can be most useful. Throughout, we make reference to the important applications
in which these algorithms are used, and to why the field has experienced continuous
advancement over the past many years.

1.2 HIDDEN MARKOV MODELS FOR SEQUENCE ANNOTATION

In this section, we illustrate the use of HMMs for biologicalsequence annotation.
We will focus on a simplification of one of the most prominent uses of HMMs in
sequence annotation: the problem of gene finding. Assume we are given a section of
a DNA sequence containing a single protein-coding gene, andour goal is to locate
the regions of this sequence that code for a protein. In eukaryotes, such regions may
be interrupted by non-coding segments, calledintrons. Therefore, our task is to label
each nucleotide of the DNA sequence with one of three labels,indicating whether
the nucleotide comes from a coding region, an intron, or an intergenic region (see
Figure 1.1).

More generally, the problem of labeling every symbol of a biological sequence
with its functional category is thesequence annotation problem; such a sequence of
labels is anannotationof a sequence.

For our gene finding problem, we use our knowledge of gene structure and a col-
lection of training data to design an HMM that characterizestypical DNA sequences
and their gene annotations. Then we will use this model to findthe highest probability
annotations for novel, unannotated DNA sequences.

1.2.1 Hidden Markov models

A hidden Markov model is a generative probabilistic model for modeling sequence
data that comes from a finite alphabet. An HMM consists of a finite set of states
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and three sets of parameters, called the initial, emission,and transition probabilities.
The initial probabilitysk is defined for each statek of the model. The transition
probabilityak,ℓ is defined for each pair of states(k, ℓ), and the emission probability
ek,b is defined for each statek and each symbolb of the output alphabet. The initial
probabilities form a probability distribution, as do the transition probabilitiesak,ℓ at
each statek and the emission probabilitiesek,b for eachk.

An HMM generates a sequence step-by-step, one symbol in eachstep. First, a
start state is randomly generated according to the initial probabilities. Then, in each
step, the model randomly generates one symbol and then movesto a new state. Both
the new symbol and the next state depend only on the current state. If the current
state isk, the symbolb will be generated with probabilityek,b, and the next state will
beℓ with probabilityak,ℓ.

In n steps, the HMM generates a sequenceX = x1, . . . , xn and traverses a
sequence of states (orstate path) H = h1, . . . , hn. For a fixed lengthn, the HMM
defines a probability distribution over all possible sequencesX and all possible state
pathsH ; in particular, the probability that the model will traverse the state pathH
and generate the sequenceX is the following product of the model parameters:

Pr(H, X) = sh1

(

n−1
∏

i=1

ehi,xi
ahi,hi+1

)

ehn,xn
. (1.1)

1.2.2 Choosing the topology and parameters of an HMM

To approach our gene finding problem, we will first build an HMMthat models
DNA sequences and their corresponding genes. Our model willhave four states:
one state representing the intergenic region upstream of the gene, one representing
coding regions of the gene, one representing introns, and one representing the region
downstream of the gene. Each state will emit symbols over thealphabet{A,C,G,T}.
In this way, the sequence generated by the HMM will representa DNA sequence,
with the corresponding state path identifying its correct annotation.

Transitions between some pairs of states should never occur. There will be
no transitions between introns and intergenic regions, norbetween the two states
representing upstream and downstream intergenic regions.To visualize the structure
of the HMM (also called itstopology), we use a directed graph, where vertices
correspond to the states, and edges to non-zero probabilitytransitions (see Figure
1.2).

Next, we determine the emission and transition probabilities for each state, using
a training setT containing sequences with known annotation. Because we have
designated each state in our model to represent a region of a particular function,we can
use these annotations to determine the proper state pathHi for each of the sequences
Xi in the training setT . We would like our generative model to generate sequences
whose distributions and annotations are similar to those observed in the training set
T . Formally, using themaximum likelihood estimationprinciple, we want to set
the emission and transition probabilities to maximize the likelihood of the training
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Fig. 1.2 Topology of a simplified HMM for gene finding.

data: that is, to maximize
∏

i Pr(Hi, Xi), over all possible parameters for the model.
To maximize this probability, it is sufficient to count the frequency of using each
transition in the training set to estimate the transition probabilities, and the frequency
of emission of each symbol in each state to estimate the emission probabilities. In
other contexts, this training process can be quite a bit morecomplicated; for example,
when the training setT is unannotated, or when a given sequence and annotation
could correspond to multiple paths in the HMM; we discuss this scenario in Section
1.6.

However, in our simple case, we have created a probabilisticmodel of sequences
and their annotations. In the next section, we show how to usethis probabilistic
model to annotate a novel DNA sequence.

1.2.3 HMM decoding: the Viterbi algorithm

Once the HMM topology is set, and its parameters trained, we can use it to find genes
in a new unlabeled DNA sequenceX . That is, we seek an appropriate state pathH∗

that best explains how the model could have producedX ; this process is calledHMM
decoding.

The simplest measure of “best” is to find the path that has the maximum prob-
ability in the HMM, given the sequenceX . Recall that the model gives the joint
probabilitiesPr(H, X) for all sequence/annotation pairs; as such, it also gives the
posterior probabilityPr(H |X) = Pr(H, X)/ Pr(X), for every possible state path
H through the model, conditioned on the sequenceX . We will seek the path with
maximum posterior probability. Given that the denominatorPr(X) is constant in
the conditional probability formula for a given sequenceX , maximizing the poste-
rior probability is equivalent to finding the state pathH∗ that maximizes the joint
probabilityPr(H∗, X).

The most probable state path can be found in time linear in thesequence length by
the Viterbi algorithm (Viterbi, 1967; Forney, 1973). This simple dynamic program-
ming algorithm computes the optimal paths for all prefixes ofX ; when we move
from thei-length prefix to the(i + 1)-length prefix, we need only add one edge to
one of the pre-computed optimal paths for thei-length prefix.

For every positioni in the sequence and every statek, the algorithm finds the
most probable state pathh1 . . . hi to generate the firsti symbols ofX , provided that
hi = k. The valueV [i, k] stores the joint probabilityPr(h1 . . . hi, x1 . . . xi) of this
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optimal state path. Again, ifh1 . . . hi is the most probable state path generating
x1 . . . xi that ends in statehi, thenh1 . . . hi−1 must be the most probable state path
generatingx1 . . . xi−1 and ending in statehi−1. To computeV [i, k], we consider all
possible states as candidates for the second-to-last state, hi−1, and select the one that
leads to the most probable state path, as expressed in the following recurrence:

V [i, k] =

{

sk · ek,x1
if i = 1,

maxℓ V [i − 1, ℓ] · aℓ,k · ek,xi
otherwise.

(1.2)

The probabilityPr(H∗, X) is then the maximum over all statesk of V [n, k], and the
most probable state pathH∗ can be traced back through the dynamic programming
table by standard techniques. The running time of the algorithm isO(nm2), where
n is the length of the sequence andm is the number of states in the HMM.

1.2.4 More complex HMMs

We have demonstrated the basic techniques needed to use HMMsfor sequence
annotation. However, the models actually used in practice are more complex than the
one shown in Figure 1.2. We rarely have only one state for eachfeature in the HMM,
and it is quite possible that we need to incorporate more positional dependencies into
the probabilities of the HMM. We will explain this in the context of our gene-finding
example.

First, note that coding regions are composed of codons that each encode one amino
acid. Therefore it is advisable to model coding regions by a three-state cycle rather
than a single state, to properly keep this structure. Codonscan be interrupted by an
intron, so we use multiple copies of the intron submodel, a technique that originated
in finite state machines, to enforce that the next coding region after the intron starts
at the proper codon position. Boundaries of coding regions are marked by special
sequence signals which require additional states in the model. Finally, DNA sequence
usually contains multiple genes on both strands. Figure 1.3shows an HMM topology
that encodes all of these additional constraints.

And, as noted, we may want to incorporatepositional dependencies into the HMM.
This is most often done by allowing higher-order states. In astate of ordero, the
probability of generating the characterb is a function of theo previously generated
characters (all states in a standard HMM are of order zero). The emission table has
the formek,b1,...,bo,b, where

∑

b ek,b1,...,bo,b = 1, for a fixed statek and characters
b1, . . . , bo. In an HMM with all states of ordero, Formula (1.1) generalizes as follows
(we ignore the special case of the firsto characters):

Pr(H, X) = sh1

(

n−1
∏

i=1

ehi,xi−o,...,xi
ahihi+1

)

ehn,xn−o,...,xn
. (1.3)

The Viterbi algorithm for finding the most probable state path can be adapted
easily to handle higher order states with the same running time. Similarly, training
the parameters of higher-order HMMs by maximum likelihood is straightforward
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Fig. 1.3 Topology of a simple HMM gene finder. The acceptor and donor regions correspond
to the signals at the ends and beginnings of introns.
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using procedures analogous to those shown in Section 1.2.2.HMMs for gene finding
typically use states of order between two and five.

1.2.5 More examples of biological sequence annotation withHMMs

The use of HMMs in sequence annotation is not limited to gene finding, of course;
they have been used in a host of applications across the field.

One of the first applications of HMMs in bioinformatics was tosegment DNA
sequences into regions with similar GC content levels (Churchill, 1989). Similarly, we
can partition sequence to homogeneous regions based on other criteria, for example
the degree of sequence conservation in multiple species (Siepel and Haussler, 2003).

In DNA sequences, eukaryote and prokaryote gene finding is the dominant HMM
application. In eukaryotic organisms the difficulty in the problem stems from the
presence of introns and the often small, and highly variable, proportion of protein
coding sequence in the genome (Krogh, 1997; Burge and Karlin, 1997; Stanke and
Waack, 2003). The existence of alternative splicing also complicates the field, as
individual positions of a sequence may be found in both intron and exon, depending
on the transcript, though recent work (Cawley and Pachter, 2003; Allen and Salzberg,
2006) has moved in this direction. Gene finding in prokaryotes and viruses needs
to handle overlapping genes and the problem of insufficient training data in newly
sequenced genomes (Larsen and Krogh, 2003; McCauley and Hein, 2006). HMMs
can also be used for other tasks related to gene finding, such as promoter detection
(Ohler et al., 2001).

Proteins are generally hard to analyze from sequence only since their function
is determined largely by their fold. Amino acids that are distant in the sequence
may interact once the protein is folded, because they are physically close. However,
HMMs can be successfully applied to recognize aspects of protein function that are
governed by motifs located in contiguous stretches of the sequence.

One such example is transmembraneprotein topology prediction. Transmembrane
proteins are partially embedded inside the cellular membrane. The topology of such a
protein identifies which regions are found in transmembranehelices (parts traversing
the membrane), cytoplasmic loops (parts inside the cell), and non-cytoplasmic loops
(parts extending outside the cell).

Figure 1.4 shows an overview of a simple HMM that could be usedfor predicting
these topologies. The HMM topology enforces the simple physical constraint that
cytoplasmic loops must be separated from non-cytoplasmic loops by transmembrane
helices. Krogh et al. (2001) and Tusnády and Simon (1998) used similar HMMs in
their topology prediction tools. A special class of transmembrane proteins,β-barrel
proteins, are also successfully modeled by HMMs (Martelli et al., 2002; Fariselli
et al., 2005). More generally, we can try to predict the secondary structure of
arbitrary proteins, labeling each amino acid as a part of anα-helix, β-sheet or loop
(Goldman et al., 1996; Bystroff et al., 2000; Aydin et al., 2006).

HMMs are closely related to the problem of aligning two DNA orprotein se-
quences. In Section 1.5 we discuss pair HMMs, which provide aprobabilistic
framework for scoring pairwise alignments.
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Fig. 1.4 Simplified topology of an HMM for transmembrane topology prediction

delete states

insert states

match states

Fig. 1.5 A section of an profile HMM with three match states. Delete states are silent, that
is, they do not emit any characters.

In protein sequence analysis, HMMs are often used to align the residues of a
newly sequenced protein to a model of a family of homologous proteins. This is
most typically done using a prominent class of hidden Markovmodels called profile
HMMs (Krogh et al., 1994). A profile HMM has a regular structure consisting
of a match state for every conserved column of the multiple alignment and insert
and delete states that model insertions and deletions in thealignment, as shown in
Figure 1.5. Thanks to their regular structure, they can be created automatically and
stored in a database, such as Pfam (Finn et al., 2006). Computing the maximum
probability path in a profile HMM is equivalent to optimizinga very simple form of
multiple alignment.

We can also create a hand-crafted topology for recognizing aparticular signal,
protein family or fold. Examples include models to identifysignal peptides (Nielsen
and Krogh, 1998), and for discovering coiled-coil proteins(Delorenzi and Speed,
2002) and glycolipid-anchored membrane proteins (Gilson et al., 2006).

Schultz et al. (2006) use profile HMMs to detect recombination in HIV strains.
They build a profile HMM for each known subtype, adding transitions with a low
probability between states corresponding to the profiles ofdifferent subtypes. In their
formulation, the annotation of a given query sequence identifies which parts belong
to which subtype.

Another interesting recent use of HMMs that incorporates recombination is due
to Rastas et al. (2005), who use an HMM to assist them in haplotype inference and
in discovering recombination points in genotype data. Fromgenotype data, they
train a hidden model to represent approximations of ancestral haplotypes, and allow
transitions between these due to recombinations over the course of evolutionary time
scales. Given a genotype, which is the conflation of two haplotypes, each of which
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represents a path through the network, they compute the maximum probability pair
of paths that can give rise to that genotype. The sequences from these two paths are
then the inferred haplotypes.

Finally, we note that although the focus of this chapter is biological sequence
annotation, hidden Markov models are used for similar tasksin other domains.
Speech recognition was one of the first HMM application areas(Rabiner, 1989).
In natural language processing, HMMs were applied to several tasks, for example
tagging the words with their parts of speech (Church, 1988),segmentation of text to
topics (Yamron et al., 1998) and information extraction (Seymore et al., 1999). They
can also be applied to areas as diverse as music composer recognition (Pollastri and
Simoncelli, 2001) and fire detection (M̈uller, 2001).

1.3 ALTERNATIVES TO VITERBI DECODING

The Viterbi decoding algorithm is widely used, due to its simplicity and efficiency.
It is not the only appropriate decoding algorithm for all HMMapplications. This
section presents several alternative decoding contexts, and appropriate algorithms for
them.

1.3.1 Maximizing the number of correctly explained states:posterior
decoding

Posterior decodingfocuses on individual positions in the sequence, and tries to
maximize the probability that they are properly explained.This is in contrast to
Viterbi decoding, which computes the globally optimal state path. The most simple
posterior decoding question is: what state most likely generated symboli in the
HMM output?

The most probable path is not necessarily helpful in answering this question.
Many different state paths in the HMM can generate the same sequences, and in
positioni, it is possible that many of them will agree on the same state.To compute
the posterior probabilityP (hi = k |X) of statek at positioni, conditioned on the
entire sequenceX , we add the probabilities of all paths using statek at positioni.
The posterior probability can be decomposed as follows:

Pr(hi = k |X) =
∑

ℓ

Fi(k, X) · ak,ℓ · Bi+1(ℓ, X)

Pr(X)
, (1.4)

whereFi(k, X) = Pr(hi = k, x1 . . . xi), the probability of generating the firsti
symbols ofX and ending in the statek, is called theforward probabilityof statek at
positioni, andBi+1(ℓ, X) = Pr(hi+1 = ℓ, xi+1 . . . xn), the probability of starting
in stateℓ and generating the rest of the sequence,xi+1 . . . xn, is called thebackward
probabilityof stateℓ at positioni+1. The forward probabilities for a given sequence
X and a given hidden Markov model can be computed inO(nm2) time using the
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standard forward algorithm (Baum and Eagon, 1967); the backward probabilities can
be computed by the backward algorithm in the same running time.

Using Formula (1.4) and the results of the forward and backward algorithms, we
can compute the posterior probabilities of all states at allpositions of the sequenceX
in O(nm2) time. Note that the posterior probability of the whole sequencePr(X),
which is the denominator in Formula (1.4), is also obtained as a side product of the
forward algorithm: it is

∑

ℓ Fn(ℓ, X).
We can use the posterior probabilities in a number of ways. A human user can

simply examine them to look for interesting features; Kroghet al. (2001) display a
plot of the posterior probabilities of individual states along with the most probable
annotation. The plot highlights which parts of the annotation are most certain and
what other hypotheses might be reasonably likely. We can also compute the posterior
probability of an entire candidate sequence feature, such as an exon, by summing the
probabilities of all paths sharing that feature in a specificlocation of the sequence.
Genscan (Burge and Karlin, 1997) provides a list of the most probable alternative
exons, including ones not found on the most probable path. These exons can be then
tested experimentally or used as an input for further processing. Larsen and Krogh
(2003) go one step further and compute the statistical significance of discovered
genes, computing the expected number of genes with a given score that would occur
in a random sequence of certain length.

Or, we can decode sequences using posterior probabilities.In posterior decoding,
we choose the highest posterior probability state at each position of the sequence:
h∗

i = argmaxk Pr(hi = k |X). This approach maximizes the expected number
of positions in the decoding that have the right state. By contrast, Viterbi decoding
maximizes the probability of the entire state path, even though this path may have
exceedingly low probability. It may be the case that the posterior decoding has better
overall quality.

Still, the posterior decoding can be a composition of unrelated high probability
paths. This can reach a point of ridiculousness: two adjacent states in the posterior
annotation may not even be connected by an edge in the HMM. Theprobability
of such a sequence of states being the source of the query sequence is zero: it is
inconsistent with the basic assumptions encoded in the model topology.

Different authors have addressed this concern through adding a post-processing
step where we attempt to maximize a different objective function. After computing
all posterior state probabilities, using the forward-backwardalgorithm, we restrict the
choice to the paths that use only transitions present in the HMM topology. Käll et al.
(2005) find the path that maximizes the sum of the posterior state probabilities, trying
to maximize the number of correctly predicted states. This is done by straightforward
dynamic programming, similar to the Viterbi algorithm, in time O(nm2). Using a
similar method, Fariselli et al. (2005) maximize the product of posterior probabilities
in the postprocessing step.
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Fig. 1.6 Simple models of exon/intron structure

1.3.2 Maximizing the annotation probability: the multiple path problem

Each state in an HMM used to annotate sequences is labeled with the feature to which
it corresponds. In gene finding, we label states as coming from exons, introns and so
on. Each state path naturally corresponds to a sequence of labels, or anannotation.
This annotation encapsulates the semantic meaning given tothe sequence by the
HMM path.

This mapping between state paths and annotations is not always one-to-one:
several state paths may correspond to the same annotation. Such paths provide
“alternative origins” of the sequence, but have the same semantic meaning. Thus, if
we seek the most probable meaning, or annotation, for the sequence, we should add
probabilities of all of these state paths.

We will describe an HMM that has multiple state paths with thesame annotation
as having themultiple path problem. Figure 1.6a shows a simplified HMM for gene
finding with its state labels depicted by the state colors. Ifthe start state of the HMM
is fixed, this HMM does not have the multiple path problem, even though multiple
states share the same color. Given an annotation, we can identify which single state
corresponds to each black and gray position.

However, if we move to a slightly more complex model, things quickly change.
The model in Figure 1.6a embodies the assumption that the nucleotide composi-
tion of introns is homogeneous. However, vertebrate intronic sequences contain a
variable-length tail that is rich in nucleotides C and T (Burge and Karlin, 1997). To
incorporate this information, we can include a second intron state representing such a
tail, as shown in Figure 1.6b, where the new state has substantially different emission
probabilities from the first. This change creates the multiple-path problem because
there are always several high-probability alternatives for the transfer from the “in-
tron” state to the “tail” state. The probabilities of all of these paths may be quite low,
and Viterbi decoding may thus lead us to a completely different gene structure that
results from fewer paths.

Even though the model in Figure 1.6b is a more truthful representation of real
sequences than the one in Figure 1.6a, it may provide worse results when used with



xii ADVANCES IN HIDDEN MARKOV MODELS FOR SEQUENCE ANNOTATION

the Viterbi algorithm (Brejov́a et al., 2004). This paradoxical conclusion results
because we will be biased towards annotations with fewer uses of the intron module,
since each use of that module tends to greatly drop path probabilities.

In practice, gene finders often solve this problem by fixing the number of nu-
cleotides in the pyrimidine-rich intron tail (Burge and Karlin, 1997; Stanke and
Waack, 2003; Brejov́a et al., 2005). The resulting model does not have the multiple
path problem and can be decoded by the Viterbi algorithm.

Sometimes, though, the multiple path problem is not easily removed. In these
cases, we would like to compute the most probable annotationdirectly. Unfortunately,
this is not feasible for all model topologies. Brejová et al. (2004) constructed an HMM
with 34 states for which it is NP-hard to compute the most probable annotation. As
such, we are not likely to find an efficient algorithm to find themost probable
annotation.

We can respond to this negativeconclusion by resorting to heuristic algorithms, not
guaranteed to find the most probable annotation, that perform better than the Viterbi
algorithm. A popular example is theN -best algorithm (Schwartz and Chow, 1990),
which was shown to give good results in several biological applications (Krogh, 1997;
Krogh et al., 2001). We can also use posterior decoding, as inSection 1.3.1, and
thereby join together all of the many paths that go through all states with the same
label. Still, this approach will be prey to all of the other limitations of the posterior
decoding technique.

However, we can characterize special classes of HMMs for which the most proba-
ble annotation can be computed efficiently. For example, forHMMs that do not have
the multiple path problem, we can find the most probable annotation by the Viterbi
algorithm inO(nm2) time. Vinǎr (2005) has shown a hierarchy of algorithms that
can decode increasingly wider classes of HMMs, but at a cost of increasing running
time O(nd+1md+2) for a parameterd. In the rest of this section, we describe the
most practical of these algorithms which runs inO(n2m3) time.

This running time is feasible for analyzing protein or mRNA sequences, which
are much shorter than genomic DNA. This algorithm can find themost probable
labeling for a wide class of models with the multiple path problem, including the
gene finding HMM shown in Figure 1.6b and models used for predicting the topology
of transmembrane proteins and finding coding regions in mRNAsequences. It can
also be applied as a heuristic to HMMs outside of its target class, much as the N-best
algorithm can.

The main observation is that many HMMs with the multiple pathproblem still have
a fair amount of structure in the way that sequence features flow from one to another.
Specifically, for these HMMs, while many paths may representthe same annotation,
the edges used to transition between the sequence features in the annotation are
always the same for all of the paths. We call the edges that transition between states
of different labelscritical edges.

The extended annotationof a state pathh1h2 . . . hn is the pair(L, C), where
L = λ1, λ2, . . . , λn is the sequence of labels of each state in the path andC =
c1, c2, . . . , ck is the sequence of all critical edges followed on that path. There can
be several state paths with the same extended annotation; for example in Figure 1.6b,
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these are the paths that differ only in position of entering the intron tail state; they all
follow the same edge from grey to white.

We can extend the Viterbi algorithm to compute the most probable extended
annotation. Fortunately, many HMMs (including the one Figure 1.6b) have one-to-
one correspondence between extended annotations and annotations, and thus can be
decoded by this algorithm. We can even test automatically ifa given HMM has this
property (Brejov́a et al., 2004), called thecritical edge condition.

The algorithm again uses dynamic programming, summing all of the paths within
every feature, to obtain the maximum probability extended annotation. In the Viterbi
algorithm, we compute the valuesV [i, k], the maximum probability of a state path
for the sequencex1 . . . xi over all paths ending in statek. In the extended Viterbi
algorithm, we instead computeL[i, k], the maximum probability of an extended
annotation(L, C) of the sequencex1 . . . xi, where the model is in statek at position
i; that is,L[i, k] = max Pr(x1 . . . xi, (L, C), hi = k).

At each step, we examine all possible durations of the last segment with the same
label and instead of choosing the single most probable path in that segment with
that length, we compute the sum of all possible appropriate-length state paths in this
segment. If the segment starts at positionj of the sequence, letP [j, i, k, ℓ] be this
sum; it is the probability of generating the sequencexj . . . xi, starting in statek, and
ending in stateℓ, using only states with the same labelλ (both statesk andℓ must
also have this same label). We get the following recurrence:

L[i, k] = max
j≤i

max
ℓ

max
ℓ′

L[j − 1, ℓ′] · aℓ′,ℓ · P [j, i, ℓ, k] (1.5)

We compute the values ofL in order of increasingi. For eachi, we compute all
relevant values ofP [j, i, k, ℓ] in order of decreasingj by the following recurrence
(this is similar to the standard backward algorithm):

P [j, i, k, ℓ] =
∑

ℓ′ with labelλ

ek,xj
· ak,ℓ′ · P [ℓ′, ℓ, j + 1, i] (1.6)

This algorithm finds the most probable extendedannotation in any HMM inO(n2m3)
time.

1.3.3 Finding many paths: sampling from the posterior distribution

Instead of finding the most probable state path, we can also sample a collection of
state paths according to the conditional probability distribution Pr(H |X) defined
by the HMM. The following algorithm for sampling from HMM wasintroduced by
Zhu et al. (1998).

We first pre-compute all values ofBi(k, X) by the backward algorithm as outlined
in Section 1.3.1. In the first step, we randomly choose initial stateh1, where the
probability of starting in statek is proportional tosk ·B1(k, X). After that, in thei-th
step, we choose the next state,hi, with probability proportional toahi−1,hi

·Bi(hi, X).
The probability of choosing pathH = h1, . . . , hn by this randomized algorithm is
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exactly Pr(H |X), so we are sampling from the conditional distribution of state
paths, given the output sequenceX .

Sampling may be useful if we need to provide several alternative annotations,
instead of a single prediction. For example, several possible high-probability anno-
tations may be needed for the purpose of experimental verification. In gene finding,
genes may have several splicing variants; the same DNA sequence is transcribed into
multiple proteins using different combinations of splice sites. SLAM (Cawley and
Pachter, 2003) and AUGUSTUS (Stanke et al., 2006a) use this method to generate
multiple gene annotations as potential alternative transcripts. On the other hand, as
each of these will likely have extremely low probability, they are likely unreliable as
overall predictions for the entire sequence.

1.4 GENERALIZED HIDDEN MARKOV MODELS

The lengths of features found in biological sequences can come from extremely
complex distributions. Unfortunately, simple HMMs are notnecessarily effective at
modeling these distributions. For example, the simplest way to model a region of
variable length is with a single HMM state that has a transition to itself (a self-loop),
with transition probabilityp. The probability that the HMM stays in such a state for
exactlyℓ steps is(1 − p)pℓ−1, so the distribution of lengths of regions generated by
this state will be geometric. However, length distributions of biological sequence
elements are far from geometric. Figure 1.7a shows length distribution of internal
exons in human genes and its best approximation by a geometric distribution.

This section shows a variety of methods to address this problem. Some involve
changes to the generative behaviour, to improve the abilityto model more complicated
distributions. The simplest such approaches can substantially increase the decoding
time, fromO(nm2) to O(n2m2); for long DNA sequences, this order of magnitude
change is unacceptable. We thus present methods that compromise between modeling
accuracy and decoding time.

1.4.1 Generalized HMMs and explicit state duration

In generalized HMMs, self-loop transitions are replaced by states generating their
state durations explicitly. Upon entering a state, the generative model first chooses
the durationd, which is the number of symbols that will be generated in thisstate. For
each stateh, the probability distributionδh that determines these random variables
is explicitly represented in the model. Afterd symbols are generated in the state, the
model follows a transition to a new state.

To compute the most probable state path that generates a particular sequence
of symbols, we must modify the Viterbi algorithm. In each step of the dynamic
programming, in addition to examining all potential last transitions, we also have
to consider all possible durations of the last state. IfV [i, k] is again the probability
of the most probable path generating the firsti symbolsx1, . . . , xi and finishing in
statek, assuming that in the next step the model will transit out of statek or finish
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Fig. 1.7 Length distribution of internal exons on human chromosome 22. (a) Best fit by
geometric distribution. (b) Best fit by geometric-tail distribution with t = 130.

the generation process, then the recurrence characterizing the dynamic programming
must change as follows:

V [i, k] = max
1≤j≤i

[emit(k, j, i) · δk(i − j + 1) · max
ℓ

V (j − 1, ℓ) · aℓ,k], (1.7)

whereemit(k, j, i) is the emission probability of generating the sequence of symbols
xj , . . . , xi in statek. The straightforward implementation of this dynamic program-
ming gives anO(n3m2) running time, wheren is the length of the sequence andm
is the number of the states, since the computation ofemit(v, j, i) takesO(n) time in
the worst case. However, it is possible to reduce the runningtime toO(n2m2) using
a pre-computation that requiresO(nm) time, after which it is possible to compute
emit(v, j, i) in constant time for anyi andj (see Mitchell et al. (1995) for details).

This sort of runtime, which is quadratic in the length of the query sequence, is
reasonable for short sequences, such as proteins. It is not feasible for long DNA
sequences. Two straightforward solutions to reduce the running time are used in
practice.

First, we can place an upper bound ofd on the number of characters produced
by each state (as in Rabiner (1989)). Then, the running time will be O(ndm2). In
speech recognition applications, it is usually possible tokeep the boundd relatively
small, as the state durations may be phonemic durations, so this approach yields a
reasonable decoding algorithm with practical running time. However, such a bound
is often hard to find in biological applications.

Second, we observe that we can stop our dynamic programming search for lengths
that may be emitted by the current state wheneveremit(k, j, i) = 0. For example,
this is a common stopping condition for exon states in gene finding: we can stop
searching upon reading an in-frame stop codon. Burge and Karlin (1997) used this
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approach in their gene finder Genscan to model exons with generalized states and
complex distributions, still achieving reasonable decoding runtimes. Unfortunately,
this approach does not extend to intron distributions: there is no common sequence
forbidden to them.

1.4.2 Distributions with geometric tails

One way of decreasing the running time, even when no upper bound on the length
of the state durations is available, is to restrict the family of length distributions
allowed in the generalized states. One example of this approach is due to Brejov́a
and Vinǎr (2002), which restricts the family of durations to ones with geometric tails.
Such distributions are robust enough to characterize the lengths of many important
biological elements effectively.

A geometric-tail distribution for the duration of a state isthe joining of two
distributions: the first part is an arbitrary length distribution, and the second part is a
geometric tail. Specifically, there is a parametert where, for values ofi less than or
equal tot, the probabilityδk(i) is explicitly set, while for values ofi greater thant,
δk(i) = δk(t) · qi−t

k . The values ofδk(t) andqk are set to maximize the likelihood of
the length distributions of training data, and the explicitprobabilities found inδk(i)
for i < t are set to match observed values after smoothing.

Such distributions can model the lengths of many functionalsegments of biological
sequences, even with small values of the tail start parameter t. For example, Figure
1.7b shows the geometric-tail distribution witht = 130 that best approximates the
length distribution of human internal exons.

Brejová and Vinǎr (2002) emphasize models with small values of the parameter
t because they also design an efficient decoding algorithm with O(nmt + nm2)
runtime. The Viterbi algorithm for generalized HMMs in recurrence (1.7) explicitly
considers all possible durations of statek. For geometric-tail distributions, we can
reduce the running time by distinguishing between two cases: durations less than or
equal totk, and durations longer thantk.

In particular, letQ[i, k] be the probability of the most probable path generating
the first i symbols of the sequence, and spending at least lasttk steps in statek.
To compute the value ofQ[i, k], we consider two cases: either thei-th character
extends the duration of the statek, which was already at leasttk, or generating the
i-th character brings the duration of statek to exactlytk steps. The value ofQ[i, k]
can be then used in computingV [i, k], instead of checking all durations longer thant:

V [i, k] = max























Q[i, k], (duration at leasttk)

max
1≤d<tk

[emit(k, i − d + 1, i) · δk(d)

·max
ℓ

V [i − d, ℓ] · aℓ,k] (duration less thantk)

(1.8)
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Fig. 1.8 Step-function approximation of intergenic length distribution in human chromo-
some 22. The right plot shows detail of the step-function character of the distribution.

Q[i, k] = max



















Q[i − 1, k] · qk · ek,xi
(duration more thantk)

emit(k, i − tk + 1, i) · δk(tk) · max
ℓ

V [i − tk, ℓ] · aℓ,k

(duration exactlytk)

(1.9)

A straightforward dynamic programming algorithm implemented based on this
recurrence would takeO(ntm2) time, which Brejov́a and Vinǎr (2002) improve to
O(nmt + nm2) by precomputing values ofmaxℓ V [i, ℓ] · a(ℓ, k).

In gene finding, this technique was used in ExonHunter (Brejová and Vinǎr, 2002;
Brejová et al., 2005) to model the length distributions of exons andintrons; the gene
finder Augustus (Stanke and Waack, 2003) uses a similar approach shown in 1.4.3 to
model the length distributions of introns.

The distributions of much longer features can also be modeled in an extension of
this approach. The gene finder ExonHunter (Brejová et al., 2005) models the lengths
of intergenic features, for which a simple geometric tail distribution would require
t ≈ 104, by replacing a single-state model of intergenic region with a two-state model
that allows one to approximate this distribution. The first state generates symbols in
blocks of length

√
t, where the number of blocks is determined by a geometric-tail

distribution, where the tail begins at
√

t. The second state generates only up to
√

t
symbols, with uniform length distribution. This method replaces the original length
distribution with a step-function approximation, where the steps happen at intervals
of

√
t, as shown in Figure 1.8. The model that represents this distribution can be

decoded inO(nm
√

t + nm2) time, which is practical even for the large values oft
needed to model intergenic regions.

1.4.3 Gadgets of states

An alternative way of avoiding the geometric length distributions for individual states
in hidden Markov models is to model a single sequence elementby multiple states
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Fig. 1.9 (a) A gadget of states generating non-geometric length distributions; (b) depending
on the number of states and probabilityp, different distributions from a subclass of the discrete
gamma distributionsΓ(pℓ, 1) can be generated.

instead of a single state. Durbin et al. (1998) (recently also re-examined by Johnson
(2005)) discuss several ways to model non-geometric lengthdistributions by replacing
a single state with a group of states that share the same set ofemission probabilities.
Transitions are added inside this group so that the probability of staying within the
group forℓ steps is close to the probability that the modeled feature has lengthℓ.

Consider the gadget in Figure 1.9a. The left-most transition is the sole entry
point to the sub-model, and the right-most transition is theexit. If the gadget
consists ofn states, the probability of generating a feature of lengthℓ > n is
f(ℓ) =

(

ℓ−1
n−1

)

pℓ−n(1 − p)n, which can be used to model a wide variety of gamma
distributions (see Figure 1.9b). One example of this approach is found in Larsen
and Krogh (2003), who used three copies of their codon model,each with its own
self-loop, to model the length distribution of genes in bacteria.

The geometric-tail distributions with parametert discussed in the previous sections
can be generated by a gadget oft states, shown in Figure 1.10; fori < t, the
probability of generating a feature with lengthi is

∏

j<i(1 − pj)pi, while if i ≥ t,
thenδk(i) =

∏

j=1...t−1(1 − pj)q
i−t−1(1 − q).

Such a construction was used by Nielsen and Krogh (1998) for protein modeling
and by Stanke and Waack (2003) in gene finding. The modified Viterbi algorithm for
geometric-tail distributions shown in the previous section is essentially equivalent to
running the classical Viterbi algorithm on such an HMM, though it is more memory
efficient, since the Viterbi probabilitiesV [i, k] are not stored for the extra states
within the gadget.

In general, one can use any topology of states in a gadget; distributions that can
be represented in such a way are calledphase-type distributions, and they play an
important role in queuing and systems theory (see Commault and Mocanu (2003)
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Fig. 1.10 A gadget of states generating a geometric-tail length distribution with t = 4. The
black circle represents the first state of the next submodel of the HMM.

for a recent overview). This approach of using phase-type distributions suggests
what appears to be an ideal framework for modeling general length distributions in
HMMs: fix the number of states in each gadget depending on the desired running
time, and then find the best approximation of the length distribution observed in
training data. With increasing size of the gadget, we can approximate any desired
length distribution arbitrarily well (Asmussen et al., 1996).

Unfortunately, most gadgets, such as the one shown in Figure1.9a, introduce the
multiple path problem discussed in Section 1.3.2, so Viterbi decoding is inappropriate
for them. Indeed, Vinǎr (2005) showed that the result of decoding the HMM with
a gadget shown in Figure 1.9a with Viterbi decoding is equivalent to the result
of decoding an HMM where the same feature has essentially a geometric length
distribution.

This unhappy result leaves us with two options: compute the most probable
labeling by the extended Viterbi algorithm from Section 1.3.2, or use other decoding
strategy, such as posterior decoding. Note that since the extended Viterbi runs in
quadratic time in the length of the sequence, the former strategy is no better than
using arbitrary length distributions and the algorithm from Section 1.4.1.

1.5 HMMS WITH MULTIPLE OUTPUTS OR EXTERNAL INFLUENCES

In the previous sections, we have considered HMMs that modeled a single DNA or
protein sequence and its annotation. This approach, however, is not appropriate to the
more contemporary domain in which we may have much external information that
is helpful in annotating a sequence accurately. In this section, we consider a variety
of ways in which HMMs can incorporate such external evidence. Many of these
change the structure of the output of the HMM, while others influence the decoding
algorithms.

Perhaps the most readily available source of information ispredicted evolutionary
homology. Great amounts of DNA and protein sequences are publicly available in
databases such as GenBank (Benson et al., 2000). For a given sequence of interest we
may find its likely homologs in a database and exploit typicalpatterns of evolution
to improve the annotation. Functionally important regionsusually evolve much
more slowly and are well conserved even between relatively distant species; on the
other hand, random mutations often accumulate more quicklyin regions with fewer
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Fig. 1.11 Evidence supporting annotation of human URO-D gene. Significant alignments
from fruit fly genome, known mouse proteins, and mouse ESTs are represented as boxes.

functional constraints (Siepel et al., 2005). Another source of evidence is the results
of biological experiments aimed at elucidating sequence features and their function.
For example, in gene finding, EST sequencing and tiling arrayexperiments may
confirm that certain regions of the genome are exons.

An example of additional information in gene finding is illustrated in Figure
1.11. The figure shows significant alignments of a distantly related genome, known
proteins, and expressed sequence tags to a genomic regions containing the human
URO-D gene. In this case, the additional evidence provides ahuman observer enough
information to have a very good idea about the structure of the gene. The process
of incorporating such information into the automatic annotation that results from
decoding an HMM, on the other hand, is not necessarily nearlyas simple: we must
design systems that are efficient to decode and efficiently trained, and which are able
to accommodate errors and imprecisions in the external sources of information.

1.5.1 HMMs with multiple outputs

One way of incorporating additional evidence into HMMs is torepresent each source
of evidence as a newinformantsequence. We can then extend the HMM to generate
the informant sequences as part of its output, alongside with the original query
sequence whose annotation we seek.

These extensions are perhaps most easily described in the framework of Bayesian
networks. A Bayesian network is a generative probabilisticmodel whose output is
N variables. The dependencies among these variables are shown by representing
the variables as the vertices of a directed acyclic graph. Wegenerate values for
the variables in topological order, so that the values of allof the variables that are
the predecessors of a variable are determined before its value. To be more specific,
consider a variableX , with parentsX1, . . . , Xk. The parameters of the Bayesian
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Fig. 1.12 A hidden Markov model with second-order states, represented as a Bayesian
network. The top row of variables represents the state path,h1, . . . , hn, through the
HMM. The bottom row represents the emitted DNA sequence,x1, . . . , xn. The con-
ditional probabilities of the Bayesian network are defined by the initial, transition, and
emission probabilities of the HMM:Pr(h1) = sh1

, Pr(hi|hi−1) = ahi,hi−1
, and

Pr(xi|hi, xi−1, xi−2) = ehi,xi−2,xi−1,xi
. The observed variables, which indicate the

DNA sequence, are shaded in the figure.

network specify the conditional probabilityPr(X = x |X1 = x1, . . . Xk = xk), for
all combinations of the valuesx, x1, . . . , xk. Once the values of the parent variables
are fixed, we can generate the value ofX from this conditional distribution.

HMMs easily fit into this Bayesian network framework: an HMM that generates
a sequence of a fixed lengthn can be represented as a Bayesian network with2n
variables: for each emitted symbol, we have one variable representing the symbol
itself and one variable representing the hidden state emitting the symbol (see Figure
1.12). We can also represent higher order states by including additional edges
between the observed variables as demonstrated in the figure.

One approach to incorporating external evidence into the HMM is to represent the
evidence sources by informant sequences, which also dependon the hidden states of
the network. We translate each external source into a sequence ofn symbols from a
finite alphabet, where each symbol in the informant sequencemust correspond to one
symbol of the query sequence. For example, we can encode a genome-to-genome
alignment as a sequence ofn symbols from the alphabet{0, 1, .} by characterizing
each base of the query DNA sequence as “aligned with match” (symbol ’1’), “aligned
with mismatch” (symbol ’0’), or “unaligned” (symbol ’.’); This is the encoding
scheme used in the gene finder TwinScan (Korf et al., 2001).

We can represent this approach by adding a variable for each informant sequence
at each sequence position to our Bayesian network. If we havek − 1 external
information sources, the network will haven(k + 1) variables: n state variables,
n variables for the query sequence andn variables for each of thek − 1 informant
sequences. The simplest way to add these new variables is to make the symbols of all
k sequences conditionally independent given the state at each position. Figure 1.13
shows such a model fork = 2. Korf et al. (2001) used this approach to incorporate
genome-to-genome alignments into gene finding. Pavlović et al. (2002) transformed
the outputs of a collection of gene finding programs into informant sequences, and
used this same sort of approach to join their predictions into a single prediction;
their system does not even involve the query DNA sequence as one of the network’s
outputs.
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Fig. 1.13 A representation of the generative probabilistic model of the TwinScan gene finder
(Korf et al., 2001) as a Bayesian network. Thehi variables each represent one state of the
HMM; variablexi represents one nucleotide of the query DNA sequence, andyi represents
the conservation between this nucleotide and some other genome, over a special alphabet with
symbols for matched, mismatched and unaligned positions. (TwinScan actually uses emission
tables of order five, which can be depicted by adding additional edges, as in Figure 1.12.)

Training and decoding of these extended HMMs is analogous toregular HMMs:
maximum likelihood parameters can be obtained by simple frequency counting from
annotated sequences, and we can straightforwardly modify the Viterbi algorithm
(and other decoding algorithms) to account for the multipleemission probabilities
in each step. The main limiting factor of these models is not their algorithms, but
is the assumption of conditional independence between individual output sequences,
which is clearly violated in most applications.

Instead, when the evidence consists of multiple alignment of sequences known
to have evolved from a common ancestor, we can usephylogenetic HMMs, a model
design that reflects known evolutionary relationships between those sequences. In
particular, we can arrange the Bayesian network so that the topology of the network
is identical to the phylogenetic tree representing the evolutionary history of the
sequences, as in Figure 1.14, which shows a model of a human query sequence, and
additional sequences from mouse, rat, and chicken. In this Bayesian network, we can
partition all sequence variables into two sets at every position i: the set of observed
variablesOi, corresponding to the sequences in the leaves of the phylogenetic tree,
and the set of unobserved variablesUi, corresponding to the unknown ancestral
sequences.

The unobserved variables complicate both training and decoding. To train the
model, we must use the EM algorithm instead of simple frequency counting (Demp-
ster et al., 1977). For decoding, at each positioni and for each statehi, we need to
compute the likelihood of the corresponding tree submodelPr(Oi |hi). This prob-
ability can be computed from the probability distributionPr(Oi, Ui |hi) defined by
the phylogenetic tree model by marginalizing unobserved variables:

Pr(Oi |hi) =
∑

Ui

Pr(Oi, Ui |hi) (1.10)

The number of terms in this sum is exponential in the number ofunobserved
variables. However, since the generative model has a tree structure, we can compute
this sum in time linear in the number of all variables by usingFelsenstein’s peeling
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Fig. 1.14 A simple phylogenetic hidden Markov model depicted as a Bayesian network. Each
variablehi represents one state of the HMM, the variablesHi, Mi, Ri, Ci each represent
single positions of human, mouse, rat and chicken from one column of a multiple genome
alignment, and the variablesai, bi, ci represent the unknown ancestral sequences. Observed
variables are shaded. For example, the value ofHi depends on its ancestorbi and on the
HMM statehi. The state determines mutation rate, since mutations occurmore frequently in
non-coding regions.

algorithm (Felsenstein, 1981), which performs dynamic programming by starting at
the leaves and proceeding to the root of the tree.

We can introduce higher order states for the observed variables, as described
at the beginning of this section. However, introducing higher order states for the
unobserved variables is more complicated: it requires substantial modification of
the decoding algorithm (Siepel and Haussler, 2003), and therunning time becomes
exponential in the order of the states.

Another modification of phylogenetic HMMs (Gross and Brent,2005) involves
rooting the phylogenetic tree in the query sequence rather than in the common ancestor
(see Figure 1.15). The advantage of this approach is that theresulting probability
distribution can be decomposed into a product of two terms: the probability that
the HMM generates the query sequence and the contribution from the variables
introduced by the other sequences. The emission and the transition probabilities
of HMM states can be trained and tuned separately as in a single-sequence gene
finder, and the parameters required for including additional evidence can be trained
afterward.

An important issue is the parametrization of random variables associated with
the query and informant sequences. In phylogenetic HMMs, most variables have
two parents: the state variable and the parent in the phylogenetic tree. Thus if the
alphabet size isσ, the number of states ism, and the number of sequences isN ,
we must trainΘ(Nmσ2) parameters. We can reduce this number by employing a
nucleotide substitution model based on a standard continuous Markov chain model
of evolution. For example, the simplest Jukes–Cantor model(Jukes and Cantor,
1969), which assumes a uniform rate for all single-point mutations, requires only
a single parameter per sequence and state. In more complex models of evolution,
such as the general reversible model of Rodriguez et al. (1990), the substitution rate
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Fig. 1.15 Modified phylogenetic hidden Markov model, with query sequence positioned at
the root of the phylogenetic tree.

matrix (requiringΘ(σ2) parameters for each state) is shared among all branches of
the phylogenetic tree, and one parameter corresponding to the branch length of an
edge in the phylogenetic tree, needs to be trained for each sequence and state. Using
such a model of evolution will reduce the number of parameters toΘ(Nm + mσ2),
a substantial savings even for moderate number of species.

Phylogenetic HMMs were first introduced in evolution studies (Yang, 1995;
Felsenstein and Churchill, 1996). Goldman et al. (1996) were the first to apply
them for sequence annotation, in the problem of secondary structure prediction. As
genomes of multiple organisms have become available, phylogenetic HMMs have
been applied to genomic sequences, for tasks such as gene finding (Pedersen and
Hein, 2003; McAuliffe et al., 2004; Siepel and Haussler, 2004; Gross and Brent,
2005) and identifying conserved elements in genomes (Siepel et al., 2005). Phyloge-
netic HMMs are also useful for finding overlapping genes in compact viral genomes
(McCauley and Hein, 2006).

The accuracy of HMM when used to analyze protein sequences can also be
improved by using multiple sequence alignments of several proteins that are known
to be homologous with a query sequence. However, we typically do not know the
phylogenetic tree representing the evolution of these proteins. Instead, researchers
have developed variants of HMMs that emit a profile specifying the relative frequency
of each amino acid at each position of the sequence. Unlike phylogenetic HMMs,
these models do not capture the strong correlation between closely related sequences,
but only summarize the features of the many rows of the alignment. However, they
require far simpler parameter estimation. HMMs emitting profiles were used to
predict secondary structure of proteins by Bystroff et al. (2000), topology ofβ-barrel
membrane proteins by Martelli et al. (2002), and topology ofhelical transmembrane
proteins by Viklund and Elofsson (2004).

1.5.2 Positional score modification

We can incorporate external evidence into an HMM using othermethods besides
Bayesian network approaches. In an HMM, the joint probability Pr(H, X) of se-
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quenceX and state pathH is computed as a product of emission and transition
probabilities (see Equation (1.1)). The methods presentedin this section place addi-
tional factors into this product, while keeping the decoding algorithm viable.

All possible annotations of a particular sequence are represented as different state
paths through the HMM. Consider a piece of additional evidenceE. It can be seen
as a probabilistic hypothesis about the true annotation, whose validity depends on
whetherE comes from a believable source: if the origin of the evidenceis trustworthy
(with some probabilityPE), then only paths from some setHE should be considered.
On the other hand, with probability1 − PE , the evidence is untrustworthy and we
should disregard it.

For example, in transmembrane topology prediction, we may see a motif that
suggests that thei-th amino acid in the query sequence is found inside the cytoplasm.
Then the setHE consists of all paths through the HMM that mark thei-th amino acid
as being from a cytoplasmic loop, and the probability(1−PE) is the probability that
the match is not a real functional occurrence of this motif, and we should disregard
the evidence entirely.

When given such an evidence, we recognize two events:E+ (the evidence is
correct), andE− (the evidence is wrong). We can write:

Pr(H, X |E) = PE · Pr(H, X |E+) + (1 − PE) · Pr(H, X |E−) (1.11)

Note, thatPr(H, X |E+) = 0 for pathsH not found inHE ; if the evidence
is correct, it is specifically eliminating certain paths from being possible. If the
evidence is wrong, it should have no effect on predictions, and therefore we say
Pr(H, X |E−) = Pr(H, X). If we already know thatH ∈ HE , additional evidence
does not give us any new information, and addition of such evidence should not
change relative probabilities of paths; consequently, we can sayPr(H |HE , X) =
Pr(H |E+, X). Finally, we assume (obviously unrealistically) that the probability
of the sequence should be independent of the eventE+, and we can sayPr(X) =
Pr(X |E+).

Using these assumptions, we obtain after simple manipulation the following up-
dated probability distribution over all possible annotations:

Pr(H, X |E) =

{

(1 − PE) · Pr(H, X), if H /∈ HE ,
(

1 − PE + PE

Pr(HE | X)

)

· Pr(H, X), if H ∈ HE .
(1.12)

Intuitively, the probabilities of all paths that agree withthe evidence are multiplied
by a factor greater than one, and probabilities of all paths that do not agree with the
evidence are multiplied by a factor smaller than one. The relative probability of paths
within each category remains unchanged.

The computational complexity of decoding under this new probabilistic model
depends on the form of the setHE of paths that are consistent with evidence. IfHE

contains all the paths that annotate a point in the sequence with a particular label,
or with any label from a set of labels, we can slightly modify the Viterbi algorithm
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to compute the most probable state path. The quantityPr(HE |X) needed for the
bonus factor can be obtained by the forward–backward algorithm.

This method was first derived and used in a gene finding programGenomeScan
(Yeh et al., 2001) to incorporate protein homology into genefinding. The same
method was also used to improve prediction of transmembraneprotein topology by
Xu et al. (2006a). In their case, the evidence was composed ofmotif hits that indicate
strong preference for cytoplasmic or non-cytoplasmic loops at certain sites in the
sequence.

A disadvantage of the GenomeScan approach is that it is unclear how to integrate
multiple pieces of additional evidence (such as multiple protein hits or multiple
motifs), particularly if they are not independent. In an attempt to solve this problem,
the next method incorporates evidence in the form of additional multiplicative terms
at each position of the sequence. An important difference isthat given a particular
alignment, GenomeScan method alters the probability at oneposition only, while in
what follows, we boost the probability independently at each position covered by the
alignment.

Assuming independence between the sequenceX and all additional evidenceE,
we can use Bayes’ rule to obtain:

Pr(H |X, E) ∝ Pr(H |X) · Pr(H |E)

Pr(H)
(1.13)

Though this independence assumption is not true in practice, we can often limit
dependencies by avoiding using the same features of the sequence in both the HMM
and the additional evidence. For example in gene finding, theHMM mostly models
short windows of the sequence (signals, local coding potential, etc.), while the
additional evidence may represent database searches, suchas alignments to EST or
protein sequences.

Whether we can develop an efficient decoding algorithm depends mostly on
the family of probability distributions that we use to represent the contribution of
the additional evidencePr(H |E)/ Pr(H). In the simplest case, we assume posi-
tional independence, for both the posterior probability conditioned on the evidence
Pr(H |E) =

∏n

i=1 Pr(hi |E) and the prior probabilityPr(H) =
∏n

i=1 Pr(hi).
To partially compensate for the positional independence assumption, we can add a
scaling factorα < 1 as follows:

Pr(H |X, E) ∝ Pr(H |X) ·
(

Pr(H |E)

Pr(H)

)α

. (1.14)

In this particular scenario, we can easily modify the Viterbi algorithm to find the most
probable annotationH given both sequenceX and evidenceE in time linear in the
length of the sequence.

For a single source of evidence, we can directly estimate theposterior proba-
bilities Pr(hi |E) from a training data set. However, multiple sources of evidence
would typically present many combinations of local information, requiring exponen-
tial number of parameters to train. Brejová et al. (2005) developed a method for
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expressing and combining information from several sourcesof additional evidence
using partial probabilistic statements to express the implications of the evidence and
quadratic programming to combine all the statements concerning a particular position
in the sequence into a posterior distributionPr(hi |E).

In the context of gene finding, the method of multiplyingPr(H, X) by additional
factors was successfully used to incorporate variety of sources of information (such
as genome, EST, and protein alignments) in a single model; two examples are
HMMGene by Krogh (2000), and ExonHunter by Brejová et al. (2005).

Stanke et al. (2006b) designed a method that tries to overcome the positional
independence assumptions. Let us assume that the evidenceE is expressed as a set
of “hints”: intervals in the query sequence. In the simplestcase, each hint supports a
single state of the generalized HMM (more complex variations are possible). We say
that a given state path iscompatiblewith hint (i, j) if the part of the query sequence
xi . . . xj is all generated in the state supported by the interval. Otherwise, we say
that the state path isincompatible. For example in gene finding, we can represent
EST alignments as a set of intervals, each supporting an exonstate in the HMM.

Each hint is assigned a position in the sequence at its right end. Only a single hint
ei is allowed to end at each positioni. Also, if there is no hint ending at positioni,
we will sayei =⋔, corresponding to a vacuous hint. We will create a model thatwill
not only generate the sequenceX , but also the sequence of hints as follows:

Pr(H, X, e1, . . . , en) = Pr(H, X) ·
n
∏

i=1

Pr(ei |H, X) (1.15)

The probabilityPr(ei |H, X) is eitherq⋔, if the hint at positioni is ⋔, or q+, if the
hint is compatible withH , orq− if the hint is incompatible withH . These parameters
are trained by frequency counting on the training data. Note, that this model is not
truly a generative model for hints, since we do not generate the left ends of the hints;
yet, we use them to determine compatibility or incompatibility of each state path.
The Viterbi algorithm can be again easily modified to accommodate these interval
hints, and ifq+ > q−, it takes asymptotically no longer than the underlying decoding
of the generalized HMM.

The interval hints were used in the gene finder AUGUSTUS+ (Stanke et al.,
2006b). They enforce better consistency of final predictions with the evidence, since
the bonus factorq+ is not awarded for state paths that match an interval only partially.

1.5.3 Pair hidden Markov models

In the previous sections, we have reviewed several methods that break the problem
of sequence annotation into two steps. First, a general search tool is used to identify
local alignments between the query sequence and a sequence database. Next, this
information is incorporated using some HMM-based method. The main disadvantage
of the two-step approach is that the initial general-purpose alignment algorithm does
not take into account the structure of the annotation problem.
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A B C

a, λ: 1/4
c, λ: 1/4
g, λ: 1/4
t, λ : 1/4

a, a: 1/8
c, c : 1/8
g, g: 1/8
t, t : 1/8
a, c: 1/24
a, g: 1/24

. . .
t, g : 1/24

λ, a: 1/4
λ, c: 1/4
λ, g: 1/4
λ, t : 1/4

Fig. 1.16 A simple pair HMM. The symbolλ in the emission probability tables represents
empty string. State B generates the ungapped portion of the alignment. State A generates
characters only in the first sequence, and state C generates characters only in the second
sequence. The alignment gaps induced by states A and C have geometrically distributed
lengths.

For example, in gene finding, alignments of a protein or EST with the query DNA
may extend beyond exon boundaries to surrounding introns, and alignments of two
homologous genes may have misaligned splice sites. Such mistakes are propagated
to the second stage, and may affect the accuracy of gene finding.

This problem can be avoided by simultaneously annotating and aligning two
sequences, in a single step. This process can be modeled by apair HMM. Pair
HMMs are HMMs that generate two sequences at the same time, but where a state
of a model can generate a character in one sequence or both sequences. Pairs of
characters generated in the same step correspond to homologous positions from the
two sequences. If only one character is generated in a given step, it corresponds to a
sequence position in that sequence with no homolog in the other sequence, due to an
insertion or deletion. Simple pair HMMs, such as the one in Figure 1.16, can be used
to represent a traditional global alignment of two sequences (Durbin et al., 1998),
with a natural relationship between the logarithm of the probability of a path in the
HMM and the score of an alignment according to traditional schema. More complex
pair HMMs can represent pairwise alignments that incorporate more flexibility in the
models of the lengths and conservation levels of different parts of the alignment.

Pair HMMs differ in an essential way from the multiple outputHMMs introduced
in Section 1.5.1: those have an alignment of the output sequences fixed, and in each
step generate a character in each output sequence. If the alignment contains a gap,
they generate a special character, for example a dash. On theother hand, the output
sequences of pair HMMs do not identify which pairs of characters were emitted in
the same step; when we decode a pair HMM, the goal is todiscoversuch homologies.

The program SLAM, by Alexandersson et al. (2003), predicts genes simultane-
ously in two homologous genomic sequences, under the assumption that they have
the same exon structure. Their pair HMM has separate states for exons, introns,
signals and intergenic regions, as in HMMs for gene finding. Each state emits pairs
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of sequences with conservation patterns typical for the sequence feature represented
by the state, but can also allow for insertions or deletions,where a position in one
sequence is not matched in the other. DoubleScan, by Meyer and Durbin (2002), is
similar, but can also predict genes with different exon-intron structure. GeneWise,
by Birney et al. (2004), uses pair HMMs to align a protein sequence to a genomic
sequence. The non-codingstates emit characters only in thegenomic sequence, while
coding states emit a triplet of nucleotides in the genomic sequence, and a single amino
acid in the protein sequence.

The main disadvantage of pair HMMs is their high running time. Given two
sequences generated by a pair HMM, we do not know which pairs of characters from
these two sequences were generated at the same time; indeed,this is what decoding is
to discover. The modified Viterbi algorithm that finds the most probable alignment of
two sequences, and their annotations, is equivalent to an extension of classic global
alignment algorithms, and as for those algorithms, its runtime is proportional to the
product of the sequence lengths. Although such a running time is infeasible in many
situations, different heuristics can be used to make the pair HMM approach more
practical (Alexandersson et al., 2003; Meyer and Durbin, 2002). This approach is
also hard to extend to multiple sources of information because its running time grows
exponentially with the number of sequences, again as is truefor classical algorithms
for multiple alignment.

1.6 TRAINING THE PARAMETERS OF AN HMM

In the previous sections, we considered the simplest scenario of HMM parameter
estimation: maximum likelihood training in an HMM without the multiple paths
problem, on a completely annotated training set. This method is applied if we can
determine the target state path for each sequence in the training set. In this case, it
is sufficient to count the frequency of each transition and emission to estimate the
model parameters that maximize the likelihood of the training data. Unfortunately,
HMM training is not always so simple.

In this section, we explore several other scenarios for HMM training. First, when
only unannotated or partially annotated sequences are available, we need to use
unsupervised or semi-supervised training to estimate the parameters of the model.
Second, often a single parameter set does not capture properties of all query sequences
well, and we may want to adapt the parameter set to the query sequence before making
a prediction. Finally, we may choose to use different optimization criteria instead of
maximum likelihood principle.

1.6.1 Unsupervised and semi-supervised training

Supervised learning can be applied only when the annotationis known for each
sequence in the training set, and there is a one-to-one correspondence between such
an annotation and the state paths in the HMM. If this is not thecase, we need to apply
more complex methods for training. The task is, as in the supervised case, to find the
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parameters of the HMM with a given topology that maximize thelikelihood of the
training set.

There is no general exact algorithm known for solving this unsupervised training
problem efficiently; some modifications have even been shownto be NP-hard (Abe
and Warmuth, 1992; Gillman and Sipser, 1994). The method most commonly used,
the Baum-Welch algorithm (Baum, 1972), is an iterative heuristic and can be con-
sidered a special case of the general EM algorithm for learning maximum likelihood
models from incomplete data (Dempster et al., 1977).

The Baum-Welch algorithm starts from an initial set of modelparametersθ0. In
each iteration, it changes the parameters as follows:

1. Calculate the expected number of times each transition and emission is used to
generate the training setT in an HMM whose parameters areθk.

2. Use the frequencies obtained in step 1 to re-estimate the parameters of the
model, resulting in a new set of parameters,θk+1.

The first step of the algorithm can be viewed as creating a newannotatedtraining
setT (k), where for eachunannotatedsequenceX ∈ T , we add every possible pair
(X, H) of the sequenceX and any state path, weighted by the conditional probability
Pr(H |X, θk) of the pathH in the model with parametersθk, given the sequenceX .
The second step then estimates new parametersθk+1, as in the supervised scenario
based on the new training setT (k). The Baum-Welch algorithm achieves the same
result inO(nm2) time per iteration using the forward and backward algorithms to
avoid explicitly creating this exponentially large training set. Details can be found,
for example, in Durbin et al. (1998, Chapter 3.3).

Baum (1972) has shown that the likelihood of the training setimproves (or stays
the same) in each iteration of this algorithm. However, thisdoes not guarantee that
the Baum-Welch algorithm reaches optimal model parameters: it may instead reach
a local maximum or a saddle point in the parameter space (Dempster et al., 1977).

A modification of the Baum-Welch algorithm, calledViterbi training, is often also
used in practice. In the first step of the algorithm, instead of considering all possible
paths through the model, we only consider the most probable path. However, this
algorithm is not guaranteed to increase the likelihood of the observed data in each
step (Durbin et al., 1998, Chapter 3.3).

The Baum-Welch algorithm can also be used in the semi-supervised scenario. For
example, Krogh et al. (2001) train a transmembrane topologypredictor on a data set
where the exact boundaries of transmembrane helices are notknown. Therefore, they
allow the boundary to occur anywhere within a short window ofthe sequence. We
can modify step 1 of the algorithm to include only paths that agree with such partial
annotations.

1.6.2 Adjusting models to query sequences

Supervised and semi-supervised training assume that the training and testing sets
contain samples independently generated from the same underlying distribution of
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sequences and their annotations. In some situations such anassumption is not
appropriate.

For example, Tusńady and Simon (1998) argue that the amino-acid composition
of transmembrane helices cannot be adequately described bythe same set of emission
probabilities for all transmembrane proteins. Instead they propose to segment a given
protein so that the difference in distribution between helix and non-helix regions is
maximized. This is essentially achieved by optimizing the HMM emission probabil-
ities with respect to the query sequence using unsupervisedtraining. We can train the
parameters not only on the single query sequence, but also onits homologs, assum-
ing that they represent independent samples, generated by the same HMM. In this
way we can use the information from homologous sequences without constructing
multiple sequence alignment and without assuming that the annotation is the same in
all sequences. Tusnády and Simon (1998) use emission parameters estimated on an
annotated training set as pseudocounts in each step of the Baum-Welch algorithm.

Chatterji and Pachter (2005) use a similar approach to find genes in multiple
homologous genomic regions by biasing parameters of a typical HMM gene finder
specifically to match the genes on the input. The parameters of the model and gene
predictions are iteratively improved by Gibbs sampling. Thus, after each iteration,
gene predictions in all input sequences will tend to be more similar to each other, and
the parameters of the model will fit the input sequences more closely.

We may also need to adjust parameters of a gene finder when applying it to a newly
sequenced genome. In such a case we rarely have sufficiently large training set of
manually annotated sequences. One approach is to identify easy to find genes, such
as those with a strong protein match in a database and train the HMM using those
genes (Larsen and Krogh, 2003). Korf (2004) has considered adjusting parameters
trained on a different species by Viterbi training on the newspecies. Lomsadze et al.
(2005) have shown that a careful procedure can obtain parameters of a eukaryotic
gene finder on a new species in a completely unsupervised fashion, starting with a
very simple set of manually created parameters.

1.6.3 Beyond maximum likelihood

So far, we considered algorithms that trained HMM parameters by maximizing the
likelihood of the training set. A common criticism of the maximum likelihood
(ML) approach in the machine learning literature is that it maximizes the wrong
objective (see for example Krogh (1997)). Our goal in decoding is to retrieve the
annotationH that maximizesPr(H |X), where the sequenceX is fixed. Therefore,
instead of maximizing the joint probabilityPr(H, X) of the training sequences,
this perspective argues that we should concentrate on maximizing the conditional
probabilityPr(H |X), since the sequenceX is fixed in the decoding phase, and it
does not matter whether its probability is low or high. This optimization criterion is
known asconditional maximum likelihood(CML).

In context of hidden Markov models, CML was used in applications in bioinfor-
matics (Krogh, 1997) and natural language processing (Klein and Manning, 2002).
Even if the sequences are annotated, there is no known closedformula or EM
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algorithm that would estimate the parameters of the model tooptimize the condi-
tional maximum likelihood. Instead, numerical gradient descent methods are used
to achieve local maximum. In these studies, slight (Klein and Manning, 2002) to
significant (Krogh, 1997) improvement was observed compared to models trained by
ML.

A theoretical analysis is available in the context of the simpler data classification
problem, where a similar dichotomy occurs between the naiveBayes classifier (which
is equivalent to ML) and logistic regression (equivalent toCML). In this context, Ng
and Jordan (2002) have shown that even though using CML givesasymptotically
lower error, ML requires significantly fewer training samples to converge to the best
model: it requires only a logarithmic number of samples withrespect to the number
of parameters, compared to the linear number of samples required for convergence in
CML. Thus ML training is appropriate if only a small number ofsamples is available,
while it is better to use CML when the training set is large. Itis not known whether
these results extend to the case of more complex models, suchas HMMs, where
we are doing more than merely classifying a sample into categories. We may also
ask (and no known answer exists to this question) whether thebetter response to an
increase in training data is to switch from ML to CML, or to switch to a more accurate
model of reality which requires a larger number of parameters.

One major disadvantage of HMMs optimized for CML is that it ishard to interpret
their emission and transition probabilities. The generative process associated with the
HMM no longer generates sequences that look like sequences from the training set.
The probabilities no longer represent frequencies observed directly in the sequence,
which makes it hard to incorporate prior knowledge about theproblem into the
probabilistic model by applying restrictions on parameters of the model,or by creating
a custom model topology.

For example, the HMM modeling the topology of transmembraneproteins in
Figure 1.4 has two states representing transmembrane helices. It may be reasonable
to assume that since the sequences corresponding to these two states serve the same
function (membrane transition), that in an ML model, both states should share the
same emission probabilities. Based on this assumption, we can reduce the number of
parameters (and thus the number of sequences required for training) bytying those
parameters together, forcing them to be the same. On the other hand, since in CML
method the emission probabilities are set to maximize the conditional probability of
the annotation given the sequence, rather than likelihood of the sequence, it is not
clear that the emission probabilities in these two states should be similar, even if the
sequences attributed to these states are similar.

Conditional random fields (Lafferty et al., 2001) further continue in the direc-
tion of CML training, abandoning the probabilistic interpretation of emission and
transition probabilities, replacing them with undirectedpotentials that do not need
to be normalized to 1. They were applied in bioinformatics for recognizing protein
structure motifs (Liu et al., 2006) and for finding genes (Culotta et al., 2005).

Some recent extensions abolish the probabilistic interpretation of HMMs alto-
gether. Instead, they consider the following problem directly: set the parameters of
the model (without normalization restrictions) so that themodel discriminates well
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between correct and incorrect annotations. These models, such as hidden Markov
support vector machines (Altun et al., 2003) and convex hidden Markov models (Xu
et al., 2006b), are inspired by maximum margin training and kernel methods in sup-
port vector machines (Boser et al., 1992), which are a very successful method for the
classification problem.

1.7 CONCLUSION

On our tour through HMMs and their use in biological sequenceannotation, we have
seen both the most traditional HMM algorithms and their mostexotic extensions. We
have seen extensions to the decoding algorithms to handle many cases where multiple
different paths through the HMM correspond to the same semantic meaning, and
algorithms to handle generalized HMMs, in which the lengthsof features may come
from complex, non-geometric, distributions. We have seen many ways in which
HMMs can operate on multiple sequences, and in all these cases we have argued why
these extensions are useful in modeling and annotating biological sequences.

Many of these extensions rely upon the conceptual simplicity of the basic HMM
framework: unlike the parameters of a neural network or of a support vector ma-
chine, the parameters of a hidden Markov model trained for maximum likelihood are
extremely simple to understand. Even for their more complexextensions (such as
phylogenetic HMMs or pair HMMs), one can quickly determine the semantic mean-
ing of the parameters, and imagine ways to make them estimated more accurately, or
to change the topology of the HMM to more closely model reality (though, of course,
our discussion of the multiple path problem in Section 1.3.2shows that this may not
be entirely wise). Even the more complex decoding approaches to handle external
information, such as those of Section 1.5.2 can be seen as a way of mathematically
encoding sensible intuitive concepts.

Perhaps the most important question for the future of HMMs, then, is whether
increasingly sophisticated HMM modeling, training, and decoding procedures can
continue to maintain this conceptual simplicity while still allowing the use of ever
more and more complex forms of sequence data. Can we incorporate a useful
understanding of the 3-dimensional geometry of molecules into HMM analysis?
Can we usefully train HMMs to understand the evolutionary relationships among
thousands of sequences? Can we annotate features and subfeatures of biological
sequences that are allowed to overlap each other in complex ways, and where a
feature is not simply a contiguous segment of DNA? These questions, and numerous
others, will be the subject of the research of the next many years in HMM analysis.
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