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Abstrakt
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Navrhli sme algoritmus na zarovnávanie sekvencií s opakujúcimi sa motívmi.
Práca je motivovaná biologickými štúdiami o zinc finger proteínoch, dôležitej
rodine regulačných proteínov. Evolučné procesy spôsobili, že tieto sekvencie ob-
sahujú rôzne počty zinc finger motívov (krátych podslov so špecifickými sym-
bolmi na každej pozícii). Náš algoritmus využíva dva typy skrytých markov-
ovských modelov (HMM): párové HMM a profilové HMM. Dynamické programo-
vanie, ktorým počítame zarovnania, je založené na známom Viterbiho algoritme.
Model sme vyhodnocovali na reálnych dátach a dosiahli sme lepšie výsledky ako
existujúce riešenie.

Kl’účové slová: zarovnanie sekvencií, skrytý markovovský model, dynamické
programovanie.
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We present a method for alignment of two sequences containing repetitive mo-
tifs. This is motivated by a biological studies of proteins with zinc finger domain,
an important group of regulatory proteins. Due to their evolutionary history, se-
quences of these proteins contain a variable number of different zinc fingers
(short subsequences with specific symbols at each position). Our algorithm uti-
lizes two types of hidden Markov models (HMM) for accomplishment of the task:
pair HMMs and profile HMMs. The dynamic programming algorithm that com-
putes the motif alignments is based on the well known Viterbi algorithm. We
evaluated our model on real world sequences of zinc finger proteins and were
able to outperform existing solution.

Keywords: sequence alignment, hidden Markov model, dynamic programming.
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Introduction

In God we trust; all others must
bring data.

W. Edwards Deming

In this thesis we propose a new algorithm for pairwise alignment of se-
quences containing repetitive motifs. Pairwise sequence alignment is among the
most intensively studied problems in computational biology. There are numer-
ous variations of the general alignment problem, each with different biological
application, but the main course stays the same: for a symbol in one sequence,
find its counterpart in the other sequence.

The specific version of the general problem addressed in this thesis is mainly
motivated by proteins with zinc finger domain, a large group of regulatory pro-
teins. Due to their evolutionary history, sequences of these proteins contain
variable number of different zinc fingers, short subsequences with specific sym-
bols at each position. Zinc fingers are tandemly repeated at the end of zinc finger
proteins, forming the so called zinc finger arrays.

The repeat region is the most interesting feature of zinc finger proteins from
computational point of view. There is a great variability in the number of fingers.
Some proteins contain just few of them while other may have up to 30 or 50.
Some positions in the finger motif are more conserved than other.

Traditional sequence alignment tools generally do not perform well when
aligning zinc finger arrays with different number of zinc fingers. For that rea-
son, recent studies of zinc finger evolutionary history excluded zinc finger arrays
from comparative analysis, which limits the soundness of their conclusions. Re-
liable alignment could provide a new insights into processes that have driven
the evolution of zinc finger proteins.

A common and popular way of modelling features of biological sequences in
computer science terms is via probabilistic models called Hidden Markov models
(HMM). HMMs have states and transitions between them, just like determin-
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INTRODUCTION 2

istic finite automata. Additionally, HMMs define probability distributions on
transitions and symbol emissions.

Our algorithm utilizes two types of hidden Markov models for accomplish-
ment of the task: pair HMMs and profile HMMs. Pair HMMs assign a probabil-
ity to alignment of two sequences. Traditional sequence alignment methods can
be viewed as a search for highest probability alignment in a pair HMM. Profile
HMMs describe properties of sequence motif (such as zinc finger domains), char-
acterizing symbol distributions at individual positions of the motif. In our model,
the two HMMs are combined, resulting in a pairwise alignment algorithm with
position specific scoring scheme.

The thesis consists of three chapters. In the first chapter, we describe the
repetitive sequence alignment problem, sequence motifs, and MotifAligner, the
only existing solution to the problem that we are aware of. The second chapter
contains an elaborate description of our algorithm. The third chapter shows the
practical side of our solution and evaluates its performance on real world data.



Chapter 1

Alignment of Sequences with
Repetitive Motifs

This chapter introduces the concepts of a sequence motif, general alignment
problem and difficulties that arise in repetitive sequence alignment. At the end
of the chapter we present an existing method that served as a role model for
some aspects of our own work.

In bioinformatics, a sequence is simply a word over some alphabet. The fun-
damental bioinformatic alphabets are the DNA alphabet, ΣDNA = {A,C,G,T},
the RNA alphabet, ΣRNA = {A,C,G,U} (both with symbols called nucleotides, or
bases) and the amino acid alphabet (sometimes called the protein alphabet),

ΣAA = {A,C,D,E,F,G,H, I,K,L,M,N,P,Q,R, S,T,V,W,Y}. (1.1)

Amino acids form long chains from which the proteins are built. The process
of building a protein starts with transcription of genetic information encoded in
chromosomes (long DNA molecules in cell nucleus, or simply, words over DNA
alphabet). The DNA string is transcribed into a specific type of RNA molecule
(a word over RNA alphabet). Later, the RNA molecule is processed, three nu-
cleotides at a time, and each triplet is translated into amino acid chain according
to the genetic code. Readers eager for biological details should read a modern
molecular biology textbook, for example [Lodish et al., 2007] or [Russell, 2010].

The genetic code assigns one amino acid to each of the 64 possible RNA
triplets. From formal language point of view, this complex molecular process
is just an application of homomorphisms h1 : Σ∗DNA → Σ∗RNA and h2 : Σ∗DNA → Σ∗AA,
which can be composed to g : Σ∗DNA → Σ∗AA.

3



CHAPTER 1. ALIGNMENT OF SEQUENCES WITH REPETITIVE MOTIFS 4

1.1 Sequence Alignment

Over the time, DNA molecules in cells mix, mutate, and get repaired. Sometimes
the alteration causes organism death, sometimes it is advantageous and it is
passed onto next generations. Multiple modifications accumulate and can lead
to new strains, breeds or, ultimately, species. A lot of effort in molecular biology,
genetics, evolutionary biology, and taxonomy is dedicated to trace these changes.

In the world of biological sequences, this means that there are relationships
between individual sequences. Biologists can characterize them with their own
dictionary, stemming out of the current comprehension of the nature. Math-
ematicians, statisticians, and computer scientists, on the other hand, need to
express these relations in terms they understand. One of the most useful ways
of revealing and quantifying these relationships is sequence alignment (chapter
2 in [Durbin et al., 1998]).

Definition 1 (Global pairwise sequence alignment). For a pair of sequences
x = x1x2 . . . xn, y = y1y2 . . . ym over some alphabet Σ, we define global pair-
wise sequence alignment to be a pair of sequences x′ and y′ over the alphabet
Σ′ = Σ ∪ {−} iff:

(i) for all 0 ≤ i ≤ n, 0 ≤ j ≤ m there exists ui, vj ∈ {−}∗ such that

x′ = u0x1u1x2u2 . . . xnun, y′ = v0y1v1y2v2 . . . ymvm, (1.2)

(ii) x′ and y′ have the same length, |x′| = |y′| = `,

(iii) for all 0 ≤ i ≤ ` : x′i ∈ Σ ∨ y′i ∈ Σ.

Non-empty ui and vj are called gaps. A match in a sequence alignment occurs
when two related symbols are aligned (this often means that the symbols are
identical). Conversely, a mismatch is an aligned pair of unrelated symbols.

In other words, we just insert gap symbols into sequences so that when the
resulting sequences are stacked one on to the other, related symbols are in the
same column (Fig. 1.1). Notice that (iii) ensures that for every aligned symbol
pair, at most one symbol is−. We can define local pairwise alignment of x and
y as a global pairwise sequence alignment of x′′ and y′′, where x′′ is a subsequence
(substring) of x and y′′ is a subsequence of y. The definitions of global and local
multiple sequence alignments are analogous, the only difference is that it
involves more than two sequences (Fig. 1.2).
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WEAREKNIG---HTSOFTHEROUNDTABLE
WE--DAN--CEWHEN--EVERWEAREABLE

Figure 1.1: Example of global pairwise alignment (first two verses of The Monty
Python Camelot Song).

ZNF626_4799/12 YKC--EECGKAF-NQSSILTTHERIILERN-
ZNF727_4861/2 YKC--EECGKDC--RLSDFTIQKRIHTADRS
ZXDB_644/5 YQCAFSGCKKTF-ITVSALFSHNRAHFREQE
LLNL1236_4814/2 SMC--PECSKTSATDSSCLLMHQRSHTGKRP
ZNF23_141/15 FQC--KECGKAF-HVNAHLIRHQRSHTGEKP
ZNF721_3714/29 YKC--KECGKAF-KSYYSILKHKRTHTRGMS
ZFP2_3745/11 YEC--NECGKAF-SQSAYLIEHQRIHTGEKP
consensus y C eCgK f l h R ht

Figure 1.2: Example of multiple alignment (sequences of human zinc fingers,
see Section 1.2.1). Columns with similarity ≥ 50% are highlighted.

In general, sequence alignments define functional, structural, or evolution-
ary relationships, and the right alignments are not necessarily alignments with
the highest number of symbol identities. In order to discriminate between good
and bad alignments, we use task specific scoring functions. We can define the
general sequence alignment problem as follows.

Definition 2 (General sequence alignment problem). Given input sequences ~x =

x1, . . . , xn and a scoring function f : Σ′× . . .×Σ′ → R, find the optimal alignment
~x∗ such that

~x∗ = arg max
~x′

f(~x′). (1.3)

It is clear that enumerating all alignments and keeping only the highest scor-
ing alignment is not the most effective solution to this problem. Therefore, we
will limit our interest to scoring functions for which effective algorithms exist.

1.1.1 Standard Approach to Alignment

Scoring functions used in practice are usually based on the substitution matri-
ces. A substitution matrix S is a |Σ| × |Σ| matrix indexed by symbols of Σ,
where for each a, b ∈ Σ the S[a, b] is the score of a being aligned with b. Align-
ing symbol to a gap yields the gap penalty, usually a negative constant −g. The
score of an alignment is just the sum of the scores of individual columns in the
alignment:

f(x′, y′) =
l∑

i=1

S ′[x′i, y
′
i], (1.4)
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where |x′| = |y′| = ` and

S ′[x′i, y
′
i] =

−g if x′i or y′i is a gap,

S[x′i, y
′
i] otherwise.

(1.5)

The BLOSUM matrices are among the most popular scoring matrices used to-
day for protein sequence alignment [Henikoff and Henikoff, 1992], [Eddy, 2004].
Each value of S[a, b] in the BLOSUM matrix is normalized and rounded log-odds
ratio of the likelihood that a and b are related to the likelihood that they are
unrelated. More formally, consider sequences x and y, both of the same length
n, aligned without gaps. Assume that they are not related and were generated
from some random model R with symbols drawn independently from some back-
ground probability distribution q. Then the probability of the two is just the
product of the background probabilities:

P (x, y | R) =
n∏

i=1

q(xi)
n∏

j=1

q(yj). (1.6)

However, if we assume that every aligned pair a, b has been independently de-
rived from some unknown common ancestor c with some probability p(a, b) then
the probability of the whole alignment is:

P (x, y | C) =
n∏

i=1

p(xi, yi). (1.7)

Relating these two models we get:

P (x, y | C)

P (x, y | R)
=

n∏
i=1

p(xi, yi)

n∏
i=1

q(xi)
n∏

j=1

q(yj)
=

n∏
i=1

p(xi, yi)

q(xi)q(yi)
. (1.8)

By taking the logarithm of (1.8), we get a sum instead of the multiplication:

log

n∏
i=1

p(xi, yi)

n∏
i=1

q(xi)
n∏

j=1

q(yj)
=

n∑
i=1

S[xi, yi], (1.9)

where S is the resulting substitution matrix (values are usually scaled and



CHAPTER 1. ALIGNMENT OF SEQUENCES WITH REPETITIVE MOTIFS 7

rounded so that the matrix contains only integers),

S[a, b] =
1

λ
log

p(a, b)

q(a)q(b)
. (1.10)

The question remains, what are the right distributions q and p. In case of BLO-
SUM matrices, these are derived from the BLOCKS database [Henikoff and
Henikoff, 1991] of trusted ungapped multiple sequence alignments. Since our
expectations about sequence similarity are different when aligning sequences
that diverged long time ago, compared to sequences with recent common ances-
try, one matrix is not enough. Therefore, BLOSUM matrices come with another
parameter, the clustering level `. Two sequences from the BLOCKS database
are in the same cluster, if the percentage of identical symbols in their alignment
is greater than `%. The relative frequencies f`(a, b) of a and b being aligned are
counted, with each cluster weighted as a single sequence. Then, the two proba-
bility distributions are calculated simply as

p`(a, b) =
f`(a, b)∑

a

∑
b

f`(a, b)
, q`(a) =

∑
b

p`(a, b). (1.11)

The wide variety of BLOSUM matrices uses clustering levels from the range
of 30 to 90 percent. Default choice in most sequence alignment programs is
BLOSUM62, with clustering level ` = 62%.

Scoring functions based on substitution matrices, such as f in (1.4), allow
an effective dynamic programming algorithm for finding the highest scoring
global alignment, called Needleman-Wunsch algorithm [Needleman and Wun-
sch, 1970]. The variant used most frequently in practice – alignment with affine
gap scores – uses two parameters for scoring gaps (section 2.4 of [Durbin et al.,
1998]), g and e. The score of a gap of length k is γ(k) = −g − (k − 1)e. When
e < g, the penalty of γ(k) is smaller than the linear penalty −gk for equally sized
gap from (1.4). As a consequence, this method favours smaller number of longer
gaps to higher number of shorter gaps. Biological explanation supporting this is
that mutations resulting in gaps are rare and usually affect several positions at
a time.

Algorithm 1 (Needleman-Wunsch with affine gap penalties). The dynamic pro-
gramming algorithm solves the following problem: given sequences x = x1 . . . xn

and y = y1 . . . ym, substitution matrix S, and affine gap parameters g and e, find
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the global alignment (x′, y′) maximizing the score defined as

s(x′, y′) =

|(x′,y′)|∑
i=1


S[x′i, y

′
i] when x′i and y′i are aligned,

−g when x′i = - or y′i = - and x′i−1 and y′i−1 are aligned,

−e otherwise.
(1.12)

The first sum goes over all maximal continuous ungapped sections (x′b, y
′
b) in the

alignment (with |(x′b, y′b)| denoting the length of the block) and the second sum
goes over maximal continuous gaps in the alignment, where the gap of length k

is penalised by γ(k) = −g − (k − 1)e.
The value of an optimal solution can be described in terms of values of partial

solutions. Let si,j be the optimal solution for some prefixes of the input sequences
x1 . . . xi, y1 . . . yj. Then, assuming that xi+1 and yj+1 are aligned, the value of the
optimal solution for prefixes x1 . . . xi+1, y1 . . . yj+1 is si,j + S[xi, xj]. However, if
we assume xi+1 to be aligned to a gap then the value of the optimal solution for
prefixes x1 . . . xi+1, y1 . . . yj is either si,j + g (if xi is aligned to yj and a new gap
begins) or si,j + e (if xi is aligned to gap too and the gap simply continues, note
that we don’t change the index of y prefix). Analogously, if we assume yi+1 to be
aligned to a gap, the value of the optimal solution for prefixes x1 . . . xi, y1 . . . yj+1

is either si,j + g (if xi is aligned to yj) or si,j + e (if yj is aligned to gap).
We can derive the exact pseudocode for the algorithm from the explanation in

the previous paragraph. The algorithm fills 3× (n+ 1)× (m+ 1) matrix NW. For
each i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, the values of cells NW[k, i, j] have the following
meaning:

1. NW[1, i, j] stores the value of the optimal solution for the prefixes x1 . . . xi,
y1 . . . yj given that xi is aligned with yj;

2. NW[2, i, j] stores the value of the optimal solution for the prefixes x1 . . . xi,
y1 . . . yj given that xi is aligned to a gap;

3. NW[3, i, j] stores the value of the optimal solution for the prefixes x1 . . . xi,
y1 . . . yj given that yj is aligned to a gap.

Let us skip the base cases (we will define them soon) and assume the general
case for prefixes x1 . . . xi, y1 . . . yj, where 1 ≤ i ≤ n, 1 ≤ j ≤ m. Assuming that
all cells NW[k, i′, j′], where k ∈ {1, 2, 3}, i′ < i,j′ < j, are filled already and by the
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explanation above we get that the values of NW[_, i, j] are:

NW[1, i, j] = max


NW[1, i− 1, j − 1] + S[xi, yj],

NW[2, i− 1, j − 1] + S[xi, yj],

NW[3, i− 1, j − 1] + S[xi, yj];

(1.13)

NW[2, i, j] = max

NW[1, i− 1, j]− g,

NW[2, i− 1, j]− e;
(1.14)

NW[3, i, j] = max

NW[1, i, j − 1]− g,

NW[3, i, j − 1]− e.
(1.15)

Now consider the base cases. To make the reasoning easier, we can implicitly
think of a special symbol $ at the beginning of both input sequences, which is by
definition always aligned only to itself with zero score. Then the initial scores in
corners of the submatrices are:

NW[1, 0, 0] = 0, (1.16)

NW[2, 0, 0] = NW[3, 0, 0] = −∞. (1.17)

Equation 1.16 represents the implicit alignment of $s, with zero score. The other
corner cells do not have meaningful interpretations and are set to −∞ to make
sure, we will avoid using them in the recurrence. Next, we have to set the rest of
the first row and the first column in each submatrix NW[k, _, _] so that the gaps
are also possible at the beginning of the alignment:

NW[2, i, 0] = −g − (i− 1)e, 1 ≤ i ≤ n (1.18)

NW[1, i, 0] = NW[3, i, 0] = −∞, 1 ≤ i ≤ n (1.19)

NW[3, 0, j] = −g − (j − 1)e, 1 ≤ j ≤ m (1.20)

NW[1, 0, j] = NW[2, 0, j] = −∞. 1 ≤ j ≤ m (1.21)

Consider the value of NW[2, 1, 0] according to (1.18). The interpretation is that
x1 is aligned to a gap, and since we implicitly assume aligned $s in the previous
column, the score equals to the gap opening penalty −g. In general, the value of
NW[2, i, 0] is just the value of the whole prefix x1 . . . xi being aligned to a gap of
length i and since there is just one way how to do it, it is also the value of the
optimal solution. On the other hand, it is not allowed to align the implicit $ in y

with neither xi nor gap, so all NW[1, i, 0] and NW[3, i, 0] have to be −∞ and (1.19)
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is valid. Analogous arguments hold for the y sequence and equations (1.20) and
(1.21).

Now, we can verify that after the initialisation and applying the recurrences
in a nested loop for i := 1 to n; for j := 1 to m; the value of an optimal solution
lies in one of the "bottom right" cells and its value is:

s(x′, y′) = max{NW[1, n,m],NW[2, n,m],NW[3, n,m]}. (1.22)

It remains to show, how we can reconstruct the optimal solution x′, y′. During
the recurrent of some cell NW[k, i, j], we store a pointer to the cell from which
the value of NW[k, i, j] was derived (in the initialisation we consider NW[2, i, 0]

and NW[3, 0, j] to be derived from NW[2, i− 1, 0] and NW[3, 0, j − 1], respectively,
for i, j > 2; and both NW[2, 1, 0] and NW[3, 0, 1] to be derived from NW[1, 0, 0]).
Then, at the end, we pick up the pointer from one of the bottom right cells in
(1.22) and follow the pointers back to the initial cell NW[1, 0, 0]. The resulting
alignment is built back-to-front during this traceback procedure, starting from
the empty alignment. If the cell NW[k, i, j] points to a cell NW[k′, i − 1, j − 1],
we add aligned pair (xi, yj) to the front of the currently obtained alignment; if it
points to a cell NW[k′, i − 1, j], we prefix the current partial alignment with the
aligned pair (xi,−); and finally, if it points to a cell NW[k′, i, j − 1] we prefix the
alignment with (−, yj).

The time and space complexity of this algorithm is O(nm) because the cal-
culations in (1.16)-(1.22) take only a constant time and space, and there is just
O(nm) of cells to compute.

A local alignment counterpart algorithm to the Needleman-Wunsch algo-
rithm is the Smith-Waterman algorithm [Smith and Waterman, 1981], [Gotoh,
1982]. The main difference lies in the initialisation step, where the cells at the
borders of the matrix (equations (1.18) and (1.20)) are initialised to zero (so the
alignment might start anywhere in the input sequences); and in the traceback,
where the lookup for cell with the maximal value searches the whole matrix and
the traceback continues until reaches the top or the left edge.

One of the most widely used tools for local pairwise sequence alignment is
the BLAST heuristics [Altschul et al., 1990], [Altschul et al., 1997]. Its popular-
ity stems mostly from its speed: direct implementations of Needleman-Wunsch,
Smith-Waterman or any other exact algorithm cannot be used to build align-
ments on the scale of whole genomes (the human genome is approximately 3
billion bases long).
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1.1.2 Probabilistic Approach to Alignment

The sequence alignment problem can be solved in the probabilistic fashion, too.
In this section, we will introduce hidden Markov models [Rabiner, 1989], a ver-
satile tools in probabilistic modelling. We will show, that the algorithms for
sequence alignment can be viewed as a special kind of hidden Markov models.

Definition 3 (Hidden Markov model (HMM)). Finite non-empty set of states K,
alphabet Σ and functions π : K → [0, 1], t : K ×K → [0, 1], e : K × Σ → [0, 1] are
together called hidden Markov model iff following conditions hold:

(i) π is a probability distribution over K,
∑
k∈K

π(k) = 1,

(ii) t is a conditional probability function P (` | k), ∀k ∈ K :
∑
`∈K

t(k, `) = 1,

(iii) e is a conditional probability function P (a | k), ∀k ∈ K :
∑
a∈Σ

e(k, a) = 1.

The function t is called the transition function and e is called the emission
function. Using the graph theory language, states are sometimes referred to as
nodes and nonzero transitions as edges.

Hidden Markov models are generative models. We can illustrate the genera-
tive process on the random printer example. Imagine a printer with unlimited
supply of paper and ink and one button. The printer has some hidden set of
states and is capable of printing symbols from certain alphabet. When you plug
the printer into the electricity network, it sets itself to some state k chosen ac-
cording to the probability distribution π. Every time you press the button, the
printer prints a symbol a, with probability e(k, a) and then changes its internal
state to some `, with probability t(k, `) (k denotes the current state). Pressing
the button multiple times prints whole word. As an external viewer, you don’t
know the exact sequence of states, which is hidden, but you can observe the se-
quence of printed symbols. An important feature of hidden Markov models is the
Markov property that emissions and transitions both depend only on the current
state.

A joint probability of emitting a sequence x = x1 . . . xn along the state path
s = s1 . . . sn in a given HMM is

P (x, s) = π(s1)e(s1, x1)
n∏

i=2

t(si−1, si)e(si, xi). (1.23)
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By mathematical induction it can be shown, that for any positive integer n

hidden Markov models define a probabilistic distribution over the set of all se-
quences and state paths of length n:∑

x∈Σn,s∈Kn

P (x, s) = 1. (1.24)

Hidden Markov models are especially handy for performing probabilistic in-
ference. One well known inference algorithm is the Viterbi algorithm which for
given input sequence x computes the state path s∗ which maximizes the joint
probability P (x, s∗):

s∗ = arg max
s
P (x, s) (1.25)

Algorithm 2 (Viterbi algorithm for general HMM). Viterbi algorithm is a dy-
namic programming algorithm. Let V[`, i] be the probability of the most proba-
ble state path of length i for some prefix x1 . . . xi ending in state `. By definition,
V[`, i] is a product of the emission of xi in state ` and a transition t(k, `) for
some state k and a joint probability of some state path ending in ` and the pre-
fix x1 . . . xi−1. Since V[`, i] is the probability of the most probable state path for
x1 . . . xi, we maximize the product over all k ∈ K to get the value of V[`, i]. Fur-
thermore, the path for prefix x1 . . . xi−1 ending in ` has to be the most probable
path for x1 . . . xi−1 ending in `. Thus, we can state the dynamic programming
relation for V[`, i]:

V[`, i] = e(`, xi) max
`
{t(k, `)V[k, i− 1]}. (1.26)

After filling the whole |K| × n matrix V columnwise, the probability of the most
probable state path for sequence x is the maximal value in the last column,
max

k
{V[k, n]}.

We skip the detailed description of the general Viterbi algorithm (which can
be found in the Chapter 3 of [Durbin et al., 1998]) and focus on the variant on
specific type of HMM useful for sequence alignment, the pair HMM (Chapter 4 of
[Durbin et al., 1998], Figure 1.3). Pair HMMs emit pairs of symbols – essentially
a sequence alignment – and can be used to solve the sequence alignment problem
(Definition 2).

Definition 4 (Pair Hidden Markov Model for Global Alignment). The alpha-
bet used by pair HMM is Σ = {

(
a
b

)
,
(
a
−

)
,
(−
b

)
| a, b ∈ Σ′} where Σ′ is the al-

phabet of sequences we want to align. The set of states of a pair HMM is
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Figure 1.3: A pair HMM for global alignment. Squares indicate silent states.
Note that the sum of parameters on the outgoing edges for each state (except E)
is one.

K = {B,M,X, Y,E}. B and E have special meaning – B is the initial (begin)
state, i.e. π(B) = 1 and E is the final (end) state, i.e. ∀k ∈ K : t(B, k) = 0.
By definition, every complete state path in the pair HMM has to end in the E
state. Both B and E are silent, which means they do not emit any symbols :
∀a ∈ Σ : e(B, a) = e(E, a) = 0. State M (match) represents a gapless column:
∀
(
a
−

)
,
(−
b

)
∈ Σ : e(M,

(
a
−

)
) = e(M,

(−
b

)
) = 0,∀a, b ∈ Σ′ : e(M,

(
a
b

)
) = p(a, b). Both

X and Y , (insert in y, insert in x, respectively) represent a column containing
a gap symbol in corresponding input sequence: ∀

(
a
−

)
,
(−
a

)
∈ Σ : e(X,

(
a
−

)
) =

e(Y,
(−
a

)
) = q(a), ∀a, b ∈ Σ′ : e(M,

(
a
b

)
) = e(X,

(−
b

)
) = e(Y,

(
a
−

)
) = 0. Transitions

are defined in terms of parameters δ, ε, τ . δ is the probability of opening a gap,
so t(B,X) = t(B, Y ) = t(M,X) = t(M,Y ) = δ; ε is the probability of extending a
gap: t(X,X) = t(Y, Y ) = ε and τ is the probability of ending the alignment, i.e.
the transitions to the E state: for each k ∈ K \ {E}, t(k,E) = τ . The rest of tran-
sition probabilities is defined with regard to the condition (ii) from the Definition
3, namely t(X,M) = t(Y,M) = 1− ε− τ , t(B,M) = t(M,M) = 1− 2δ − τ . The full
model is shown in Figure 1.3. Note that transitions and emissions for the X and
Y states are the same: we want to model sequence alignments regardless of the
sequence input order.

We can solve the sequence alignment problem with the Viterbi algorithm
on pair HMMs. The score of an alignment according to a pair HMM is naturally
the joint probability of the input sequences and the state path which defines this
alignment (there is a 1-to-1 correspondence between alignments and state paths
in pair HMM – for each column of the alignment, the absence or presence and
the position of a gap symbol unambiguously identifies the state which emitted
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the column). Since there are two input sequences in the alignment problem, the
Viterbi matrix V must have an extra dimension. Apart from that, the recurrence
relations for pair HMM matrix are basically the same like the equation (1.26).

Algorithm 3 (Viterbi algorithm in pair HMM). Once again we solve the problem
of the highest scoring alignment, this time in terms of probabilistic model. Given
sequences x = x1 . . . xn, y = y1 . . . yn and fully parametrized pair HMM, we want
to find the most probable state path in the pair model, which emits x and y:

s∗ = arg max
s
Ppair(x, y, s). (1.27)

Let V[`, i, j] be the probability of the most probable state path for prefixes x1 . . . xi,
y1 . . . yj ending in state `. Just like in the general case (Algorithm 2), it can be
written as the product of the emission probability in ` and the transition proba-
bility from some predecessor k to ` and the probability of certain path ending in
`. From the alignment point of view, there are again three configurations:

1. V[M, i, j] is the probability of the most probable state path for the prefixes
x1 . . . xi, y1 . . . yj given that xi is aligned with yj;

2. V[X, i, j] is the probability of the most probable state path for the prefixes
x1 . . . xi, y1 . . . yj given that xi is aligned to a gap;

3. V[Y, i, j] is the probability of the most probable state path for the prefixes
x1 . . . xi, y1 . . . yj given that yj is aligned to a gap.

By definition, we have to start in the B state. However, the transition probabil-
ities are the same for B and M , so we can make an exception and replace the B
state by the M state, which simplifies other relations:

V[M, 0, 0] = 1, (1.28)

V[X, 0, 0] = V[Y, 0, 0] = V[E, 0, 0] = 0. (1.29)
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To allow gaps at the beginning, relations analogous to (1.18)-(1.21) are used:

V[X, i, 0] = δεi−1

i∏
i′=1

q(x′i), ∀i, 1 ≤ i ≤ n, (1.30)

V[M, i, 0] = V[Y, i, 0](xi) = V[E, i, 0] = 0, ∀i, 1 ≤ i ≤ n, (1.31)

V[Y, 0, j] = δεj−1

j∏
j′=1

q(y′j), ∀j, 1 ≤ j ≤ m, (1.32)

V[M, 0, j] = V[X, 0, j] = V[E, 0, j], ∀j, 1 ≤ j ≤ m. (1.33)

Combining ideas from algorithms 1 and 2, we get the following recurrence rela-
tions for all 1 ≤ i ≤ n, 1 ≤ j ≤ m:

V[M, i, j] = p(xi, yj) max


(1− 2δ − τ) · V[M, i− 1, j − 1],

(1− ε− τ) · V[X, i− 1, j − 1],

(1− ε− τ) · V[Y, i− 1, j − 1].

(1.34)

V[X, i, j] = q(xi) max

δ · V[M, i− 1, j],

ε · V[X, i− 1, j].
(1.35)

V[Y, i, j] = q(yj) max

δ · V[M, i, j − 1],

ε · V[Y, i, j − 1].
(1.36)

We can fill the entire matrix V in a nested loop for i := 1 to n; for j := 1 to m;.
By definition, every complete pair HMM state path ends in E, this transition
finalizes the computation step of the dynamic programming:

max
s
Ppair(x, y, s) = τ max


V[M,n,m],

V[X,n,m],

V[Y, n,m].

(1.37)

To reconstruct the optimal alignment, we keep pointers and perform the same
traceback procedure like in the Needleman-Wunsch algorithm (Algorithm 1).
Traceback starts in the maximal cell in (1.37). Both time and space complexities
of this algorithm are O(nm) again.

Similarity of this algorithm and the Needleman-Wunsch algorithm is evi-
dent. It is possible to derive Algorithm 3 in terms of log-odds scores, with the
recurrent equations of Algorithm 1 and Algorithm 3 being identical (Chapter 4
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of [Durbin et al., 1998]).
Some advantages of probabilistic approach over the standard approach are

the ability to answer various quantitative questions about sequences and the
ability of plugging the probabilistic model into another probabilistic model di-
rectly – we use of this in our model.

1.2 Sequence Motifs

We have already described the problem of sequence alignment, so now is the
time to describe sequence motifs. In general, motifs are used to identify certain
fragments of biological sequences with specific features stemming from the se-
quences themselves. TATAAA is a an example of short motif called TATA box
which serves as a guide for complex molecular machinery and is usually found
25-35 nucleotides ahead of transcription start site of many genes (section 7.3
in [Lodish et al., 2007]).

At first, we will give a brief overview of zinc finger protein domain, which has
an easily recognizable motif which usually occurs repeated many times in a row
and served as a main motivation for this work. Then we will introduce profile
hidden Markov models, a variant of HMMs suitable for motif modelling.

1.2.1 Zinc-fingers: Structure, Function, Features

Zinc finger domain is a relatively small stretch of amino acids contained in cer-
tain type of proteins called transcription factors. The term zinc finger (coined
by [Miller et al., 1985]) is derived from the folding scheme of the domain (Figure
1.4). The purpose of a zinc finger domain is to bind DNA at specific places. We
will focus our attention to the Krüppel-type C2H2 zinc finger subfamily (abbre-
viated KRAB-ZNF), which is the largest family of transcriptional regulators in
mammals [Urrutia, 2003].

Sequences of C2H2 zinc fingers are usually 28 amino acids long. The two
Cs (cysteins) and two Hs (histidines) which bind to the zinc-ion are the most
conserved amino acids in the domain. On the other hand, there are four highly
variable positions where virtually any amino acid can occur (Fig. 1.4, see Fig.
1.2 for an example of zinc finger alignment). Different amino acids at these
positions cause that the whole domain binds to different DNA regions.

Genes encoding KRAB-ZNF proteins have very interesting domain structure.
Usually, there is a region encoding one or more Krüppel-associated box domains
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Figure 1.4: The structure of a zinc-finger. Highly variable sites are marked with
black color. The most conserved amino acids are the four involved in binding the
zinc ion [Schmidt and Durrett, 2004].

KRAB A

KRAB A KRAB B

Figure 1.5: Domain organisation of typical KRAB-ZNF genes. Functional do-
mains are encoded in separate exons. The protein contains one or more KRAB
domains and an array of 3 to cca. 40 zinc fingers. [Urrutia, 2003]

(KRAB, [Bellefroid et al., 1991]) followed by a zinc finger region. The zinc finger
region encodes varying number of zinc finger domains. Sometimes two or more
zinc fingers are tandemly repeated, i.e. an exact copy occurs immediately after
the end of some zinc finger sequence (Fig. 1.5).

This structure is a result of a dynamic evolutionary history, full of gene du-
plications [Hamilton et al., 2006], segmental duplications [Nowick et al., 2010]
and many mutations which help to gain new functions for duplicated copies. It
appears that the more developed the organism is, the more zinc finger proteins
it has and furthermore, those proteins have more finger domains [Looman et al.,
2002]. However, the exact details are not yet known, mostly because of limited
availability of high quality genome assemblies for a high variety of organisms
and scientists have to be careful when drawing conclusions about zinc finger evo-
lution [Thomas and Emerson, 2009]. A lot of effort is dedicated to building and
maintaining comprehensive catalogues of (mostly human) KZNF genes [Huntley
et al., 2006], [Nowick et al., 2011], [Ding et al., 2009].

The repetitive nature of zinc finger protein sequences complicates bioinfor-
matic analyses, such as sequence alignments and computational phylogeny. Con-
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sequently, many studies limit their analyses and infer conclusions based only
on the more conserved parts of zinc finger genes, for example the KRAB do-
mains or sequences before the zinc finger region (e.g. [Schmidt and Durrett,
2004], [Hamilton et al., 2006]), or dispute the relevance of results of standard
methods applied to genes with high variance in the number of fingers [Thomas
and Emerson, 2009].

1.2.2 Sequence Motif Identification

The simplest definition of a motif is that it is a certain finite sequence of symbols
(with a specific symbol defined at each position). This is too restrictive and not
very useful, since a handful of similar sequences can share common properties.
Alternatively, we can define motif to be a set of sequences and call each member
of this set an motif instance. It might be even better to use regular expressions
or finite state machines, instead of simple sets, for denser representation.

We might say that motif occurs in the input sequence if it is a contiguous
subsequence of the input sequence. But biological sequences are subject to evo-
lution and change from time to time. So, we might allow some errors, number
of which might depend on the motif ’s length. The subsequence might not be
necessarily contiguous or we may omit some symbols from the motif. An impor-
tant issue is assessing expected number of occurrences of the motif in sequence
databases. Another common task is searching for top n best matches in a se-
quence database. A scoring function can be defined in order to rank the motif
occurrences.

Previous paragraphs point out that there is relatively high complexity even
in supposedly simple terms like the definition of motif and motif occurrence.
However, many aspects of sequence motifs can be successfully handled using
profile hidden Markov models (Chapter 5 in [Durbin et al., 1998]). Profile HMMs
allow mismatches, insertions and missing symbols to be present in the putative
motif sequences even with different probabilities at different positions.

Definition 5 (Profile Hidden Markov Model). Let L be a positive integer. The
set of states of a profile hidden Markov model is K = {Mi, Ii, Di | i ∈ [1, L]} ∪
{B, I0, E} and we say that the profile HMM has length L, or has L consensus
columns (Fig. 1.6). The begin stae B and end state E are sometimes referred
to as M0, ML+1, respectively. We call the Mi states match states, the Ii states
insert states and Di states delete states.

The only non-zero transition probabilities in the model are the following:
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Figure 1.6: Example of a profile HMM. Squares indicate silent states.
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ZFP2_3745/11 YEC--NECGKAF-SQSAYLIEHQRIHTGEKP
consensus y C eCgK f l h R ht

Figure 1.7: Multiple sequence from Figure 1.2

t(Mi,Mi+1), t(Mi, Ii), t(Mi, Di+1), t(Ii, Ii), t(Ii,Mi+1), for i ∈ [0, L] and t(Di, Di+1),
t(Di,Mi+1), for i ∈ [1, L]. All delete states as well as the begin and end states are
silent states and does not emit any symbols. Other states have their own specific
emission distributions, that may be different, particularly at different columns.

How can be profile HMMs useful? Consider the multiple sequence alignment
of seven zinc finger sequences from Figure 1.2 shown in Figure 1.7 again for
convenience. We will build a profile HMM that models this alignment. The total
length of the alignment is 31 columns. There are two contrasting column kinds:
columns 4, 5 and 13 contain a lot of gaps, while positions 1-3, 6-12 and 13-30
are gapless. In addition, columns 14 and 31 contain just one gap, and we will
treat them similarly like the gapless positions. Let’s focus to the contiguous al-
most gapless blocks 1-3, 6-12, 14-31. The total number of columns in the blocks
is 28, thus the length of the profile model will be 28. We can easily count the
relative frequencies of amino acids in columns of these blocks, for example, in
the column 2, the relative frequencies are f 2

K = 3/7, f 2
Q = 2/7, f 2

M = f 2
E = 1/7

and relative frequencies of other amino acids are zero. Those will correspond to
the emission probabilities in the respective match states. The transition proba-
bilities for match states will be t(Mi,Mi+1) = 1, t(Mi, Ii) = t(Mi, Di+1) = 0, if not
stated differently.

The two gap regions at columns 4-5 and 13 will be modelled by the insert
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states. The first gap occurs after the column modelled by the M3 state (3) and
before the column modelled by the M4 state (6), so it will correspond to the I3

state. The transition probabilities from the match state will be t(M3,M4) = 6/7

and t(M3, I3) = 1/7, following the ratio of gaps vs. non-gaps in the columns 4-5.
The probability of k repeated transitions from Ii to Ii itself follows the geometric
distribution with parameter t(Ii, Ii). Thus we will set t(Ii, Ii) so that the mean
of this distribution is the length of the gap region – 2 in this case (t(Ii,Mi+1) =

1 − t(Ii, Ii) to keep the model well defined). The emission probabilities in insert
states can be set to some background distributions, or we might use the relative
frequency approach again.

Finally, columns with small amount of gaps (14 and 31) will be modelled by
the delete states. The lone gap in the column 14 can be viewed as a transi-
tion from the match state M10 to delete state D11, therefore, t(M10, D11) = 1/7,
t(M10, I10) = 1/7, t(M10,M11) = 5/7. Although the second gap in the ZNF727-

_4861/2 sequence has length two, it is modelled as a two gaps of length one
by two states I10 and D11, because of the different number of gap symbols in
columns 13 and 14. And because the delete part of the gap has length 1 only,
t(D11,M12) = 1, t(D11, D12) = 0. Analogous transitions are set to model the gap
in the last column.

In general, given a multiple sequence alignment, the process outlined above
can be described in the following steps:

1. determine the length of the profile and choose columns to be represented
by the match states (consensus columns);

2. this assignment uniquely identifies the state path which has to be taken,
for each sequence in the alignment;

3. given the state paths, count how many times each transition is used and
set transition probabilities accordingly;

4. set the emission probabilities according to the relative frequencies of sym-
bols in their respective columns.

In fact this is the maximum likelihood estimation, i.e. given data D, it is the
assignment of parameters θ that maximizes P (D | θ). As with all ML estimators,
this is likely to overfit the data. To overcome this problem, various strategies
are used in practice, e.g. adding pseudocounts to each emission and transition
probability.
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Suppose that we are given a set M of sequences that are known to have some
unknown common traits and the task is to find other sequences with similar
traits in a large database. We have seen that profile HMMs are a probabilistic
representation of multiple sequence alignments. So, if we can acquire a trusted
multiple sequence alignment of sequences m ∈ M (e.g. manually curated by
experts), we can build a profile HMM. This model encodes basically the same
information as the alignment, but in a more compact form (the size of |S| can
be in hundreds in practice). Thanks to the probabilistic foundations of HMMs,
we can use this profile model to score other sequences. The score is probability
of the given sequence x in the profile model, Pprofile(x). This probability can be
computed with the Forward algorithm (Chapter 3 in [Durbin et al., 1998]), which
is basically the same algorithm as the Viterbi algorithm (Algorithm 2), where
instead of computing the maximum of certain set of values, we sum up all the
values together. So, we can score all sequences in the database and declare some
cutoff score that discriminates the similar sequences.

Apart from finding similar sequences, we can use profile HMM to perform a
kind of sequence annotation. In general, sequence annotation is a labelling of
particular sequence regions with some specific information. When speaking of
profiles, we want to know which positions in the given sequence match which
columns in the profile. This is equivalent to finding a state path along which the
sequence is emitted. In particular, we want to find the most probable state path,

s∗ = arg max
s
Pprofile(x, s), (1.38)

which can be found by Viterbi algorithm.

Algorithm 4 (Viterbi Algorithm for Profile HMM). For given sequence x =

x1 . . . xn, let V [M, j, i] be the probability of the most probable state path for prefix
x1 . . . xi ending in state Mj, analogously V [I, j, i] be the probability of the most
probable state path for prefix x1 . . . xi ending in state Ij and V [D, j, i] be the prob-
ability of the most probable state path for prefix x1 . . . xi ending in state Dj.

Assuming the begin state to be M0, we get that

V [M, 0, 0] = 1, (1.39)

V [s, i, 0] = 0, for all other states si. (1.40)

By the similar argument for the structure of the optimal solution like in the
pair HMM Viterbi variant (Algorithm 3) and the profile HMM topology, for each
i, 1 ≤ i ≤ n, j, 1 ≤ j ≤ L, k, 2 ≤ k ≤ L, the probabilities satisfy following
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recurrences:

V [M, j, i] = e(Mj, xi) max


t(Mj−1,Mj)V [M, j − 1, i− 1],

t(Ij−1,Mj)V [I, j − 1, i− 1],

t(Dj−1,Mj)V [D, j − 1, i− 1],

(1.41)

V [I, j, i] = e(Ij, xi) max

t(Mj, Ij)V [M, j, i− 1],

t(Ij, Ij)V [I, j, i− 1],
(1.42)

V [D, k, i] = max

t(Mk−1, Dj)V [M,k − 1, i],

t(Dk−1, Dj)V [D, k − 1, i].
(1.43)

Moreover, for each i, 1 ≤ i ≤ n,

V [I, 0, i] = e(I0, xi) max

t(M0, I0)V [M, 0, i− 1],

t(I0, I0)V [I, 0, i− 1],
(1.44)

V [D, 1, i] = t(M0, D1)V [M, 0, i]. (1.45)

Since all complete paths has to end in the end state ML+1, it follows that the
value of the optimal solution is V [M,L+ 1, n], which in turn is

V [M,L+ 1, n] = max


t(ML,ML+1)V [M,L, n],

t(IL,ML+1)V [I, L, n],

t(DL,ML+1)V [D,L, n],

(1.46)

The actual computation fills the dynamic programming 3×(L+1)×(n+1) matrix
first by starting with 1.39 and 1.40, then computes the boudary cases 1.44 and
1.45 in a loop for each i ← 1 . . . n. Then again loops through all i, 1 ≤ i ≤ n and
through all j, 1 ≤ j ≤ L and computes 1.41-1.43. Finally the value of the optimal
solution is found using 1.46 and the standard traceback procedure constructs
the optimal solution itself. The algorithm runs in O(Ln) time and memory.

The use of profile HMMs in modelling sequence motifs is one of the oldest
applications of hidden Markov models in computational biology [Eddy, 1996].
Today, mature tools utilizing these models exists, for example the well known
HMMER package [Eddy, 2009]. With HMMER, it is possible to search pro-
tein sequences against collections of profiles (to determine what motifs occur
in the given sequence) or to search for motif occurrences in a protein sequence
database. Other tools allow direct alignment of two profiles that may be dif-
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Figure 1.8: MotifAligner approach to motif sequence alignment

ferent (e.g. [Edgar and Sjolander, 2004], [Soding, 2005]), which is useful when
comparing motifs instead of plain sequences. Pfam [Punta et al., 2012], a pro-
tein family database, uses profile HMMs to categorize protein sequences and to
identify common features shared across the members of a family.

1.3 MotifAligner Approach to Motif Alignment

To obtain a high quality alignments even on sequences with highly variable
number of zinc finger motifs, [Nowick et al., 2011] developed a pairwise align-
ment tool called MotifAligner. To our knowledge, it is the only sequence align-
ment method designed specifically to align sequences with variable number of
repetitive motifs. Part of our own work was inspired by this algorithm.

MotifAligner solves the global pairwise sequence alignment problem (Defini-
tion 2). Let x = x1 . . . xn, y = y1 . . . ym be the input sequences over an alphabet Σ.
MotifAligner uses a profile HMM tool HMMER [Eddy, 2011] and finds all canon-
ical motif occurrences with E-value less than certain threshold c in both input
sequences (a canonical motif occurrence for a given profile HMM is a sequence
which has the same length as the number of columns of the profile HMM). Let
T = (t1, . . . , ta) and U = (u1, . . . , ub) be the sequences of all motif occurrences
found by HMMER in the original input sequences x and y, respectively. Using
some substitution matrix S on Σ, MotifAligner computes scores of all gapless
pairwise alignments of motifs tk, u` (Fig. 1.8), for all 1 ≤ k ≤ a, 1 ≤ ` ≤ b:

s[tk, u`] =
L∑
i=1

S[tki , u`i ]. (1.47)

Then it applies Needleman-Wunsch algorithm (Algorithm 1) to T and U , treat-
ing motifs as sequence symbols and using matrix s as the substitution ma-
trix. Let τ0, . . . τa, µ0, . . . µb, be sequences from Σ∗ (possibly empty) such that
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Figure 1.9: An example situation after the alignment of motif sequences T and
U from Figure 1.8 is computed. Solid lines indicate that alignment. Dashed
lines indicate regular global alignment between the subregions. Dotted lines
indicate, that all global alignments of subregions are computed and the one with
the maximal score is chosen to the final alignment.

x = τ0t1τ1 . . . taτa, y = µ0u1µ1 . . . ubµb. The result of the Needleman-Wunsch com-
putation is a global alignment of the motifs occurrences, t1, . . . , ta, u1, . . . , ub. The
only parts of x and y not yet aligned are τis and µjs. The paper [Nowick et al.,
2011] does not specify, how to deal with these regions.

Quite reasonable finalisation is to go through the alignment of T and U and
whenever there are pairs ti, ti+1 and uj, uj+1 such that ti is aligned to uj and ti+1

is aligned to uj+1, compute a global alignment of τi and µj using the scoring
matrix S. Align the corner cases τ0 to µ0 and τa to µb as well. The only un-
aligned regions remaining involve gaps in the T and U alignment. Consider the
situation on the figure 1.9. The solid and dashed lines indicate parts that are
aligned already. To align the rest, one can compute all three global alignments
for (τ1, µ1), (τ2, µ1), (τ3, µ1) and choose the one with the maximal score. Finally,
the alignment of the input sequences x and y can be built by concatenating the
partial alignments.



Chapter 2

Profile-Profile-Pair Approach

This chapter describes our approach to alignment of sequences with repetitive
motifs. We call our method Profile-Profile-Pair, because it uses a combination of
two copies of a profile HMM and one pair HMM.

The main drawback of the MotifAligner approach is that it does not take ad-
vantage of available positional information. For example the zinc-finger motif
(Fig. 1.4). There are several high conserved positions, i.e. the four amino-acids
binding the zinc ion. On the other hand, the four amino-acids involved in DNA
binding are highly variable. Thus the four conserved positions should be used to
anchor the sequence alignment while the highly variable positions – when cor-
rectly aligned – should indicate whether the two zinc-fingers under comparison
are distant or related.

We would like to have a method that takes this positional information into
account when scoring the alignments. Since we can identify all motif occurrences
in the input sequences using profile HMMs, our prior beliefs about sequence
similarity differ from the usual uninformed setting of the sequence alignment.
We expect highly conserved positions to be identical in both input sequences,
while it is likely that the symbols at highly variable positions are different. Of
course, most positions would fall somewhere between the two extremes, with
some symbols occurring with high probabilities while others not occurring at all
(see e.g. fist position of the zinc finger motif on Fig. 1.4). To sum up, it seems
that using position specific scores, instead of uniform scoring function for each
column, can lead to better results.

Profile HMMs are designed to handle positional information probabilistically.
It is natural to include them in such positional-specific scoring scheme. However,
profile HMMs are restricted to processing single sequence at a time, so they are
not directly applicable to pairwise sequence alignment.

25
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Here we will describe a hybrid method. The overall scheme is similar to
MotifAligner: in order to obtain an alignment of sequences with repetitive motif
occurrences, we compute all pairwise individual motif alignments. Then we use
a global alignment algorithm operating on motifs to get the resulting alignment.
The main difference lies in the individual motif alignment step, where we use
a novel approach that includes the positional information extracted from motif
sequences.

2.1 Pairwise Alignment of Individual Motifs

The input consists of two sequences x = x1 . . . xLx and y = y1 . . . yLy , instances of
the motif, a profile HMM encoding the same motif and a pair HMM. We process
both input sequences with the profile HMM (each sequence has its own copy of
the profile HMM), but not independently. Rather, we use a pair HMM as a glue.
In particular, the pair HMM will guide the state paths and ensure that the final
state paths in all three models have meaningful interpretations.

The individual motif alignment is computed via dynamic programming simi-
lar to the widely used Viterbi algorithm (Algorithm 2). The algorithm computes
the most probable state paths through all three HMMs simultaneously under
following two constraints:

Constraint 1 (Profile match states constraint). If both profile models are in the
same match state Mk for some k then the pair model has to be in the match state
M .

Constraint 2 (Pair match state constraint). If the pair model is in the match
state M , then the profile models are in the same match state Mk or in the same
insert state Ik for some k.

In other words, if the pair model is in the state X or Y (which is interpreted
as a gap in one of the sequences), the two profile models should not be in the
same match state: symbols belonging to the same consensus column should be
aligned. However, if both profile models are in the same insert state they can ei-
ther be evolutionary related, in which case they should be aligned using M state
of the pair model, or they could have been inserted in the sequence indepen-
dently which would correspond to using X and Y states of the pair model. Con-
straint 2 also implies, that if the profile models are neither in the same match
state Mk nor in the same insert state Ik (i.e. either are in completely different
columns or in the same column k, but different states Mk and Ik), which means
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that the symbols being emitted are not related, then the pair model should not
be in the match state.

The ultimate purpose of these constraints is to reduce the space of valid
three-state combinations of HMMs involved and keep only combinations that
have meaningful interpretation. One might notice that we did not take the
delete states of profile HMMs into the consideration. The reason is that there
is a preprocessing step before the dynamic programming initialization which
removes the delete states from profile HMMs (details are shown in the next sub-
section).

Our algorithm solves the problem of finding the highest scoring state paths
which satisfy Constraints 1 and 2 in the model triple,

(s∗p, s
∗
x, s
∗
y) = arg max

valid
sp,sx,sy

{s(x, y, sp, sx, sy)}. (2.1)

The score is defined as the product of joint probabilities of the state paths and
input sequences (Eq. (1.23)) in the corresponding models,

s(x, y, sp, sx, sy) = Ppair(x, y, sp)Pprofile(x, sx)Pprofile(y, sy). (2.2)

We obtain an optimal solution using dynamic programming. Let s = (sP , sX , sY )

be the triple of states of pair and x-profile and y-profile models, respectively. Let
the V [sP , sX , sY , i, j] be the score of the highest scoring state path triple for pre-
fixes x1 . . . xi, y1 . . . yj with the state path of the pair model ending in sP and state
paths of the profile models ending in the sX and sY states respectively, given
that s is valid according to Constraints 1 and 2; otherwise, let V [sP , sX , sY , i, j]

be zero.
Assume, that sP , sX , sY are valid. The value of V [sP , sX , sY , i, j] is simply a

product of joint probabilities of certain state paths SP , SX , SY ending in sP , sX , sY
respectively and sequence prefixes x1 . . . xi, y1 . . . yj:

V [sP , sX , sY , i, j] = Ppair(SP , x1 . . . xi, y1 . . . yj)Pprofile(SX , x1 . . . xi)Pprofile(SY , y1 . . . y)).

(2.3)
If xi, yj are aligned then they had to be emitted in sP , sX , sY and there exists
a state path triple S ′P , S

′
X , S

′
Y ending in states s′P , s′X , s′Y respectively such that
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SP = S ′P sP , SX = S ′XsX , SY = S ′Y sY and V [sP , sX , sY , i, j] can be written as

V [sP , sX , sY , i, j] = p(xi, yj)e(sX , xi)e(sY , yj)t(s
′
P , sP )t(s′X , sX)t(s′Y , sY )·

· Ppair(S
′
P , x1 . . . xi−1, y1 . . . yj−1)Pprofile(S

′
X , x1 . . . xi−1)·

· Pprofile(S
′
Y , y1 . . . yj−1). (2.4)

Since V [sP , sX , sY , i, j] is the score of the highest scoring state path ending in
sP , sX , sY for x1 . . . xi, y1 . . . yj, we maximize the product on the right hand side of
(2.4) over all predecessor state triples and over all paths ending in these pre-
decessors for prefixes x1 . . . xi−1, y1 . . . yj−1. It turns out, that by definition of V ,
the score of the highest scoring path ending in s′P , s

′
X , s

′
Y for prefixes x1 . . . xi−1,

y1 . . . yj−1 is V [s′P , s
′
X , s

′
Y , i − 1, j − 1]. Therefore, the value of V [sP , sX , sY , i, j] can

be stated recurrently as

V [sP , sX , sY , i, j] = p(xi, yj)e(sX , xi)e(sY , yj)·

· max
(s′P ,s′X ,s′Y )∈P

{t(s′P , sP )t(s′X , sX)t(s′Y , sY )V [s′P , s
′
X , s

′
Y , i− 1, j − 1]} ,

(2.5)

where P is the set of all state triples that are valid predecessors of sP , sX , sY
given the Constraints 1 and 2 and model topologies. Analogously, if xi is aligned
to a gap, then V [sP , sX , sY , i, j] is

V [sP , sX , sY , i, j] = q(xi)e(sX , xi)·

· max
(s′P ,s′X ,sY )∈P

{t(s′P , sP )t(s′X , sX)V [s′P , s
′
X , sY , i− 1, j]} , (2.6)

and if yj is aligned to a gap, then V [sP , sX , sY , i, j] is

V [sP , sX , sY , i, j] = q(yj)e(sY , yj)·

· max
(s′P ,sX ,s′Y )∈P

{t(s′P , sP )t(s′Y , sY )V [s′P , sX , s
′
Y , i, j − 1]} . (2.7)

Note that equations (2.5)-(2.7) have essentially the same structure as the Viterbi
algorithm for pair HMM (Algorithm 3).

Each complete state path in the pair and profile HMMs has to end in the
corresponding end state. Thus, in order to find the value of an optimal solution
s∗, we go through the set of all state triples sP , sX , sY and look for the triple
which maximizes the product of V [sP , sX , sY , Lx, Ly] and transition probabilities
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Figure 2.1: Example of a profile HMM after the preprocessing step.

from the triple to the end states in all three models:

s(x, y, s∗p, s
∗
x, s
∗
y) = max

sP ,sX ,sY
{t(sP , Epair)t(sY , Eprofile)t(sX , Eprofile)V [sP , sX , sY , Lx, Ly]}.

(2.8)
We provide a detailed explanation of PPP method in the next sections.

2.1.1 PPP Dynamic Programming

Firstly, we preprocess the profile HMM by removing silent delete states, replac-
ing them with corresponding transition probabilities (Figure 2.1). For every
state path π = MiDi+1Di+2 . . . Dj−1Mj, we define the transition from Mi to Mj

to be

tMiMj
= tMiDi+1

tDj−1Mj

j−2∏
k=i+1

tDkDk+1
. (2.9)

Such preprocessing does not change the probability distribution defined by the
original profile hidden Markov model. The reasons for this procedure will be
clearer later when we will explain the general recurrent step of the dynamic
programming. In short, when arriving to the state triple (M,Mk,Mk), we want
to distinguish between the case when the predecessor profile states were the
same match states M`,M` and according to the Constraint 1 the symbols they
emitted were aligned; and the case when the predecessor profile states were
different match states M`,Mn and according to the Constraint 2 the emitted
symbols were not aligned.

The dynamic programming fills 3 × 2(L + 1) × 2(L + 1) × (Lx + 1) × (Ly + 1)

matrix V , where L is the length of the profile HMM. For every sP ∈ {M,X, Y },
sX , sY ∈ {Mk, Ik | 0 ≤ k ≤ L}, i, 1 ≤ i ≤ Lx, j, 1 ≤ j ≤ Ly the V [sP , sX , sY , i, j]

stores the score of the most probable state path triple for prefixes x1 . . . xi, y1 . . . yj
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ending in sP , sX , sY .
In (2.5)-(2.7), we have already shown general structure of the dynamic pro-

gramming recurrence. Now we have to specify for each state triple the exact
form of the set of valid predecessor state triples P . Certain state triples are not
allowed according to Constraints 1 and 2. Let us list all valid state combinations.
There are just three different pair states (we omit the B and E states for the mo-
ment) and, after the profile HMM preprocessing step, only two types of profile
states. This yields 3× 2L× 2L different combinations in total. We can generalize
some of them and describe all valid generalized combinations of states using a
shorter list.

An important observation comes from the profile topology (Fig. 2.1). In every
profile state path the sequence of column numbers of states is non-decreasing.
Furthermore, two consecutive states in the path are allowed to be from the same
column only if the first of them is match state Mk and the other is Ik or both are
the same Ik.

In general, there are 4 combinations of match/insert states at two profile posi-
tions (MM,MI, IM, II) and each of these 4 combinations can be further divided
into two cases according to the relative numbers of profile columns. Only two of
them are allowed to occur along the pair match state M :

1. (M,Mk,Mk), the same match states in both profile HMMs (the symbols in
the two sequences are aligned to each other and they both represent the
k-th column of the profile)

2. (M, Ik, Ik), the same insert states in both profile HMMs (the symbols in the
two sequences are aligned to each other and they both represent the k-th
column of the profile)

If the pair state is X (emitting only the sequence x and leaving a gap in y), the
number of possible valid generalized combinations of profile states is higher:

3. (X,Mk,M`), two different match states, where ` < k, interpreted as a gap-
ped region with sequence x being ahead of y in the profile and both se-
quences matching certain columns of profile consensus,

4. (X,Mk,M`), two different match states, where ` > k, interpreted as a gap-
ped region with sequence y being ahead of x in the profile and both se-
quences matching certain columns of profile consensus,
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5. (X,Mk, Ik−1), a match state from some profile column k for x and an insert
state from the preceding column for y, interpreted as a gapped alignment
in which only the x does match the profile consensus,

6. (X,Mk, I`), a match state from some profile column k for x and an insert
state from some column `, ` 6= k−1 for y, interpreted as a gapped alignment
in which only the x does match the profile consensus,

7. (X, Ik,Mk), an insert state from some profile column k for x and a match
state from the same column for y, interpreted as a gapped alignment col-
umn in which only the y does match the profile consensus,

8. (X, Ik,M`), an insert state from some profile column k, k 6= ` for x and a
match state from different column for y, interpreted as a gapped alignment
column in which only the y does match the profile consensus,

9. (X, Ik, Ik), an insert state for x and an insert state for y, both from the
same profile column, interpreted as a gapped alignment column with inde-
pendently inserted sequences,

10. (X, Ik, I`), an insert state for x and an insert state for y, coming from the
different profile columns, k 6= `, interpreted as a gapped alignment with
independently inserted sequences.

There are another 8 symmetrical combinations when the pair state is Y , result-
ing in 18 valid generalised combinations of states in total.

2.1.2 General Case Recurrences

Now, we will describe the dynamic programming recurrence relations for all gen-
eralised combinations mentioned in Section 2.1.1. For space saving reasons, we
will use symbols tk` instead of t(k, `) for transition probabilities. For all i, j, k, `,
1 ≤ i ≤ Lx, 1 ≤ j ≤ Ly, 1 ≤ k, ` ≤ L following equations hold (all are derived from
the general cases (2.5)-(2.7)).

For the pair state M , there are two possible combinations of profile states:
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(M,Mk,Mk) and (M, Ik, Ik). The derivation of the first one follows.

V [M,Mk,Mk, i, j] = e(xi, yj)eMk
(xi)eMk

(yj)·

·max



tMM ·tM`Mk
·tM`Mk

·V [M,M`, M`, i− 1,j − 1] 0 ≤ ` < k

tMM ·tIk−1Mk
·tIk−1Mk

·V [M,Ik−1,Ik−1,i− 1,j − 1]

tXM ·tM`Mk
·tMnMk

·V [X,M`, Mn, i− 1,j − 1] 0 ≤ `, n < k, n 6= `

tXM ·tM`Mk
·tIk−1Mk

·V [X,M`, Ik−1,i− 1,j − 1] 0 ≤ ` < k

tXM ·tIk−1Mk
·tM`Mk

·V [X, Ik−1,M`, i− 1,j − 1] 0 ≤ ` < k

tXM ·tIk−1Mk
·tIk−1Mk

·V [X, Ik−1,Ik−1,i− 1,j − 1]

tYM ·tM`Mk
·tMnMk

·V [Y, M`, Mn, i− 1,j − 1] 0 ≤ `, n < k, n 6= `

tYM ·tM`Mk
·tIk−1Mk

·V [Y, M`, Ik−1,i− 1,j − 1] 0 ≤ ` < k

tYM ·tIk−1Mk
·tM`Mk

·V [Y, Ik−1,M`, i− 1,j − 1] 0 ≤ ` < k

tYM ·tIk−1Mk
·tIk−1Mk

·V [Y, Ik−1,Ik−1,i− 1,j − 1]

(2.10)

Let us take a deeper look at this equation. The value at V [M,Mk,Mk, i, j] has to
include the full emission of xi and yj in all three models. Then, there is a wide
choice of previous cells from which the current cell value could be computed.
Both sequence indices are one less in each option and every value considered in
the maximum function is composed of the value of the predecessor cell and the
product of transition probabilities in all three models for their corresponding
source and target states.

One of the options is the cell V [M,M`,M`, i − 1, j − 1] for some `, 0 ≤ ` ≤
k, which is an instance of the same equation (2.10).The other option with pair
match state M is V [M, Ik−1, Ik−1, i − 1, j − 1], an instance of (2.11). Both types
of cells represent extension of the matched region in the final alignment, with
the only difference related to the profile consensus. The rest of the options with
pair states X or Y represent the end of gapped region and beginning of matched
region. Valid predecessors include two different profile match states and all
combinations, where at least one of the profile states is the insert state Ik−1.
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Derivation for V [M, Ik, Ik, i, j] is simpler:

V [M, Ik, Ik, i, j] = e(xi, yj)eIk(xi)eIk(yj)·

·max



tMM ·tMkIk ·tMkIk ·V [M,Mk,Mk,i− 1,j − 1]

tMM ·tIkIk ·tIkIk ·V [M,Ik, Ik, i− 1,j − 1]

tXM ·tMkIk ·tIkIk ·V [X,Mk,Ik, i− 1,j − 1]

tXM ·tIkIk ·tMkIk ·V [X, Ik, Mk,i− 1,j − 1]

tXM ·tIkIk ·tIkIk ·V [X, Ik, Ik, i− 1,j − 1]

tYM ·tMkIk ·tIkIk ·V [Y, Mk,Ik, i− 1,j − 1]

tYM ·tIkIk ·tMkIk ·V [Y, Ik, Mk,i− 1,j − 1]

tYM ·tIkIk ·tIkIk ·V [Y, Ik, Ik, i− 1,j − 1]

(2.11)

Again, there are terms for the full emission of xi and yj in all three models. This
time, the set of predecessor cells is smaller and covers all valid combinations of
pair and profile model states, where both profile states are either Ik insert state
or the match state from the same profile column Mk.

When the pair state is X, we have more generalised options. The emission
terms are the same in all of them – the emission of gapped symbol

(
xi

−

)
in the

pair model and the emission of xi in the profile model. Note that we do not emit
yj. For that reason, we neither change the index j nor the state of the profile
model for y and hence there are just two transition terms for the pair model and
for the x-profile model.

V [X,Mk,M`, i, j] = e(xi,−)eMk
(xi)·

·max



tMX ·tM`Mk
·V [M,M`, M`,i− 1,j] ` < k

tXX ·tMnMk
·V [X,Mn, M`,i− 1,j] n 6= `, n < k

tXX ·tIk−1Mk
·V [X, Ik−1,M`,i− 1,j]

tY X ·tMnMk
·V [Y, Mn, M`,i− 1,j] n 6= `, n < k

tY X ·tIk−1Mk
·V [Y, Ik−1,M`,i− 1,j]

(` < k)

(2.12)

V [X,Mk,M`, i, j] = e(xi,−)eMk
(xi)·

·max


tXX ·tMnMk

·V [X,Mn, M`,i− 1,j] n < k < `

tXX ·tIk−1Mk
·V [X,Ik−1,M`,i− 1,j]

tY X ·tMnMk
·V [Y, Mn, M`,i− 1,j] n < k < `

tY X ·tIk−1Mk
·V [Y, Ik−1,M`,i− 1,j]

(k < `)

(2.13)
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With both profile states being match states, Mk for x and M` for y, we distinguish
between cases ` < k and ` > k. In the former case (eq. (2.12)), there is a possibil-
ity of joint transition from V [M,M`,M`, i−1, j] to V [X,Mk,M`, i, j] (i.e. transition
from M` to Mk in the x-profile model), which is not possible in the latter case (eq.
(2.13)) because there are no back transitions from states with higher column
numbers to states with lower column numbers in the profile model. Other val-
ues considered in the maximum function in both equations include transitions
from Ik−1 to Mk and transitions from some Mn to Mk (for n 6= k, n 6= `) in the
x-profile model.

V [X,Mk, Ik−1, i, j] = e(xi,−)eMk
(xi)·

·max



tMX ·tIk−1Mk
·V [M,Ik−1,Ik−1,i− 1,j]

tXX ·tMnMk
·V [X,Mn, Ik−1,i− 1,j] n < k

tXX ·tIk−1Mk
·V [X, Ik−1,Ik−1,i− 1,j]

tY X ·tMnMk
·V [Y, Mn, Ik−1,i− 1,j] n < k

tY X ·tIk−1Mk
·V [Y, Ik−1,Ik−1,i− 1,j]

(2.14)

V [X,Mk, I`, i, j] = e(xi,−)eMk
(xi)·

·max


tXX ·tMnMk

·V [X,Mn, I`,i− 1,j] n < k

tXX ·tIk−1Mk
·V [X,Ik−1,I`,i− 1,j]

tY X ·tMnMk
·V [Y, Mn, I`,i− 1,j] n < k

tY X ·tIk−1Mk
·V [Y, Ik−1,I`,i− 1,j]

(` 6= k − 1)

(2.15)

There are five generalised possibilities for incoming cells in (2.14), four of them
are basically the same in (2.15) and cover all valid combinations of states, where
the pair state is X, the y-profile state is I` and the x-profile state is Mn for some
n < k or Ik−1. The one extra case in (2.14) occurs when ` = k − 1, since it is
allowed to be in the pair match state and the same insert states in the profile
models at the same time.

V [X, Ik,Mk, i, j] = e(xi,−)eIk(xi)·

·max


tXX ·tMkIk ·V [M,Mk,Mk,i− 1,j]

tXX ·tIkIk ·V [X, Ik, Mk,i− 1,j]

tY X ·tIkIk ·V [Y, Ik, Mk,i− 1,j]

(2.16)
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V [X, Ik,M`, i, j] = e(xi,−)eIk(xi)·

·max


tXX ·tMkIk ·V [X,Mk,M`,i− 1,j]

tXX ·tIkIk ·V [X,Ik, M`,i− 1,j]

tY X ·tMkIk ·V [Y, Mk,M`,i− 1,j]

tY X ·tIkIk ·V [Y, Ik, M`,i− 1,j]

(k 6= `)
(2.17)

Because there are just two incoming edges to any insert state in the profile
HMM, configurations with Ik as the x-profile state and a match state M` as the
y-profile state yield simpler equations. Equation (2.16) takes care of the case
` = k, equation (2.16) goes with the negation ` 6= k.

V [X, Ik, Ik, i, j] = e(xi,−)eIk(xi)·

·max



tMX ·tIkIk ·V [M,Ik, Ik,i− 1,j]

tXX ·tIkIk ·V [X, Ik, Ik,i− 1,j]

tXX ·tMkIk ·V [X,Mk,Ik,i− 1,j]

tY X ·tIkIk ·V [Y, Ik, Ik,i− 1,j]

tY X ·tMkIk ·V [Y, Mk,Ik,i− 1,j]

(2.18)

V [X, Ik, I`, i, j] = e(xi,−)eIk(xi)·

·max


tXX ·tMkIk ·V [X,Mk,I`,i− 1,j]

tXX ·tIkIk ·V [X,Ik, I`,i− 1,j]

tY X ·tMkIk ·V [Y, Mk,I`,i− 1,j]

tY X ·tIkIk ·V [Y, Ik, I`,i− 1,j]

(k 6= `)
(2.19)

We complete the list of equations for allowed configurations with pair state X
with both profile models being in insert states Ik and I`. Just like the previous
pair, (2.18) covers the case when ` = k and (2.19) the opposite, ` 6= k.

It remains to describe all equations for derivation of values for cells with pair
state Y . These are analogous to equations (2.12)-(2.19) and are shown here for
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completeness.

V [Y,M`,Mk, i, j] = e(−, yj)eMk
(yj)·

·max



tMY ·tM`Mk
·V [M,M`,M`, i,j − 1] ` < k

tXY ·tMnMk
·V [X,M`,Mn, i,j − 1] n 6= `, n < k

tXY ·tIk−1Mk
·V [X,M`,Ik−1,i,j − 1]

tY Y ·tMnMk
·V [Y, M`,Mn, i,j − 1] n 6= `, n < k

tY Y ·tIk−1Mk
·V [Y, M`,Ik−1,i,j − 1]

(` < k)

(2.20)

V [Y,M`,Mk, i, j] = e(−, yj)eMk
(yj)·

·max


tXY ·tMnMk

·V [X,M`,Mn, i,j − 1] n < k < `

tXY ·tIk−1Mk
·V [X,M`,Ik−1,i,j − 1]

tY Y ·tMnMk
·V [Y, M`,Mn, i,j − 1] n < k < `

tY Y ·tIk−1Mk
·V [Y, M`,Ik−1,i,j − 1]

(k < `)

(2.21)

V [Y, I`,Mk, i, j] = e(−, yj)eMk
(yj)·

·max


tXY ·tMnMk

·V [X,I`,Mn, i,j − 1] n < k

tXY ·tIk−1Mk
·V [X,I`,Ik−1,i,j − 1]

tY Y ·tMnMk
·V [Y, I`,Mn, i,j − 1] n < k

tY Y ·tIk−1Mk
·V [Y, I`,Ik−1,i,j − 1]

(` 6= k − 1)

(2.22)

V [Y, Ik−1,Mk, i, j] = e(−, yj)eMk
(yj)·

·max



tMY ·tIk−1Mk
·V [M,Ik−1,Ik−1,i,j − 1]

tXY ·tMnMk
·V [X, Ik−1,Mn, i,j − 1] n < k

tXY ·tIk−1Mk
·V [X, Ik−1,Ik−1,i,j − 1]

tY Y ·tMnMk
·V [Y, Ik−1,Mn, i,j − 1] n < k

tY Y ·tIk−1Mk
·V [Y, Ik−1,Ik−1,i,j − 1]

(2.23)
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V [Y,M`, Ik, i, j] = e(−, yj)eIk(yj)·

·max


tXY ·tMkIk ·V [X,M`,Mk,i,j − 1]

tXY ·tIkIk ·V [X,M`,Ik, i,j − 1]

tY Y ·tMkIk ·V [Y, M`,Mk,i,j − 1]

tY Y ·tIkIk ·V [Y, M`,Ik, i,j − 1]

(k 6= `)
(2.24)

V [Y,Mk, Ik, i, j] = e(−, yj)eIk(yj)·

·max


tXY ·tMkIk ·V [M,Mk,Mk,i,j − 1]

tXY ·tIkIk ·V [X,Mk,Ik, i,j − 1]

tY Y ·tIkIk ·V [Y, Mk,Ik, i,j − 1]

(k 6= `)
(2.25)

V [Y, Ik, Ik, i, j] = e(−, yj)eIk(yj)·

·max



tMY ·tIkIk ·V [M,Ik,Ik, i,j − 1]

tXY ·tIkIk ·V [X, Ik,Ik, i,j − 1]

tXY ·tMkIk ·V [X, Ik,Mk,i,j − 1]

tY Y ·tIkIk ·V [Y, Ik,Ik, i,j − 1]

tY Y ·tMkIk ·V [Y, Ik,Mk,i,j − 1]

(2.26)

V [Y, I`, Ik, i, j] = e(−, yj)eIk(yj)·

·max


tXY ·tMkIk ·V [X,I`,Mk,i,j − 1]

tXY ·tIkIk ·V [X,I`,Ik, i,j − 1]

tY Y ·tMkIk ·V [Y, I`,Mk,i,j − 1]

tY Y ·tIkIk ·V [Y, I`,Ik, i,j − 1]

(k 6= `)
(2.27)

2.1.3 Boundary conditions

The matrix V is filled using four nested loops:
for i := 1 to Lx; for j := 1 to Ly; for k := 1 to L; for ` := 1 to L.

The basic boundary condition that initializes the computation is

V [M,M0,M0, 0, 0] = 1. (2.28)

The start state of pair model is the match state and the start state of the profile
model is M0 and we can assume an implicit $s to be aligned at the zero sequence
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indexes, just like in the Algorithm 1. Since this is the only valid state path that
does not emit anything, we do not allow other combinations of states at sequence
position (0, 0):

V [sP , sX , sY , 0, 0] = 0, sP ∈ {X, Y }, sX , sY ∈ {Mk, Ik | 1 ≤ k ≤ L}. (2.29)

Next, we want to allow gaps at the beginning of the alignments. This means that
the model will process only one of the input sequences and advance it’s index
while keeping zero index for the other sequence. Some of the combinations of
the three model states are not meaningful in this situation and we assign zero
score to those cells. Namely,

V [M, sX , sY , i, 0] = 0, ∀sX , sY , i ∈ [1, Lx], (2.30)

V [M, sX , sY , 0, j] = 0, ∀sX , sY , j ∈ [1, Ly], (2.31)

because there is a conflict between the pair match state and only one of the
sequences being emitted. Furthermore,

V [Y, sX , sY , i, 0] = 0, ∀sX , sY , i ∈ [1, Lx], (2.32)

V [X, sX , sY , 0, j] = 0, ∀sX , sY , j ∈ [1, Ly], (2.33)

because the presence of pair state Y means an insertion in the Y sequence, which
is not emitted in (2.32) (analogical argument holds in the (2.33) case).

To finalize the initialisation that enables gaps at the beginning of the align-
ments, we need to perform similar initialisation step like in the Viterbi algo-
rithm for pair HMMs. We will proceed in one sequence only, leaving the other at
the beginning. This time, following from the model topologies, we need to take
care of two cases for both sequences, looping through i ∈ [1, Lx], j ∈ [1, Ly], k ∈
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[1, L] (in case of (2.35) and (2.37), k ∈ [0, L]):

V [X,Mk,M0, i, 0] = e(xi,−)eMk
(xi)

·max


tMX ·tM0Mk

·V [M,M0, M0,i− 1,0],

tXX ·tMnMk
·V [X,Mn, M0,i− 1,0], 1 ≤ n < k,

tXX ·tIk−1Mk
·V [X, Ik−1,M0,i− 1,0],

(2.34)

V [X, Ik,M0, i, 0] = e(xi,−)eIk(xi)

·max


tMX ·tM0Ik ·V [M,M0,M0,i− 1,0],

tXX ·tMkIk ·V [X,Mk,M0,i− 1,0],

tXX ·tIkIk ·V [X, Ik, M0,i− 1,0],

(2.35)

V [Y,M0,Mk, 0, j] = e(−, yj)eMk
(yj)

·max


tMY ·tM0Mk

·V [M,M0,M0, 0,j − 1],

tY Y ·tMnMk
·V [Y, M0,Mn, 0,j − 1], 1 ≤ n < k,

tY Y ·tIk−1Mk
·V [Y, M0,Ik−1,0,j − 1],

(2.36)

V [Y,M0, Ik, 0, j] = e(−, yj)eIk(yj)

·max


tY Y ·tM0Ik ·V [M,M0,M0,0,j − 1],

tY Y ·tMkIk ·V [Y, M0,Mk,0,j − 1],

tY Y ·tIkIk ·V [Y, M0,Ik, 0,j − 1].

(2.37)

Even though the equations above seem complicated, the process they describe a
simple algorithm similar to the Viterbi algorithm for single profile HMM. This
is desirable, because when we are proceeding in one sequence only it means
that we are actually moving in one profile. In (2.34), we move along the chain
of match states, emitting x. For every match state along the chain there are
several options how the model could arrive at that state (see fig. 2.1): directly
from the start state (the first option in (2.34)), from a previous match state (the
second option in (2.34)) and, finally, from the previous column insert state (the
last option in (2.34)). We might end up in the insert state too. The first option
in (2.35) is applicable to the first insert state of the profile when emitting the
first symbol of the sequence, otherwise it’s zero. Two other options cover the
rest of possible arrivals at the insert state. The difference between the first and
the second option in (2.35) is that in the first option, we are opening the gap,
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whereas the second option applies when extending the gap, which is indicated
by different pair states. The explanations for (2.36) and (2.37) are analogous.

2.1.4 Termination and traceback

Every time we compute a value for any cell, we implicitly keep a pointer to the
cell from which the value was derived (this holds in the general recurrence too).
We will use those pointers when tracing back the result of the whole dynamic
programming computation, just like in the standard Viterbi algorithm.

The termination step completes the calculation of the state path trio. For
each submodel it consists of transition from the current state to the end state.
This step is simple in the pair model since there are just three states. In the
profile models, the end state is treated like the match state, therefore, after the
preprocessing step (section 2.1.1) there is a transition from each match state to
the end state.

end = max


tme·tILE ·tILE ·V [M,IL, IL, Lx,Ly]

tme·tMkE·tMkE·V [M,Mk,Mk,Lx,Ly] 0 < k < L

txe ·tMkE·tM`E ·V [X,Mk,M`,Lx,Ly] 0 < k, ` < L, k 6= `

tye ·tMkE·tM`E ·V [Y, Mk,M`,Lx,Ly] 0 < k, ` < L, k 6= `

(2.38)

As we have mentioned already in Section 2.1.1, for each cell v in V we store a
pointer to the cell from which the value of v was derived. This applies to (2.38)
as well. We use these pointers to trace back the three resulting state paths
πP , πX , πY (from the pair model, x-profile, and y-profile respectively). The trace
back procedure starts with the end pointer and follows the pointers up to the
V [M,M0,M0, 0, 0] cell, which was initialized at the beginning (since the first step
is derived from V [M,M0,M0, 0, 0], each traceback will end in this cell).

Of the greatest importance to us is the path in the pair model, since it defines
the alignment of x and y. We use the state paths to compute the joint probabil-
ities of sequences and state paths (as defined in (1.23): Ppair(x, y, πP ), the prob-
ability of generating x and y along the path πP in the pair model, Pprofile(x, πX),

and Pprofile(y, πY ), the probabilities of generating x and y along the paths πX and
πY in the profile model.
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2.2 Alignment of Whole Motif Arrays

We use the same procedure as MotifAligner (described in Section 1.3) for align-
ment of complete motif arrays. We compute all pairwise alignments of individual
motifs with the first motif from one motif array and the second from the other.
The score of a pairwise motif alignment is based on joint probabilities of motif
sequences and state paths in all three models. Since we perform the motif align-
ment for all pairs of motifs and assign a score to each such alignment, we get a
scoring system similar to a scoring matrix. Treating motifs as symbols and us-
ing this scoring matrix, we obtain the full alignment of input motif arrays using
Needleman-Wunsch algorithm (Algorithm 1).

More formally, for motif arrays Ax = (x1, . . . , xn) and Ay = (y1, . . . ym), we
calculate n×m matrix S, where

S(xi, yj) = ln
Ppair(xi, yj, πPij

)

Pprofile(xi, πXi
)Pprofile(yj, πYj

)
, (2.39)

with πPij
, πXi

and πYj
being the state paths as defined in the previous section.

This score compares the hypothesis that the two motif sequences are related
(given by probability from the pair HMM) to the hypothesis that these are simply
two independent sequences following the same profile (as determined by scores
from the two profile HMMs).

2.3 Algorithm Complexity and Implementation
Notes

The time complexity of the PPP algorithm on two motif arrays with O(n) motifs,
each of length O(m) is O(n2m6). There are O(n2) individual motif alignments.
The time needed to compute one such alignment is O(LxLyL

4), where Lx, Ly are
the lengths of motifs and L is the number of columns in the profile HMM. This
follows from the observation that in the recurrent step of individual motif align-
ment we fill 3 × L × L × Lx × Ly matrix, and time required to compute each
cell is O(L2), the upper bound on the number of values considered in the max-
imization in every equation (2.34)-(2.38). Typically, the number of columns in
the profile HMM and the length of motifs is almost the same, so we can say that
Lx, Ly, L = O(m) and hence the time required to compute the alignment of one
motif pair is O(m6). From the same observation one can easily see that the space
complexity is O(max{n2,m4}).
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Like other HMM algorithms, PPP multiplies small numbers many times. A
straightforward implementation using floating point arithmetics would result
in underflow errors. To cope with this we employ a widely used technique and
perform all computations in log scale (using natural logarithm). This means
that in the initialisation, the 1 in (2.28) becomes 0, the 0s in (2.29)-(2.33) become
−∞, every multiplication in (2.34)-(2.38) becomes addition, and the score for an
alignment in (2.39) becomes

S(xi, yj) = Ppair(xi, yj, πPij
)− Pprofile(xi, πXi

)− Pprofile(yj, πYj
). (2.40)



Chapter 3

Experiments

This chapter is focused on evaluation of our tool on realistic datasets. Our ex-
periments are focused on evaluation of two aspects of our method, the discrimi-
nation power of our score and accuracy of the resulting alignment.

We also describe how to set the parameters of our model. The parameters
can be divided to three groups: parameters of the pair model, parameters of
the profile model, and parameters of the Needleman-Wunsch algorithm. Most
parameters of the Profile-Profile-Pair model are determined by parameters of
underlying models. The parameters of Needleman-Wunsch algorithm need to
be carefully tuned with regard to a particular dataset to avoid underfitting and
overfitting.

3.1 Dataset Preparation

The dataset we used comes from the Human KZNF Catalog [Huntley et al.,
2006], hosted at http://znf.igb.uiuc.edu/human/. The entries of this data-
base consists of sequence annotations of all known human KRAB zinc finger
genes, as well as putative genes (not verified experimentally) and pseudogenes
(partial genes that lost their function but retain the structure of a functional
gene). Each gene can have multiple alternative transcripts in the database,
these are referred to as gene models.

We downloaded the set of all annotations in the catalog. This set labels the
NCBI35/hg17 assembly of the human genome released in May, 2004 [IHGSC,
2004], which is not the current human genome assembly at the time of writing –
current assembly is GRCh37/hg19, released in February, 2009 [GRC, 2009]. We
remapped the annotation set to the hg19 assembly using the liftOver tool from
the UCSC Genome Browser [Fujita et al., 2011].
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Table 3.1: The complete dataset, based on genes from the whole human genome.

Number of Finger Motifs
Genome Genes Models Total Average Median

hg19 612 1071 13363 12.48 12
mm9 302 513 5226 10.19 10
canFam2 477 828 9259 11.18 11
rheMac2 578 1010 12143 12.02 12

Table 3.2: The restricted dataset, omitting genes from human chromosome 19
and their orthologs.

Number of Finger Motifs
Genome Genes Models Total Average Median

hg19 323 510 5249 10.29 9
mm9 201 314 2818 8.97 8
canFam2 257 406 3710 9.14 8
rheMac2 305 484 4766 9.85 9

Using the whole genome alignments from the UCSC Genome Browser [UCSC,
2009], we identified corresponding locations in the mouse (assembly mm9), dog
(canFam2), and rhesus macaque (rheMac2) genomes. These are locations of po-
tential orthologs (genes in different species that evolved from a common an-
cestral gene by speciation). We translated all genome sequences to amino acid
sequences, and worked with these only. We dropped a particular gene from the
dataset if it contained fingers shorter than 10 amino acids. We will refer to this
set of sequences as the complete dataset. Summary statistics for the dataset are
shown in Table 3.1. Because of relatively high time complexity of the PPP algo-
rithm, alignment of genes with high number of fingers takes a lot of time. For
that reason, we prepared a subset of the complete dataset, omitting genes from
human chromosome 19 and their putative ortholgs in other genomes. These
genes contain the highest numbers of repeating motifs (30 or more). Summary
statistics for this restricted dataset are shown in the Table 3.2.

3.2 Estimating Parameters of Our Model

In general, parameters of hidden Markov models are estimated by supervised
or unsupervised training. The supervised training requires that correct state
path is known for every sequence in the training set, a condition that is rarely
satisfied. Hence, the unsupervised training approach is typically used. A stan-



CHAPTER 3. EXPERIMENTS 45

Table 3.3: Background probabilities, q(a), for the BLOSUM85 matrix.

A R N D C Q E G H I
0.072 0.050 0.042 0.054 0.030 0.033 0.054 0.078 0.025 0.067

L K M F P S T W Y V
0.098 0.054 0.024 0.048 0.038 0.058 0.051 0.015 0.035 0.073

dard choice is the Baum-Welch algorithm [Rabiner, 1989] which is a special case
of the general Expectation-Maximization algorithm [Dempster et al., 1977] for
hidden Markov models. A disadvantage of the unsupervised approach is that
EM algorithm on models with many parameters is likely to find local maximum
of likelihood of the parameters which leads to worse performance of the model.

Our approach to parameter acquisition is different. Since our model has
three sets of parameters and especially the emission and transition probability
distributions are defined on large domains, the standard EM approach is likely
to fail. Therefore, we have assessed the parameter sets independently.

3.2.1 Pair HMM Parameters

The emission parameters of pair HMM used in our experiments were based on
the BLOSUM85 substitution matrix. This particular matrix was chosen because
it is suitable for estimating homology of relatively similar sequences and because
the authors of MotifAligner used the same matrix in their work [Nowick et al.,
2011] and we wanted to get comparable results.

The BLOSUM85 matrix was obtained from the EMBOSS software package
[Rice et al., 2000]. We did not use the log-odds matrix itself. Instead, we used
the probability distributions p and q from which the matrix was derived (the
derivation process is explained in the Section 1.1.1). The emission probability
distribution of the pair match state, p, is shown in the Figure 3.1. The emission
probability distribution q of the states X and Y is shown in the Table 3.3.

The transition probability parameters ε, δ, τ were set as follows:

• τ = 0.0345 so that the expected length of an alignment is 28, which is the
length of a typical human C2H2 zinc finger motif;

• δ = 0.05185 so that the expected length of a match region is 13.45, because
the most variable region of a zinc finger motif spans positions 12-15;

• ε = 0.4769 so that the expected length of a gap is 1.1.
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# BLOSUM Clustered Target Frequencies=qij
# Blocks Database = /data/blocks_5.0/blocks.dat
# Cluster Percentage: >= 85

A R N D C Q E G H I
S 0.0267
R 0.0019 0.0217
N 0.0015 0.0016 0.0172
D 0.0017 0.0012 0.0036 0.0275
C 0.0015 0.0003 0.0004 0.0003 0.0182
Q 0.0016 0.0022 0.0013 0.0013 0.0003 0.0102
E 0.0027 0.0021 0.0018 0.0047 0.0003 0.0034 0.0223
G 0.0051 0.0014 0.0024 0.0022 0.0006 0.0010 0.0016 0.0496
H 0.0009 0.0011 0.0012 0.0008 0.0001 0.0011 0.0011 0.0007 0.0107
I 0.0025 0.0010 0.0007 0.0007 0.0011 0.0007 0.0009 0.0009 0.0004 0.0231
L 0.0035 0.0017 0.0010 0.0010 0.0013 0.0013 0.0014 0.0015 0.0007 0.0108
K 0.0027 0.0058 0.0021 0.0019 0.0004 0.0027 0.0033 0.0019 0.0009 0.0011
M 0.0011 0.0006 0.0004 0.0003 0.0003 0.0007 0.0005 0.0005 0.0002 0.0025
F 0.0013 0.0006 0.0005 0.0005 0.0006 0.0005 0.0006 0.0008 0.0006 0.0026
P 0.0021 0.0008 0.0006 0.0009 0.0003 0.0006 0.0012 0.0010 0.0004 0.0007
S 0.0062 0.0019 0.0028 0.0023 0.0010 0.0016 0.0025 0.0033 0.0009 0.0014
T 0.0036 0.0014 0.0019 0.0015 0.0009 0.0012 0.0018 0.0017 0.0006 0.0023
W 0.0003 0.0002 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0002 0.0003
Y 0.0010 0.0007 0.0006 0.0004 0.0003 0.0005 0.0006 0.0006 0.0015 0.0012
V 0.0044 0.0012 0.0008 0.0009 0.0014 0.0009 0.0014 0.0013 0.0005 0.0123

L K M F P S T W Y V
L 0.0457
K 0.0018 0.0200
M 0.0050 0.0007 0.0060
F 0.0051 0.0007 0.0010 0.0224
P 0.0011 0.0012 0.0003 0.0004 0.0231
S 0.0020 0.0024 0.0007 0.0010 0.0014 0.0185
T 0.0027 0.0020 0.0009 0.0010 0.0010 0.0049 0.0174
W 0.0006 0.0002 0.0002 0.0007 0.0001 0.0002 0.0002 0.0094
Y 0.0019 0.0007 0.0005 0.0046 0.0003 0.0009 0.0008 0.0010 0.0160
V 0.0085 0.0014 0.0021 0.0021 0.0010 0.0020 0.0032 0.0003 0.0011 0.0262

1
Figure 3.1: Target probabilities, p(a, b), for the BLOSUM85 matrix.
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Figure 3.2: The profile HMM of C2H2 human zinc fingers from the Pfam
database [Bateman et al., 2011], viewed as a HMM logo [Schuster-Bockler et al.,
2004].

3.2.2 Profile HMM Parameters

The complete parameter set of the profile model was acquired from the Pfam
database entry for the ZNF C2H2 family [Bateman et al., 2011]. The length of
the profile is 23, which is shorter than the typical human zinc finger motif. The
reason is that the model is based on multiple sequence alignment of more diverse
sequences from various different species. The model is visualized in Figure 3.2.
Another model, based on the alignment of 2000 random finger sequences form
the complete dataset, is shown in the Figure 3.3 for comparison. Both figures
were generated using the profile HMM visualisation tool LogoMat-M [Schuster-
Bockler et al., 2004].

3.2.3 Parameters of the Needleman-Wunsch Algorithm

The Needleman-Wunsch algorithm for the whole motif array alignment has
three parameters: the gap opening penalty g, the gap extension penalty e, and
the substitution matrix s that scores individual motif alignments. In the PPP
model, the matrix s is determined by the equation 2.39. In our experiments, the
parameters g and e were the only parameters that were not set explicitly and we
will state their values when describing the experiments.
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Figure 3.3: The profile HMM of random 2000 human zinc fingers from the com-
plete dataset, viewed as a HMM logo [Schuster-Bockler et al., 2004].

3.3 The PPP Score Distribution

We have explored the distribution of scores of the PPP scoring function (Equa-
tion (2.39)). From the complete dataset, we have made two random samples of
1000 sequence pairs. In each pair, one sequence was a human finger and the
other was a mammal finger. The first sample contained putative orthologous
pairs, i.e. the sequences corresponding to the same protein and to the same mo-
tif in that protein, we call this set the related set. Sequences in the other sample
were chosen independently on each other, we call this set the random set.

We have computed an alignment of each sequence pair for both samples. The
score distributions are shown in Figure 3.4. Both distributions resemble the
normal distribution, with mean of the Related set close to 20 and mean of the
Random set at around 5. This is good because we expect the more similar se-
quences to have higher score.

For comparison, in Figure 3.4 we show the score distributions of the Moti-
fAligner approach to alignment of individual motifs, based on the BLOSUM85
substitution matrix (MotifAligner implementation details are in the next sec-
tion). These distributions does not resemble the normal distribution. There is
a relatively heavy tail in the Related set distribution, which is clearly not desir-
able.

In Figure 3.6, we plotted a ROC curve for better evaluation and comparison.
The Related dataset was treated as positive examples and the Random dataset
as negative. The curve shows, that PPP model has a better scoring function.
However, there is still a room for improvement.
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Figure 3.4: The score distributions for related and random datasets, PPP model.
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Figure 3.5: The score distributions for related and random datasets, Moti-
fAligner approach based on the BLOSUM85 matrix.
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Figure 3.6: ROC curve for Related (positive) and Random (negative) datasets.

3.4 Alignment Accuracy

We have performed an evaluation of PPP alignment accuracy. To be able to com-
pare our algorithm with some other method, we have implemented MotifAligner
algorithm (Section 1.3). Since we are not aware of any benchmark for assessing
the accuracy of alignment with repetitive motifs that evaluates multiple repeats
simultaneously, we have developed our own benchmark (the only benchmark
concerning repeats referenced in literature, the BAliBASE reference 6 [Thomp-
son et al., 2005], does not define the correct alignment of motif tuples, it defines
correct alignments of individual repeats only).

Our benchmark is based on the complete dataset (Section 3.1). We know the
exact order of zinc finger motifs in human and mammal protein sequences. We
define a rank function on the fingers in a zinc finger array. The rank of a finger
in human protein is simply its position in zinc finger array, counted from left
to right. The rank of a mammal finger is the rank of the putative orthologous
human finger. Suppose that a human zinc finger protein contains three zinc
fingers and that an orthologus protein in mouse has two zinc fingers. Moreover,
suppose that the first human finger is orthologous with the first mouse finger,
the second human finger does not have its ortholog in the mouse protein and
that the third human finger is orthologous with the second mouse zinc finger.
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Then the rank of the second mouse zinc finger is three.
For alignments of zinc finger arrays of orthologous proteins, we can tell which

fingers are correctly aligned and which are not: we consider a pair of motifs to
be correctly aligned if and only if the ranks of both sequences in the aligned pair
under consideration are the same. We are aware that the true correctness of this
method basically depends on the correctness of the whole genome alignments
that were used for finding the orthologous sequences.

Because the MotifAligner is not publicly downloadable, we have implemented
our own version according to the description given in [Nowick et al., 2011]. All
results were obtained using the BLOSUM85 substitution matrix and the gap
penalties set to g = 84 and e = 75.6. In order to be able to align motifs that do
not have the same length, we append the necessary number of X symbols to the
end of the shorter sequence. The X states for undetermined amino acid and is
correctly handled by the BLOSUM matrix.

We carried out three tests. In the first one, we aligned all zinc finger arrays of
orthologous proteins in the complete dataset. The second and the third experi-
ments simulated a loss of fingers during the evolution – we created two artificial
datasets with 1/5 and 1/3 of the total number of fingers removed in each zinc fin-
ger array in all four genomes, and we aligned the original human dataset with
the four reduced sets.

We tried several different parameter settings for the Needleman-Wunsch
step of the PPP algorithm (the values of other parameters are described in the
Section 3.2). In particular, we achieved the best results when the gap opening
penalty g was set to 30 and the gap extension penalty e to 20. The results of all
tests are shown in the Table 3.4.

As we can see, with PPP1 we were able to outperform the MotifAligner on
the Unchanged and 1/5 Loss datasets. On the other hand, our model performed
slightly worse when the number of lost fingers was increased. In general, the
number of wrongly aligned columns (misaligned plus excess gaps) never ex-
ceeded 1.6% of the total number of columns in the alignments for both algo-
rithms. This might point out to weakness in our evaluation benchmark.
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Table 3.4: The comparison of MotifAligner and our Profile-Profile-Pair (PPP)
model. PPP1 refers to Needleman-Wunsch gap penalty parameters set to g =
30, e = 20 and PPP2 to g = 20, e = 10. The third column lists the number
of different zinc finger array pairs aligned; fourth column contains the sum of
the expected length of all alignments (including gaps); the fifth column lists the
number of wrongly aligned motifs (as defined in the main text); and the last
column contains the difference of measured and expected number of gaps in the
alignments.

Alignment size Errors
Dataset Program Pairs Length Misaligned Gaps

Complete, Unchanged MotifAligner 2161 24267 234 0
Complete, Unchanged PPP1 2161 24267 178 2
Complete, Unchanged PPP2 2161 24267 331 28
Restricted, 1/5 Loss MotifAligner 1609 16096 149 0
Restricted, 1/5 Loss PPP1 1609 16096 139 0
Restricted, 1/5 Loss PPP2 1609 16096 142 6
Restricted, 1/3 Loss MotifAligner 1651 16227 169 0
Restricted, 1/3 Loss PPP1 1651 16227 254 0
Restricted, 1/3 Loss PPP2 1651 16227 252 2



Conclusion

We have designed and implemented an algorithm for alignment of sequences
with repetitive motifs. The algorithm is built on top of two types of hidden
Markov models. It utilizes positional information from two copies of a profile
HMM and uses a pair HMM to align the motif sequences. We were able to ap-
ply our model on real world data, which was one of the goals of this work, and
obtained results that outperform the only existing program specifically designed
to align sequences with repetitive motifs.

There is still a room for improvement of our work. Apart from obvious up-
grades, like a more effective implementation, the underlying model can be en-
hanced in several ways. For example, an interesting question is whether another
scoring function of individual motif alignments would perform better. Such a
function might be based on different properties of the underlying models, e.g.
the full probability of a sequence, instead of the probability of the Viterbi path.

To alleviate problems caused by the computational complexity of the algo-
rithm, various heuristics could be applied, especially methods avoiding exhaust-
ing computations of whole dynamic programming matrices. In order to be able
to apply our model to other protein families with repeating motifs, a more ro-
bust procedure for parameter estimation should be established. In addition,
a method for assessment of statistical significance of alignments may be help-
ful when computing alignments of large datasets where random homologies are
more likely to occur.

The model we have implemented is not the only true way of doing sequence
alignment with repetitive motifs. It is very appealing to use a monolithic proba-
bilistic model. We have tried to develop such models on paper, but we were not
able to overcome intrinsic difficulties of these models. Authors more skilled in
probabilistic modelling might find their way out of the monolithic model prob-
lems.

Even though the first studies on the sequence alignment appeared several
decades ago, the problem is far from being solved in general. In future, the
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pressure for fast, scalable and accurate sequence alignment tools will rise, be-
cause of the pertaining exponential growth in the amounts of data produced by
biologists. The most serious problem from the practical point of view that we
have encountered is the lack of reliable benchmark for assessing the accuracy
of alignments with repetitive motifs. A high quality reference is very valuable,
because it allows exact evaluation of algorithms and can give a clue where are
the weak and the strong parts of a particular program, or how to set parameters
to ensure optimal performance. We understand that building such reference re-
quires substantial effort and deep knowledge of all corners of biology. We hope
that our work will at least partially serve as a catalyst towards the creation of
such resource.
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