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Abstract (English)

In this thesis, we study several algorithmic problems from the �eld of genome rearrangements. During

evolution, genomes undergo large-scale mutations. A segment of DNA can get reversed, moved to another

position, or even another chromosome.

If we compare genomes of related extant species, we can �nd long conserved regions of DNA (such as

genes) which are very similar sequentially, however their order is di�erent. This motivates the following

biological problems which also pose intriguing challenges for computer science:

� How related are the two given organisms?

� How did their ancestor look like?

� More generally: If we know gene orders of multiple species and their phylogenetic tree, how did

the ancestral genomes look like?

� Given just the gene orders of multiple species, can we reconstruct their phylogenetic tree?

We formulate these questions as optimization problems: assuming a genome model with a �xed set of

allowed rearrangement operations, we can de�ne distance between two genomes as the minimum number

of rearrangements necessary to transform one genome into the other. The problems of reconstructing the

evolutionary history and the phylogenetic tree of given species is also formulated using the parsimony

criterion: we search a phylogenetic tree and ancestral genomes which minimize the total number of

rearrangement mutations in the evolutionary history.

In this thesis, we are interested in both theoretical and practical problems in genome rearrangements.

We propose a new approach to ancestral genome reconstruction and we implement one of the �rst

practical tools applicable to analysis of real datasets spanning a complex phylogeny and accommodating

a variety of genome architectures. We demonstrate the accuracy of our program on the well-studied

dataset of Campanulaceae chloroplast genomes, and apply it to the reconstruction of rearrangement

histories of newly sequenced mitochondrial genomes of pathogenic yeasts from Hemiascomycetes clade.

We revisit the restricted DCJ model by Yancopoulos et al. We propose an O(n log n) time algorithm

for sorting in this model, thus improving on the existing quadratic algorithm, and develop a new linear

time algorithm for genome halving.

7



Our main results concern several open problems in the breakpoint model. We give an O(n
√
n)

algorithm for the median problem improving on the existing cubic algorithm. Furthermore, we show

that the problem is equivalent to �nding maximum matching. Thus, any improvement to our solution

would imply a better algorithm for the maximum matching, which has been an open problem for more

than 30 years. We also prove that the more general small phylogeny problem is NP-hard. Surprisingly,

we show that it is NP-hard (even APX-hard) already for four species. In other words, while �nding an

ancestor of three species is easy, �nding two ancestors of four species is already hard. We thereby solve

two open problems from the monograph by Fertin et al.: Combinatorics of genome rearrangements.

8



Abstrakt (Slovensky)

V dizerta£nej práci sa zaoberáme preusporiadaniami génov rôznych organizmov. Po£as evolúcie sa

genómy organizmov menia a vyvíjajú (mutujú). Okrem drobných zmien, pri ktorých sa mení len jedna

alebo zopár susedných báz (nukleotidov), sa po£as evolúcie z £asu na £as stane, ºe sa nejaký dlh²í

úsek DNA presunie na iné miesto, na opa£né vlákno, £i iný chromozóm. Ak sa teda dnes pozrieme na

genómy príbuzných druhov, vieme v nich nájs´ ve©mi podobné úseky, ktoré sú v²ak v rôznych druhoch na

rôznych miestach v genóme. To motivuje nasledujúce biologicky zaujímavé otázky, ktoré sú tieº výzvou

pre teoretickú informatiku:

� Nako©ko sú si dva organizmy príbuzné?

� Ako asi vyzeral genóm ich spolo£ného predka?

� Alebo v²eobecnej²ie: Ak poznáme genómy viacerých druhov a ich fylogenetický strom, ako asi

vyzerala ich evolu£ná história?

� Ak poznáme iba genómy viacerých druhov, ako vyzerá ich fylogenetický strom?

Existuje viacero matematických modelov, ktoré tieto javy podchycujú. Jednotlivé modely sa rôznia

pod©a toho, £i uvaºujeme druhy s jedným alebo moºno viacerými chromozómami, £i uvaºujeme druhy s

lineárnymi alebo cirkulárnymi chromozómami (alebo oboje) a tieº, aké typy mutácií uvaºujeme: inverzie,

transpozície, translokácie, at¤. Vzdialenos´ medzi dvoma genómami môºeme de�nova´ ako minimálny

po£et operácií, ktoré preusporiadajú jeden genóm na druhý. Úlohy o rekon²trukcii evolu£nej histórie

potom formulujeme ako h©adanie �najúspornej²ieho� rie²enia � pozorované poradia génov sa snaºíme

vysvetli´ pomocou £o najmen²ieho po£tu mutácií.

V rámci dizerta£nej práce sa venujeme viacerým teoretickým, ale aj praktickej²ím otázkam z oblasti

preusporiadania genómov. Navrhli sme nový prístup k rekon²trukcii usporiadaní génov a implementovali

sme jeden z prvých praktických nástrojov na rekon²trukciu evolu£nej histórie druhov s rôznymi chromozó-

movými architektúrami. V rámci projektu, na ktorom sme spolupracovali s odborníkmi z Prírodovedeckej

fakulty UK, sme ná² program pouºili na rekon²trukciu usporiadaní génov kvasinkových mitochondriál-

nych genómov.
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Navrhli sme nový, biologicky hodnovernej²í variant modelu DCJ. V tomto modeli sme navrhliO(n log n)

algoritmus pre tzv. problém triedenia, £ím sme zlep²ili dovtedy známy kvadratický algoritms, a vyrie²ili

sme problém pólenia genómov.

Vyrie²ili sme tieº viacero otvorených teoretických problémov v breakpoint modeli: Navrhli sme

O(n
√
n) algoritmus pre problém mediánu, £ím sme zlep²ili dovtedy známy kubický algoritmus. Tieº

sme dokázali, ºe zlep²enie ná²ho algoritmu by viedlo k lep²iemu algoritmu pre h©adanie maximálneho

párovania, £o je vy²e 30 rokov otvorený problém. Následne sme sa venovali problému rekon²trukcie an-

cestrálnych usporiadaní genómov. Dokázali sme, ºe uº pre ²tyri genómy je problém NP-´aºký, dokonca

APX-´aºký. Poznamenajme, ºe sme tým vyrie²ili dva otvorené problémy z monogra�e Fertin a spol.:

Combinatorics of genome rearrangements.
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Chapter 1

Introduction

1.1 Genome Rearrangements:

A Computer Scientist's Perspective

Introductory example. One of the �rst things a future computer scientist learns is how to sort a

sequence of numbers e�ciently (Knuth, 1973).

Now imagine that we are reordering heavy items, so we use a machine that can only exchange two

elements at a time. Since this machine is quite slow, we would like to save time and sort the items using

the least number of exchanges possible. Also, we would like to know the total number of steps needed

(in order to know whether we have enough time for a co�ee break). Consider for example permutation π

on Fig. 1.1. How many exchanges does it take to sort the permutation?

The answer is quite simple: Draw an edge from each element i to πi as in Fig. 1.1. Since each element

has one incoming and one outgoing edge, the graph consists of cycles only. In general, any permutation

can be uniquely decomposed into a set of cycles. Notice the self-loops at 5 and 8 � these signify that 5

and 8 are at their proper positions and do not need to be moved. In the identity permutation, all cycles

are self-loops, so we can think about sorting as breaking cycles.

3 1 6 9 5 2 4 8 7

Figure 1.1: Cycles of permutation.

It is easy to see that by any single exchange, the number of cycles may increase by at most 1. Since our

permutation π has only 4 cycles and the sorted permutation has 9 cycles, we need at least 5 exchanges.

On the other hand, in each step, we can move one element to its proper place and thus create a new

self-loop, so 5 exchanges are su�cient (see Fig. 1.2 for a 5-step sorting scenario). In general, a permutation

π on {1, 2, . . . , n}, which can be decomposed into c(π) cycles, can be sorted by d(π) = n−c(π) exchanges.
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3 1 6 9 5 2 4 8 7

(a) The input permutation. Step 1: Exchange 3 and 6.

6 1 3 9 5 2 4 8 7

(b) Step 2: Exchange 6 and 2.

2 1 3 9 5 6 4 8 7

(c) Step 3: Exchange 2 and 1.

1 2 3 9 5 6 4 8 7

(d) Step 4: Exchange 9 and 7.

1 2 3 7 5 6 4 8 9

(e) Step 5: Exchange 7 and 4.

1 2 3 4 5 6 7 8 9

(f) Sorted permutation (all the cycles are self-loops).

Figure 1.2: One way of sorting permutation (3, 1, 6, 9, 5, 2, 4, 8, 7) by 5 exchanges.

We may ask a more general question: Given two permutations π and σ, what is the minimum number

of exchanges d(π, σ) needed to transform π into σ? We call d(π, σ) the distance from π to σ and it can

be easily shown that d is indeed a metric on the symmetric group Sn.

It should not be very surprising that computing the distance between two permutations is nothing else

but sorting � up to renaming the elements. More precisely: d(π, σ) = d(σ−1 ◦π, σ−1 ◦σ) = d(σ−1 ◦π, ı) ≡
d(σ−1 ◦ π). Furthermore, given two permutations π and σ, we can �nd their distance and a sequence of

exchanges transforming π into σ in linear time.

Variants. Once we have solved the problem of sorting by exchanges, we may think about other variants

of this problem. What if our machine did not exchange two elements? We may wonder, how would we

sort our sequence, if the machine could, for example, take a block of elements of arbitrary length and

insert it elsewhere into the sequence; or if the machine could exchange two blocks of arbitrary length.

By varying the available rearrangement operations, we obtain di�erent metrics and di�erent variants

of the sorting problem. In each case, the problems are of the following form: Given two permutations π

and σ,

� �nd the least number of operations transforming π into σ, and

� �nd a particular sequence of operations of the minimum length.

Sorting pancakes. One of the well known variants of the problem (at least in the computer science

community) is the sorting by pre�x reversals, or pancake sorting problem. Imagine a plate with a stack

of pancakes. Due to a sloppy chef, all the pancakes come in di�erent sizes and we would like to sort them

12



from the largest at the bottom to the smallest on the top. We can use a �ipper to lift some pancakes from

the top and �ip them all at once. What is the minimum number of �ips we need to sort the pancakes?

Probably the simplest way to sort the pancakes takes 2n−3 steps: We proceed from bottom up; once

the (k− 1) largest pancakes are at the bottom, we slip the �ipper right beneath the kth largest pancake.

This �ip moves the pancake to the top of the stack and with another �ip, we can move it to its proper

place.

Thus, we have an upper bound on the number of �ips. However, this is rarely the shortest sorting

sequence (see for example Fig. 1.3 showing a permutation of length 6 that can be sorted by 7 �ips).

Figure 1.3: Sorting a stack of pancakes (4, 6, 2, 5, 1, 3) by 7 �ips. (This is one of the two permutations of

length 6 that needs the highest number of �ips.)

What can we say about a lower bound? Let us add element n + 1 at the end of a permutation (set

πn+1 = n+ 1). We call two successive elements πi, πi+1 an adjacency, if πi and πi+1 are two consecutive

numbers (|πi − πi+1| = 1); otherwise call the pair a breakpoint. Identity permutation of length n has

n adjacencies and no breakpoints. Furthermore, by one �ip we can decrease the number of breakpoints

by at most one, so the number of breakpoints in a permutation is a lower bound on the number of �ips.

For example, the permutation in Fig. 1.3 has 6 breakpoints (including the bottom one), so it requires at

least 6 �ips to sort.

These bounds are not very tight and certainly not the best bounds known. The number of �ips for

the worst-case permutation (diameter of the metric space) lies between 15/14n (Heydari and Sudborough,

1997) and 18/11n + O(1) (Chitturi et al., 2009). It has been recently shown that computing the exact

distance is NP-hard (Bulteau et al., 2012a).

Sorting burnt pancakes. In the previous problem, both sides of each pancake were equivalent. In a

related problem called burnt pancakes, the chef was even sloppier and all the pancakes are burnt on one

side. In addition to sorting them from the largest to the smallest, we want all the pancakes to be placed

burnt side down (so the customer does not notice). That is, in this case, the pancakes have orientation

(burnt side up or burnt side down); �ipping them reverses their order and �ips their orientation.

We model burnt pancakes by signed permutations, where each element x has orientation ←−x or −→x .
We write simply x if we do not refer to x's orientation and −x for x with the opposite orientation (so

−←−x = −→x and −−→x =←−x ).
There is not much known about sorting burnt pancakes. For instance, the complexity of computing

the minimum number of �ips for a given permutation and orientations of the pancakes is not known. For

the diameter, we have a lower bound of 3/2n and an upper bound of 2n− 2 (Cohen and Blum, 1995).
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Sorting by reversals. As a �nal example, let us present a problem, which is much better explored.

Imagine that we have two �ippers. When sorting the pancakes, we use the �rst one to lift a couple of

pancakes from the top. Then we use the second one to actually �ip some pancakes. Finally, we return

the lifted pancakes back to the top of the pile in the original order and orientation. In this way, we can

reverse any block of pancakes and the minimum number of these moves required to sort a permutation

is called reversal distance.

The problem of computing reversal distance is solved for both signed and unsigned permutations and

these results are one of the most profound results in the �eld of genome rearrangements. Even though

the di�erence between unsigned and signed permutations may seem subtle, at least in case of reversal

distance, the impact of this change on algorithmic solution is profound: while computing the unsigned

reversal distance is NP-hard, not approximable within 1.0008, but 1.375-approximable (Caprara, 1997;

Berman and Karpinski, 1999; Berman et al., 2002), the reversal distance of signed permutations can be

found in linear time (Hannenhalli and Pevzner, 1999; Bader et al., 2001).

Genome rearrangements. Problems such as sorting pancakes and its variants belong to recreational

mathematics and nobody ever expected that they would have any practical applications. A new impetus

for the �eld, however, came from molecular biology and genetics where operations such as reversals or

movements of entire blocks actually happen at the level of DNA. During the evolution, rearrangement

mutations shu�e the order of genes in genomes of organisms and seeing the present-day state, we would

like to infer something about the evolutionary history. Thus, we could say that today people spend more

time sorting genes than pancakes.

In the next section, we review the basics of biology and all the interesting rearrangement operations

and in the subsequent section, we state some problems inspired by comparative genomics that we will

study in the rest of the thesis.

1.2 Genome Rearrangements: A Biologist's Perspective

Genome. All the hereditary information that is passed from parent to an o�spring is stored in form

of DNA and is present in every cell of a living organism (see Fig. 1.4). Regions of DNA called genes

are �recipes� for construction of other macro-molecules in the cell: the RNAs and proteins, which are

the workhorses of the cell.

DNA is made of two strands twisted in a double helix. Each strand is a long chain of repeating units,

called nucleotides or bases (adenine, cytosine, guanine, or thymine), and we can represent the strand as a

string over the alphabet {A, C, G, T}. The two strands are complementary: each A on one strand is always

paired with a T on the other strand and each C is always paired with a G on the other strand. Thus, each

strand can serve as a template to create the other one, which is important during the replication of DNA.

Moreover, a strand of DNA has a direction (this is due to the asymmetric nature of the chemical bonds

linking nucleotides) and the two strands run in opposite directions.
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Figure 1.4: Nuclear genome consisting of multiple linear chromosomes. Each chromosome is a single

long DNA molecule tightly packed together. DNA consists of two complementary strands running in

opposite directions and twisted in a double helix. Each strand is a long chain of nucleotides: adenine,

cytosine, guanine, and thymine (A, C, G, T); A is always paired with T and C is always paired with G.

Source: modi�ed from National Human Genome Research Institute.

Each DNA molecule is tightly packed together forming a structure called chromosome and the whole

genome may consist of several chromosomes. While genomes of prokaryotes (bacteria and archaea) usu-

ally consist of just a single chromosome in their cytoplasm, cells of eukaryotic organisms (such as animals,

plants, or fungi) typically contain multiple chromosomes in their nuclei. For example baker's yeasts have

32 chromosomes, mice have 40 chromosomes, and humans have 46 chromosomes. In eukaryotes, some

DNA is also stored in the organelles such as mitochondria or chloroplasts.

Species may also di�er in chromosome architecture: DNA in prokaryotes or in organelles usually forms

a loop � a circular chromosome; on the other hand, chromosomes in the nuclear genomes of eukaryotes

are typically linear, ending with a structure called telomere on each side.

Mutations. The DNA replication process is not infallible and from time to time, a �typo� occurs. These

typos are called point mutations and are one of the sources of genetic variation. From time to time, even

larger errors occur. If we explore, for example, human genome, we can �nd a lot of repeating sequences.

These are the results of duplications, which copy a segment of DNA. Common are tandem duplications,

in which the copied segment is inserted next to the original (see Fig. 1.5(a)). General duplications are

also called retrotranspositions (Fig. 1.5(b)). Similarly, a segment of DNA may be deleted (Fig. 1.5(c)).
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a b c d e tandem duplication a b c b c d e

(a) Tandem duplication.

a b c d e retrotransposition a b c d b c e

(b) Duplication.

a b c d e deletion a d e

(c) Deletion.

a b c d e

v w x y z

whole
genome

duplication

a b c d e

a b c d e

v w x y z

v w x y z

(d) Whole genome duplication.

Figure 1.5: Large scale mutations. Each arrow represents a segment of DNA; recall that DNA consists

of two strands running in opposite direction.

An extreme case is a whole genome duplication (Fig. 1.5(d)), which may occur due to abnormal cell

division. Most organisms, including humans, are diploid, i.e., they have two sets of chromosomes � each

inherited from one parent. But there are species, especially plants, which are polyploid � they underwent

a whole genome duplication and thus have more than two sets of chromosomes. For example, there are

strains of wheat which are diploid, tetraploid (macaroni wheat), and hexaploid (bread wheat) � having

respectively 2, 4, or 6 sets of chromosomes (Simmonds et al., 1976).

Rearrangements. If we compare genomes of di�erent species, we often �nd very similar segments of

DNA, since the two species share a common ancestor and important segments of DNA, such as genes,

are usually well conserved. This is because a deleterious mutation may disable a gene. If the gene

encoded some protein, the protein may not be produced. This may mean that some process in a cell fails

and this may have even lethal consequences. The organism may have a lower chance to mate and thus,

such a mutation may not proliferate to the descendants of the organism. On the other hand, neutral or

bene�cial mutations may accumulate throughout the evolution.

Let us take for example human and mouse genome and choose a di�erent colour for each mouse

chromosome. If we paint each segment of human DNA similar (in sequence) to a mouse DNA by the

colour of the corresponding chromosome in mouse, we obtain Fig. 1.6. We can see that there are long

segments of DNA, called conserved syntenies, that are well-preserved, but shu�ed around the genome.

This is the result of various rearrangement mutations depicted in Fig. 1.8.

Another example is shown in Fig. 1.7: If we compare the mitochondrial genome of cabbage and turnip,

we can identify �ve segments of DNA which are sequentially almost identical, however, their order in

cabbage and in turnip is di�erent. Figure 1.7 also shows three reversals which might have occurred
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Figure 1.6: Human chromosomes with segments containing at least two genes whose order is conserved in

the mouse genome as colour blocks. Each colour corresponds to a particular mouse chromosome. Source:

International Human Genome Sequencing Consortium, Lander et al. (2001).

Figure 1.7: Mitochondrial genomes of cabbage and turnip. Let us number the conserved segments 1, . . . , 5

and depict them as arrows; a minus sign and an arrow in opposite direction represent a segment on the

opposite strand. The `X' marks show segments which were probably reversed during the evolution.

during the evolution of cabbage and turnip from their common ancestor and which provide one possible

explanation for these data.

The most common rearrangement mutation is a reversal (also called inversion, see Fig. 1.8(a)), which

may occur when the double helix breaks at two points. The cell machinery tries to repair this defect,

but accidentally, it �glues� the middle part in the opposite direction. A di�erent mechanism is shown

in Fig. 1.9. Here, a motif gets accidentally paired with its remote copy on the other strand (a so called

crossover). Resolving this intertwining leads to reversing the segment between the two motifs.
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a b c d e reversal a e

d c b

(a) Reversal. The order of markers b, c, d is reversed. Moreover, they also move onto the opposite strand, so their orientation

is also �ipped.

a b c d e transposition a d b c e

(b) Transposition. Block b, c is moved after block d. Note that this is the same as if block d moved before b, c. In other

words, two consecutive blocks are swapped.

a b c d e

v w x y z

translocation

a b x y z

v w c d e

(c) Translocation. Arms of two chromosomes are interchanged.

a b c

x y z

fusion

fission

a b c x y z

(d) Fusion of two chromosomes and the reverse process � chromosomal �ssion. (This can be treated as an extreme case of

translocation, where an empty block is exchanged for a whole chromosome.)

a b c d e circularisation

linearisation

a

b

c

d

e

(e) Circularization and linearization of a chromosome. (This can be treated as a special case of circular exci-

sion/incorporation.)

a b c d e
circular
excision

integration

a e
b

c

d

(f) Circular excision and the reverse process � integration of a circular chromosome.

a

b

c

d

e

reversal

a

d

e

c

b

(g) Reversal in a circular chromosome.

a

b

c

d

e

fission

fusion

a

d

e

b

c

(h) Fusion and �ssion of circular chromosomes.

Figure 1.8: Rearrangements changing the order of genes, number, or architecture of chromosomes. These

operations, however, do not change the gene content.
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Figure 1.9: One possible mechanism of reversal: The white and black arrows represent similar sequences

which are accidentally paired. The sequence inbetween is reversed when the crossover is resolved.

Similarly, if the chromosome breaks at 3 places and the pieces are restored in the wrong order, we

end up with a transposition (Fig. 1.8(b)). Alternatively, there are sequences of DNA, called transposons,

which can move (transpose) to other positions in the genome by themselves.

If the genome consists of several chromosomes, two di�erent chromosomes may break, or a crossover

between two di�erent chromosomes may occur, which leads to a translocation (see Fig. 1.8(c)).

Karyotype, the number and appearance of chromosomes, may change by fusion of two chromosomes

or �ssion of a single chromosome (Fig. 1.8(d)). A linear chromosome may turn into a circular and vice

versa (Fig. 1.8(e)). A circular segment may be excised (Fig. 1.8(f)) and later reincorporated into a linear

chromosome (this is actually one of the mechanisms of transposition).

Finally, similar rearrangements may occur in circular genomes (Fig. 1.8(g) and 1.8(h)).

Problems motivated by comparative genomics. In this thesis, we will be interested mainly in

rearrangements, i.e., large-scale mutations that do not change the gene content, but shu�e the genes

around the genome.

We can compare gene orders of di�erent species and estimate how similar they are by counting the

number of rearrangements needed to transform one genome into another. See for example Fig. 1.10

depicting mitochondrial genomes of �ve yeast species from the genus Candida. In each genome, there

are 14 protein coding genes and two ribosomal RNA genes (plus some tRNA genes, not shown). Even

though these species are quite close, we can see a variety of genome architectures: C. subhashii and C.

parapsilosis are linear, C. frijolesensis has two linear chromosomes, and C. jiufengensis and C. tropicalis

have circular chromosomes.

The following questions arise naturally while one studies these species:

� Which two Candida species are the most closely related?

� How did the ancestor of C. parapsilosis and C. jiufengensis look like? What was its purported

gene order and how did it evolve into C. parapsilosis and C. jiufengensis?

� The same question may be asked for the ancestor of C. tropicalis and C.frijolesensis.
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C. parapsilosis
nad3 nad2 cob cox2 rnl cox1 nad4 rns atp9 nad6 nad1 cox3 nad4L nad5 atp8 atp6

C. jiufengensis
nad3 nad2 cob atp9 rns nad4 cox1 atp6 atp8 nad5 nad4L cox3 nad1 nad6 cox2 rnl

C. tropicalis
nad3 nad2 atp9 rns nad5 nad4L nad4 atp8 atp6 cox3 nad1 nad6 cox2 rnl cox1 cob

C. frijolesensis
rnl cox2 nad6 nad1 cox3 cox1 cob rns atp9 nad2 nad3 nad5 nad4L nad4 atp8 atp6

C. subhashii
cob atp9 rns nad4 nad1 nad6 cox2 rnl nad4L nad5 cox1 cox3 nad2 nad3 atp8 atp6

Figure 1.10: Gene orders of mitochondrial DNA of �ve Candida species.

C. parapsilosis

C. jiufengensis

C. tropicalis

C. frijolesensis

C. subhashii

Figure 1.11: Phylogenetic tree of the �ve Candida species.

� More generally, assume that the correct phylogenetic relationships between the given �ve species

are as depicted in Fig. 1.11. How did the gene orders of all ancestral species look like?

� Even more generally, taking into account the gene orders, which one of all 105 phylogenetic trees

is the most likely?

In fact, all of these questions can be simply summarized as

What happened during the evolution?

Why to study rearrangements. From the biological point of view, the rearrangement mutations

are interesting, because they may cause inability of organisms to cross-breed and thus emergence of new

species (a so called speciation).

Questions like what is the evolutionary distance between the two species and which is the correct

evolutionary tree are also studied at the level of DNA sequence. Here, the measure of similarity is the

sequence similarity (the number of point mutations). The advantage of rearrangements is that these

events are much rarer in the evolution, so they allow us to look deeper into the evolutionary history.

1.3 Computational Problems in Genome Rearrangements

Probabilistic methods vs. parsimony. There are basically two approaches used to answer questions

about evolution. The �rst one is probabilistic: we model the evolutionary events as random processes,

and we either ask which values of the model parameters maximize the probability that we obtain the
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observed data (the maximum likelihood methods), or compute an approximate probability distribution

over the parameters of interest by sampling from the a posteriori distribution given the observed data

(Bayesian inference).

The second approach is based on the parsimony principle � the most succinct explanation is considered

the best. More speci�cally: An evolutionary scenario best explains gene orders of the extant species, if

it has the minimum number of rearrangements.

Even though the probabilistic approach would be more satisfactory, it is the parsimony principle that

is prevailing in the �eld of genome rearrangements and that we use in this thesis. There are basically

three reasons for this:

1. Firstly (on the positive side), the rearrangement mutations are very rare so it makes perfect sense

to prefer solutions which predict as few mutations as possible.

2. Secondly, (on the negative side), we do not have a decent probabilistic model. We know that

among the rearrangement operations, reversals and translocations are the most common. However,

we have no idea, what is the relative frequency of reversals compared to, say, translocations or

transpositions. Furthermore, even if we consider reversals only: What is the relative frequency

of reversals of di�erent lengths? Perhaps, shorter reversals are more frequent than longer ones.

Finally, some places in the genome are more prone to breakage than others and these places have

higher probability of being an endpoint of a reversed interval. A good probabilistic model for

genome rearrangements should take all these factors into account.

3. Thirdly, the rearrangement problems in the parsimony setting are interesting (and hard) enough

to be studied in their own right.

Genome models. In this chapter, we introduce the fundamental problems in the �eld of genome

rearrangements. Naturally, the answers to these problems depend on what do we mean by �genome�

and what do we mean by �rearrangement�. Do we work with linear genomes only, or do we consider also

circular ones? What are the operations that rearrange the genomes throughout the evolution? Reversals?

Translocations? Transpositions? Fusions and �ssions? Some combination of the former?

For example, if all the species in consideration have multiple linear chromosomes, also the ancestral

genomes should be multilinear and the most common rearrangement operations are reversals and translo-

cations. On the other hand, if all the species in consideration have only a single circular chromosome,

perhaps the ancestral genomes should also be circular and the only allowed rearrangement operation

should be reversal.

Various genome models have been proposed. These may be divided into signed and unsigned (de-

pending on whether we know the orientation of genes), linear, circular, and mixed (depending on what

chromosomal architectures are allowed), and unichromosomal and multichromosomal (depending on

whether multiple chromosomes are allowed).
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Di�erent genome models will be discussed in Chapter 2. However, for each genome model, we can

study essentially the same problems. Thus, for now, suppose that we have settled for a particular genome

model and let us introduce di�erent kinds of problems that we meet in the �eld of genome rearrangements.

Rearrangement distance. The biological motivation for our �rst problem is in Fig. 1.12. We imagine

species α, an extinct common ancestor of two extant species π and γ. Starting with the common

ancestral gene order, after speciation the two species evolve independently and undergo mutations. We

can determine the gene orders of π and γ and we can ask, how many mutations occurred during the

evolution. Or, according to the parsimony principle (since rearrangement mutations are rare), what is

the minimum number of mutations necessary to explain given gene orders? Since all genome models

considered here are symmetric, we can rephrase that as: What is the minimum number of rearrangements

needed to transform π into γ?

extant species
1 −3−4−2 5 1 −2 3 4 5

π γ

1 2 3 4 5

1 2 3 4 5 1 2 3 4 5
speciation event

1 −4−3−2 5

1 −3−4−2 5

1 2 3 4 5

1 −2 3 4 5

time

common ancestor α

extant species

Figure 1.12: Evolution of gene orders π and γ from the common ancestor α.

Problem 1 (Rearrangement distance). Given two genomes π and γ, �nd the distance d(π, γ), the

minimum number of rearrangements needed to transform π into γ.

The genomic distance between π and γ is a lower bound on the true number of mutations through-

out the evolution of π and γ from their common ancestor α. It is a fundamental problem in genome

rearrangements, since rearrangement distance is indeed a distance measure (mathematically speaking,

the set of all gene orders is a metric space), and all of the other rearrangement problems build upon the

ability to compute this distance.

A related problem is the sorting problem, in which we not only want to compute the genomic distance,

but also one particular shortest sequence of rearrangement operations transforming π into γ.

Problem 2 (Sorting). Given two genomes π and γ, �nd a shortest sequence of rearrangements trans-

forming π into γ.

Note that computing the rearrangement distance and �nding one optimal sorting scenario are two

distinct problems, the sorting problem being possibly harder. If we can sort e�ciently, we can also
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compute the distance e�ciently. On the other hand, in all models that we consider in this thesis, there

are only polynomially many rearrangements available in each step, and the distance is at most linear

in the number of genes. Thus, if we can compute the distance in polynomial time, we can also sort in

polynomial time by trying all possible moves and searching for one which decreases the distance. Usually,

there are more e�cient ways to sort the genome and we will study them together with computing the

genomic distance in the next chapter.

Median. Note that the gene orders π and γ do not provide enough information to reconstruct the

ancestral genome α. Therefore, let us consider gene order ρ of an outgroup species. For instance,

returning to our example with yeast gene orders and the phylogenetic tree in Fig. 1.11, if we wanted

to reconstruct, say, the gene order of C. parapsilosis and C. tropicalis common ancestor, we could take

C. subhashii as an outgroup.

According to the parsimony principle, the answer we consider the best is a gene order M which

minimizes the sum of pairwise distances between M and π, γ, and ρ. Such a genome is called median

and the corresponding problem is called median problem.

Problem 3 (Median). Given three genomes π, γ, ρ, �nd genome M , called median, that minimizes the

sum of distances from the three given genomes d(M,π) + d(M,γ) + d(M,ρ).

Unfortunately, as we will see in Chapter 3, for most genomic distances this problem is hard. However,

we will describe several practical algorithms for computing the median.

Rearrangement phylogenies. As mentioned in the previous section, even more ambitious problem

is to compute gene orders of all the ancestral species on a given phylogeny � a so called small phylogeny

problem.

Problem 4 (Small phylogeny). Given a phylogenetic tree and genomes of the extant species (leaves of

the tree), �nd genomes of the ancestral species (internal vertices), while minimizing the overall number

of rearrangements throughout the evolution (the sum of distances along the edges of the tree).

If the phylogenetic tree of the species is not given, we may try to reconstruct one based on the gene

orders. This is the large phylogeny problem.

Problem 5 (Large phylogeny). Given the genomes of extant species, �nd both a phylogenetic tree

and genomes of the ancestral species, while minimizing the number of rearrangements in the evolutionary

history.

We will study practical solutions to both small and large phylogeny problems in Chapters 5 and 7.

Whole genome duplication. The problems above are usually studied for genomes having no dupli-

cations. We will see in Section 2.5, that once we start considering duplications, even computing the
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distance becomes hard. There is, however, a very special case of duplication which deserves more study:

a whole genome duplication.

Genome halving. Imagine a genome that underwent a whole genome duplication and then evolved by

large-scale rearrangements (Fig. 1.13). Even though immediately after the duplication the genome had

two perfect copies of each chromosome, nowadays we observe the copies scattered all over the genome.

The goal of the halving problem is, given a present genome with two copies of each gene, to reconstruct

the genome immediately after the duplication. In other words, the goal of genome halving is to �nd a

perfectly duplicated genome with the smallest genomic distance from the given genome.

extant species δ
1 4 3 4 5 1 2 −2−3 5

1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

1 2 5 1 2 3 4 3 4 5

1 4 3 4 5 1 2 3 2 5

1 4 3 4 5 1 2 −2−3 5

time

pre-duplication ancestor α

whole-genome duplication

perfectly duplicated ancestor θ

Figure 1.13: The ancestral genome undergoes a whole genome duplication and subsequently evolves by

rearrangements. The goal of genome halving is to reconstruct the genome immediately after the whole

genome duplication, given the gene order of the extant species.

Problem 6 (Genome Halving). Given a duplicated genome δ, �nd a perfectly duplicated genome θ

that minimizes the rearrangement distance d(θ, δ).

We will study the halving problem and its variants in Chapter 4.

1.4 Outline of the Thesis and Contributions

This thesis consists of two parts. In the �rst part, we survey prior research on the rearrangement

problems:

� In Chapter 2, we introduce di�erent genome models and study the most basic problems in genome

rearrangements � computing the distance and sorting. The chapter is centered around the most

general, double cut and join model, and other models (reversal and reversal-translocation models)

are viewed as its restrictions.

� Chapter 3 deals with the problem of reconstructing a single ancestral gene order (Problem 3).
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Unfortunately, the problem is hard for most genomic distances, but we will describe practical ways

of solving it.

� In Chapter 4, we study the halving problem and its variants such as double distance, guided

halving, and genome aliquoting. In these problems, we try to reconstruct the pre-duplication state

of a genome that underwent a whole genome duplication. These problems are usually approached

with the techniques introduced in the previous two chapters.

� Finally, in Chapter 5, we survey the attempts to solve biologically most interesting problems in

rearrangements which also happen to be computationally hardest: reconstructing the phylogenetic

tree and the evolutionary history on the set of many species.

The second part of the thesis contains our contributions:

� In Chapter 6, we de�ne a new model, a restricted version of the double cut and join model from

Section 2.2, and in this model, we study the three classical problems: sorting, halving, and median.

We propose a new O(n log n) algorithm for the restricted sorting problem, thus improving on the

known quadratic time algorithm. We solve the restricted halving problem and give an algorithm

that computes a multilinear halved genome in linear time. Finally, we show that the restricted

median problem is NP-hard as conjectured.

� Chapter 7 is more practical, and deals with the problem of reconstructing ancestral gene-orders.

We propose a new approach to solving the small phylogeny problem and implement it in our

software PIVO. We demonstrate the accuracy of our program on the well-studied dataset of Cam-

panulaceae chloroplast genomes, and apply it to the reconstruction of rearrangement histories of

newly sequenced mitochondrial genomes of pathogenic yeasts from Hemiascomycetes clade.

� In the last chapter, we solve several open problems concerning computational complexity of re-

arrangement problems in the breakpoint model. We give an O(n
√
n) algorithm for the median

problem improving on the cubic algorithm by Tannier et al. (2009). Moreover, we show that the

problem is equivalent (under linear reduction) to �nding maximum matching. Thus, any improve-

ment to our solution would imply a better algorithm for the maximum matching, which has been

an open problem for more than 30 years (Micali and Vazirani, 1980).

The general breakpoint model is one of the very few models, where the median problem is easy. It

was an open problem whether the results of Tannier et al. (2009) can be generalized to reconstruct-

ing evolutionary history of many species. We prove that the more general small phylogeny problem

is NP-hard. Surprisingly, we show that it is already NP-hard (or even APX-hard) for four species

(a quartet phylogeny). In other words, while �nding an ancestor for three species is easy, �nding

two ancestors for four species is already hard.
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Chapter 2

Distances Between Genomes

There are dozens of genome models, depending on what combination of karyotype and subset of rear-

rangement operations we choose. However, not all of them are biologically interesting. We will be mainly

interested in signed genomes, where the orientation of all genes is known.

In this chapter, we review the most important genomic distances studied in the literature. We start

in Section 2.1 by formalizing the notion of a genome and by introducing the simplest distance measure,

the breakpoint distance. In Section 2.2, we de�ne a very simple and general operation, called double

cut and join (DCJ). With this operation, we can model all the interesting rearrangement operations

described in the previous chapter. We will then present the last two models as restrictions of the

DCJ model, reusing the framework and achieved results. In Section 2.3, we study distance and sorting

problems for genomes with single chromosome evolving by the most common rearrangement operation �

reversal, and in Section 2.4, we generalize the results to multilinear chromosomes, where translocations,

fusions and �ssions are also common. Finally, in Section 2.5, we brie�y mention other distances and

point to further literature.

2.1 Genome Representation and Breakpoint Distance

The units that are shu�ed around the genome may be individual genes or even larger blocks called

conserved syntenies. We call them simply genes or markers. We will assume that every genome consists

of the same set of markers, usually numbered 1, 2, . . . , n.

Unsigned genomes. If we do not know the orientation of markers, we model genomes as unsigned

genomes and we represent them by undirected graphs with maximum degree 2. Each marker is rep-

resented by a single vertex and consecutive markers are connected by edges called adjacencies. The

components of such graphs are paths and cycles, which naturally correspond to linear and circular chro-

mosomes, respectively.
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(a) The order of genes in a

genome. Each arrow corre-

sponds to a single marker with

known orientation.
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2
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(b) Representation of the genome on the left by a perfect matching.

The green edges are the adjacencies of π, the gray edges form the base

matching B. The Hamiltonian cycle π ·∪ B corresponds to the single

circular chromosome.

Figure 2.1: Example of a circular genome π and its representation by a perfect matching.

Signed genomes. If we do know the orientation of markers, we represent each marker by two vertices.

These are called extremities of the marker and they correspond to the left and right side, or tail and head

of the marker. Ifm is a marker, we denotem− the left side andm+ the right side. If two extremities p and

q lie next to each other in the genome, we say that the pair {p, q}, written simply pq, is an adjacency. For

example, in Fig. 2.1(a), head of marker 1 is next to head of marker 5, so 1+5+ is an adjacency. Similarly,

tail of marker 5 is next to head of marker 4, so 5−4+ is an adjacency. All the adjacencies of the genome

in Fig. 2.1(a) are depicted in Fig. 2.1(b) by green edges.

De�nition 1. A general (multichromosomal circular) signed genome is a set of adjacencies such that

each extremity belongs to exactly one adjacency. In other words, a genome is a perfect matching of the

extremities.

Let us de�ne an auxiliary base matching B consisting of the marker edges m+m− for each marker m

(the gray matching in Fig. 2.1(b)). Then all vertices have degree 2 in the union1 π ·∪ B, and π ·∪ B
decomposes into a set of cycles, which naturally correspond to the circular chromosomes of our genome.

In the general (multichromosomal circular) model, genomes can have multiple circular chromosomes,

and any perfect matching π corresponds to a genome. In the unichromosomal circular model, we require

that the genome only consists of a single chromosome, so π ·∪B is a Hamiltonian cycle as in Fig. 2.1(b).

Such a matching π is sometimes called a Hamiltonian matching.

Representing linear chromosomes. There are two ways of generalizing the model to include linear

chromosomes. In the �rst one, we add a special vertex Tx called telomere for each extremity x. If x lies

at the end of a linear chromosome, we say that xTx is a telomeric adjacency.

De�nition 2. A general (mixed) signed genome is a set of adjacencies such that each extremity belongs

to exactly one adjacency. In other words, a genome is a matching on the set of extremities and telomeres

such that each telomere Tx may only be matched with x and all extremities are matched.

1technically, this is a disjoint or multiset union; we allow parallel edges forming 2-cycles
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(a) A genome with two linear and one circular chro-

mosome.
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(b) The same genome represented as a set of adjacencies

(green matching). Gray edges form the base matching B.

Components of π ·∪B are paths and cycles, corresponding

to linear and circular chromosomes, respectively.

Figure 2.2: Example of a mixed genome π and its representation.

In this model, π ·∪B consists of cycles and paths ending at telomeres, which naturally correspond to

the circular and linear chromosomes of our genome, respectively (see Fig. 2.2). In the multilinear model,

we require that all components of π ·∪B are paths and in the (unichromosomal) linear model, we require

that π ·∪B is a single path going through all extremities.

Alternatively, sometimes it is more convenient to represent the telomeres by a single vertex T. A

genome is again de�ned as a set of adjacencies such that each extremity belongs to exactly one adjacency.

Notation. Naturally, when writing out the genomes, we use a linear notation and we simply list

the markers along the chromosomes. For linear chromosomes, we choose a direction and then list the

markers from left to right; we write −→g , if extremity g− is before g+ and ←−g otherwise. Similarly, for

circular chromosomes, we choose a starting point and direction in which we list the markers. We use

parentheses for linear chromosomes and square brackets for circular chromosomes. Thus, we would write

the genome on Fig. 2.2(a) as (
−→
1 ,
←−
3 ,
−→
4 ), (

−→
2 ), [
−→
5 ,
−→
6 ]. Note that the representation is not unique and we

could also write the �rst chromosome as (
←−
4 ,
−→
3 ,
←−
1 ) and the circular chromosome as [

←−
6 ,
←−
5 ] or [

←−
5 ,
←−
6 ].

We will write −g for the reversed marker g, i.e., −←−g = −→g and −−→g = ←−g . If I = m1, . . . ,mk

is a sequence of markers, then −I = −mk, . . . ,−m1 is the reversed sequence. For example, if C is a

chromosome, then C = −C.

A short digression on linear and circular genomes. Other equivalent ways of de�ning genomes

can be found in the literature: Unsigned linear genomes naturally correspond to classical permutations.

Signed linear and circular genomes can be de�ned using permutations, however, de�ning more general

models this way becomes cumbersome (this is why we prefer the opposite direction starting with the most

general de�nition using graphs and then de�ning linear, circular, or multilinear genomes by restricting

the components of these graphs).

If we worked with linear genomes only, we could have de�ned them as signed permutations. Formally,
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a signed permutation on {1, 2, . . . , n} is a permutation π of the set {−n, . . . ,−2,−1,

1, 2, . . . , n} such that π−i = −πi. Thus, the whole mapping is speci�ed by the mapping of the posi-

tive elements (which determine the order and orientation of all genes).

Note that both signed permutations and paths in the graph-theoretic formulation are unchanged

when the whole chromosome is reversed. On the other hand, when working with linear genomes, it is

sometimes preferable to work with linear extensions of the permutations: we extend a signed permutation

π = (π1, . . . , πn) by adding sentinel markers
−→
0 at the beginning and

−−−→
n+ 1 at the end. This way, we can

�x the orientation of chromosomes.

Circular genomes could be de�ned by calling signed permutations π and γ equivalent if π can be

obtained from γ by rotating the elements and possibly reversing the whole set of elements, �ipping all

signs. A genomic circular permutation is then an equivalence class under this equivalence relation.

Breakpoint distance for linear genomes. Probably the simplest distance measure between two

permutations is the breakpoint distance introduced by Sanko� and Blanchette (1997). As we already

mentioned in Chapter 1, we can rename and �ip the markers in both permutations so that one of the

permutations is the identity.

Let π be a linear extension of a signed permutation; each consecutive pair (πi, πi+1) is called a point,

also written as πi • πi+1. If a point is of the form
−→
k •
−−−→
k + 1 or

←−−−
k + 1 •

←−
k , we call it a common adjacency,

otherwise, it is a breakpoint. In other words, breakpoints are positions, where π has to be broken in order

to transform it into the identity permutation.

Let us denote by bp(π) the number of breakpoints in permutation π, the breakpoint distance from the

identity permutation. In general, the breakpoint distance between two permutations π and γ is de�ned

as

bp(π, γ) = bp(γ−1 ◦ π).

Even though there are no underlying rearrangement operations in the breakpoint model, we can

transform π into γ by �rst cutting π into bp(π, γ) + 1 pieces and then rejoining the pieces in the correct

order. Thus, we could interpret bp(π, γ) as the number of �ssions and fusions needed to transform π

into γ.

Various rearrangement operations generally increase the breakpoint distance between the genomes,

unless they reuse already created breakpoints. Thus, the breakpoint distance may serve as a simple lower

bound for other distances. For example, a single reversal can only create at most two breakpoints, so

the reversal distance (studied in Section 2.3) is at least half the breakpoint distance.

Breakpoint distance for general genomes. In the general setting, when computing the breakpoint

distance between multichromosomal genomes π and γ, we simply look at the graphs of the two given

genomes and count how many adjacencies (and telomeres) do they have in common. Tannier et al. (2009)
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advocate the following de�nition of the breakpoint distance:

bp(π, γ) = n− a(π, γ)− e(π, γ)

2
,

where a(π, γ) is the number of adjacencies that π and γ have in common, and e(π, γ) is the number

of telomeres that they have in common. Note that this distance does not have to be integral, but for

unichromosomal genomes, it coincides with the de�nition in the previous paragraph if we consider linear

extensions of the genomes. In this de�nition, fusions and �ssions can create at most one breakpoint,

whereas reversals or translocations at most two.

2.2 The Double Cut and Join Distance

The double cut and join (DCJ) model was introduced by Yancopoulos et al. (2005) and revised by

Bergeron et al. (2006b). It models signed genomes, possibly with multiple linear or circular chromosomes

which evolve by double cut and join operations.

DCJ operation. A double cut and join operation models in a uni�ed way all the rearrangement

operations introduced in Section 1.2. In a single DCJ operation, we break the genome at two points

and then rejoin the four created endpoints in a di�erent way. More formally: A double cut and join

operation acting on adjacencies pq and rs replaces them by either adjacencies pr, qs, or ps, qr. We say

that the operation cuts pq and rs and joins either pr, qs, or ps, qr. For simplicity, formally we assume

that genomes contain in�nite number of loops at the telomeric vertex T (we may think of the loops as

empty chromosomes TT). In the de�nition of a DCJ operation, the adjacencies pq and rs that we cut

may be telomeric or even a telomeric loop TT.

By DCJ operations, we can mimic every common rearrangement operation in genomes: For example,

to reverse an interval, we cut at its boundaries and join the endpoints as in Fig. 2.3(a). If we cut

and join adjacencies of di�erent linear chromosomes, we get a translocation (Fig. 2.3(b)). We can fuse

two chromosomes into one by cutting their telomeric adjacencies pT and qT and joining pq and TT

(as a byproduct, we get an empty chromosome TT; Fig. 2.3(d)) or �ssion one chromosome by cutting

adjacencies pq and TT and joining pT and qT (see Fig. 2.3(c)).

Other rearrangements that can be simulated by DCJ operations are linearization and circularization

of a chromosome, circular excision and incorporation, or fusion and �ssion of circular chromosomes.

Furthermore, as we already mentioned in Section 1.2, transposition can be modeled by excision of

a circular fragment and its reincorporation at another location. In fact, excision and reincorporation

can mimic a more general operation called block interchange (see Fig. 2.4). Transposition is a special

case of block interchange, where the two interchanged blocks are adjacent (Fig. 1.8(b) in Section 1.2).

Transposition (or reversed transposition) occurs when the temporary circular chromosome breaks at the

same place where it was joined during excision. This is often the case since some positions of DNA are

more prone to breakage than the others. In fact, the block interchange operation as a generalization of
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T T

cut

cut

join

join

(a) Reversal as a DCJ operation.

T T

T T

cut

cut

join

(b) Translocation.

T T

T T

cut

cut

join join

(c) Fission; we cut a telomeric

loop.

T T TT

cut cut

join

join

(d) Fusion is a special case of a translocation that creates an empty

chromosome TT.

Figure 2.3: Examples of operations in the DCJ model. All the nodes marked with letter T correspond

to the single telomeric vertex.

a b c

b

a

c

abc

Figure 2.4: To interchange blocks a and c (left) in the DCJ model, we cut before a and after b and create

a temporary circular chromosome (center). The next operation cuts between a and b and after c and

reincorporates the blocks in the correct order (right).

transposition is not very biologically plausible. It was introduced by computer scientists, since it greatly

simpli�es problems; for example, sorting by block interchanges is easy (Christie, 1996), while sorting by

transpositions only is NP-hard (Bulteau et al., 2012b).

DCJ distance and scenarios. Naturally, a sequence of k DCJ operations transforming genome π

into γ is called a DCJ scenario of length k. A scenario of minimum length is called optimal and its length

is the DCJ distance between π and γ, denoted dcj (π, γ). More generally, a sequence of k DCJ operations

transforming π into π′ is optimal with respect to γ, if dcj (π, γ) = dcj (π′, γ) + k, i.e., all the operations

transform the genome towards γ.

There is an alternative interpretation of the DCJ distance � we can view the DCJ model as a model

with weighted operations:

� reversals, translocations, fusions, and �ssions have weight 1,

� translocations and block interchanges have weight 2.

It can be proved that there is always an optimal scenario using only reversals, translocations, and block

interchanges and any DCJ scenario with minimum weight is optimal. We will study such scenarios in

Chapter 6.
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T1- 1+3- 3+4+ 4-T 5+2- 2+5- T6- 6+7- 7+T

1+2- 2+1- T3- 3+4- 4+T T5- 5+T 6+7- 7+6-

1 3 4 5 2 6 7

1 2 3 4 5 6 7

Figure 2.5: Adjacency graph for the two genomes. It consists of one cycle, two odd-length paths, and

two even-length paths. Thus the distance between these genomes is 5.

Computing the DCJ distance. The distance and a sorting scenario can be calculated using an

adjacency graph AG(π, γ). This is a bipartite multigraph, where vertices are adjacencies of π and γ;

an adjacency in π is connected with an adjacency in γ by one edge for each extremity that they share

(Fig. 2.5). Since every adjacency is connected with one (telomeric) or two other adjacencies, this graph

consists of paths and cycles only. If π and γ share a common adjacency, this corresponds to a cycle of

length 2 or path of length 1 (common telomere) in the adjacency graph. Note that when π and γ are

equal, their adjacency graph consists of 2-cycles and 1-paths only. Thus, we may think of transforming

π into γ as breaking cycles and paths in the adjacency graph AG(π, γ).

The following observations are easily proved (Bergeron et al., 2006b):

Lemma 1. Let π and γ be two genomes on n markers, let c be the number of cycles and po the number

of paths of odd length in the adjacency graph AG(π, γ). Then π = γ if and only if n− (c+ po/2) = 0.

Lemma 2. The application of a single DCJ operation changes either the number of cycles in the adja-

cency graph by +1, 0, or −1 or the number of odd-length paths by +2, 0, or −2.

Corollary 1. Let π and γ be two genomes on n markers, let c be the number of cycles and po the number

of paths of odd length in the adjacency graph AG(π, γ). Then dcj (π, γ) ≥ n− (c+ po/2).

Thus, we have a lower bound on the number of DCJ operations needed to transform one genome into

another. On the other hand, a DCJ operation is so general that in any situation there is an appropriate

optimal operation: Let pq be an adjacency in γ that is not present in π; say π contains adjacencies pu,

qv (u, v may also be telomeres). Then by one DCJ operation cutting pu and qv, and joining pq and uv,

we create a new 2-cycle:

u|p

pq

q|v

=⇒

uvpq

pq

The remaining structure, either a path or a cycle, which contained up�pq�qv is just shortened by

two edges. Thus, the number of cycles increases and the distance is decreased by 1.
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Once all the adjacencies of γ belong to 2-cycles, the only undesired components in the adjacency graph

are paths of length 2 (where the telomeric adjacencies belong to γ). These correspond to chromosomes

which have to undergo fusion/�ssion in order to complete the transformation. By one DCJ operation, we

can either break a 2-path into two 1-paths, or join the ends to form a 2-cycle. In each case the distance

decreases by 1.

p|q

Tp qT

=⇒

Tp

Tp

qT

qT

Thus the lower bound can always be met and we can formulate a theorem giving the DCJ distance

between two genomes:

Theorem 1 (Bergeron et al. (2006b)). Given two genomes π and γ on n markers, let c be the

number of cycles and po be the number of paths of odd length in the adjacency graph AG(π, γ). Then the

distance between π and γ is

dcj(π, γ) = n− (c+ po/2).

Moreover, from the discussion it should be clear that we can generate a particular sorting scenario in

linear time. One example of DCJ sorting is shown in Fig. 2.6.

T 1- 1+3- 3+4+ 4-T 5+2- 2+ 5- T6- 6+7- 7+T

1+2- 2+1- T3- 3+4- 4+T T5- 5+T 6+7- 7+6-

(a) Adjacency graph of the input genomes. Step 1:

Cut T1−, 2+5− and join T5−, 1−2+.

1-2+ 1+ 3- 3+4+ 4-T 5+ 2- 5-T T6- 6+7- 7+T

1+2- 2+1- T3- 3+4- 4+T T5- 5+T 6+7- 7+6-

(b) Step 2: Cut 1+3−, 5+2− and join 1+2−, 5+3−.

1-2+ 1+2- 3+4+ 4-T 5+ 3- 5-T T6- 6+7- 7+T

2+1- 1+2- T3- 3+4- 4+T T5- 5+T 6+7- 7+6-

(c) Step 3: Cut 5+3− (and TT) and join 5+T, 3−
T.

1-2+ 1+2- 3-T 3+ 4+ 4- T 5-T 5+T T6- 6+7- 7+T

2+1- 1+2- T3- 3+4- 4+T T5- 5+T 6+7- 7+6-

(d) Step 4: Cut 3+4−, 4−
T and join 3+4−, 4+T.

1-2+ 1+2- 3-T 3+4- 4+T 5-T 5+T T 6- 6+7- 7+ T

2+1- 1+2- T3- 3+4- 4+T T5- 5+T 6+7- 7+6-

(e) Step 5: Cut T6−, 7+T and join 6+7− (and TT).

1-2+ 1+2- 3-T 3+4- 4+T 5-T 5+T 6+7- 7+6-

2+1- 1+2- T3- 3+4- 4+T T5- 5+T 6+7- 7+6-

(f) The adjacency graph now consists only of 2-cycles

and 1-paths so the two genomes are equal.

Figure 2.6: Example of DCJ sorting. We transform the top genome from Fig. 2.5 into the bottom one

using 5 DCJs.
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Table 2.1: History of results on the sorting by reversals problem.

Distance Sorting Notes

Hannenhalli and Pevzner (1995) O(n2) O(n4) �rst polynomial algorithm

Berman and Hannenhalli (1996) O(nα(n)) O(n2α(n))

Kaplan et al. (1999) O(n2)

Bader et al. (2001) O(n)

Bergeron (2005) O(n3) greatly simpli�ed the result

Bergeron and Mixtacki (2004) O(n) further simpli�cations

Kaplan and Verbin (2005) O(n
√
n log n) almost always (unproven, empirical)

Tannier et al. (2007) O(n
√
n log n)

Han (2006) O(n
√
n)

Swenson et al. (2010) O(n log n) for most permutations (empirical)

2.3 Reversal Distance

The reversal model was introduced by Sanko� (1992). Three years later Hannenhalli and Pevzner

(1995) devised a polynomial algorithm solving the sorting problem. This result was quite surprising;

the algorithm was slow and the proof was di�cult, but further results simplifying and speeding up the

algorithm followed (see Table 2.1).

Today, we can compute the reversal distance in linear time and produce an optimal sorting sequence

in O(n1.5) time. Furthermore, empirical data suggest that in fact, we can sort most permutations in

O(n log n) time. It remains an open problem to devise a deterministic algorithm that sorts all permuta-

tions in O(n log n) time.

We will assume that π = (
−→
0 , π1, . . . , πn,

−−−→
n+ 1) is a linear extension of a signed permutation. Reversal

operation inverting the segment from i to j is a signed permutation

ρ(i, j) = (0, 1, . . . , i− 1,−j,−(j − 1), . . . ,−i, j + 1, . . . , n+ 1),

so that

π ◦ ρ(i, j) = (
−→
0 , π1, . . . , πi−1,−πj ,−πj−1, . . . ,−πi, πj+1, . . . , πn,

−−−→
n+ 1).

The reversal distance between π and γ, denoted rev(π, γ), is the least number of reversals needed to

transform one permutation into another; however, since rev(π, γ) = rev(γ−1 ◦ π, ı), we will assume that

the second permutation is the identity and we will write simply rev(π) instead of rev(π, ı).

The reversal model and DCJ. We can also treat the reversal model as a restriction of the DCJ

model. In particular, we only allow operations that do not create new chromosomes. Since the DCJ

model supports reversals, but also various other operations, dcj (π, γ) ≤ rev(π, γ) and we immediately

have a lower bound on the reversal distance.
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This lower bound is not always tight. For example, in the DCJ model, we need 2 operations (one

block interchange) to sort permutation h = (
−→
0 ,
−→
2 ,
−→
1 ,
−→
3 ), but we need 3 reversals. This is because in the

DCJ model, we can create a new common adjacency in every step. On the other hand, in permutation h,

it is not possible to heal any breakpoint by a single reversal.

Opposite and aligned pairs. This leads us to the question: When is it possible to create a new

common adjacency by reversal? For two consecutive markers m and m+ 1, the answer is easy: we can

create adjacency m,m+ 1 by a single reversal if and only if they have opposite orientation in π; all the

four possible cases are:

(
−→
0 , . . . ,−→m, . . . . . . ,←−−−m+ 1, . . . ,

−−−→
n+ 1), (

−→
0 , . . . ,←−m, . . . . . .,−−−→m+ 1, . . . ,

−−−→
n+ 1),

(
−→
0 , . . . ,

−−−→
m+ 1, . . . . . .,←−m, . . . ,−−−→n+ 1), (

−→
0 , . . . ,

←−−−
m+ 1, . . . . . . ,−→m, . . . ,−−−→n+ 1).

In each case, the segment that should be reversed is underlined; in the �rst row, we create adjacency

(−→m,−−−→m+ 1), in the second row, we create adjacency (
←−−−
m+ 1,←−m).

If m and m + 1 have opposite orientation in π, we call (m,m + 1) an opposite pair2, otherwise

(m,m+ 1) is an aligned pair3. We can see that permutation h contains no opposite pairs and hence its

reversal distance is bigger than the DCJ distance. However, even when π does contain opposite pairs,

we have to be careful with the sorting. For instance, take π = (
−→
0 ,
←−
1 ,
←−
3 ,
−→
2 ,
−→
4 ); the DCJ distance from

the identity is 3 and it can be sorted by 3 reversals:

(
−→
0 ,
←−
1 ,
←−
3 ,
−→
2 ,
−→
4 )  (

−→
0 ,
−→
1 ,
←−
3 ,
−→
2 ,
−→
4 )  (

−→
0 ,
−→
1 ,
←−
2 ,
−→
3 ,
−→
4 )  ı

However, if we started di�erently and reversed
←−
1 ,
←−
3 in order to move

←−
1 next to

−→
2 , we would get

(
−→
0 ,
←−
1 ,
←−
3 ,
−→
2 ,
−→
4 )  (

−→
0 ,
−→
3 ,
−→
1 ,
−→
2 ,
−→
4 ),

which is bad (there are no opposite pairs in the permutation and we actually need 3 more reversals

to sort it). Note that both opposite pairs (
−→
0 ,
←−
1 ) and (

−→
2 ,
←−
3 ) changed into aligned pairs (

−→
0 ,
−→
1 ) and

(
−→
2 ,
−→
3 ). The moral of this story is: 1. Opposite pairs are good. 2. Reversals may have side e�ects � they

may turn an opposite pair into an aligned pair and vice versa. 3. We have to choose reversals carefully,

otherwise we may get stuck with a permutation with all pairs aligned.

Breakpoint graph. In the reversals theory, it is customary to use breakpoint graphs instead of adja-

cency graphs, so let us make a little detour and de�ne the breakpoint graphs before we study the e�ects

of reversals.

In the breakpoint graph BG(π), vertices are extremities of π (from the sentinels 0 and n+ 1 we only

include 0+ and (n + 1)−) and edges are of two types: black or reality edges are adjacencies in π and

grey or desire edges are adjacencies in the identity permutation, i.e., they connect pairs of consecutive

numbers (see Fig. 2.7 for an example of breakpoint graph).

2called oriented pair in literature
3called unoriented pair in literature; however, we �nd this terminology confusing
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−→
0

−→
2

←−
6

−→
5

←−
4

←−
7

−→
3

−→
8

←−
1

−→
9+ - + + - - + + - + - - + - + + - -

Figure 2.7: Breakpoint graph of π = (
−→
0 ,
−→
2 ,
←−
6 ,
−→
5 ,
←−
4 ,
←−
7 ,
−→
3 ,
−→
8 ,
←−
1 ,
−→
9 ); solid edges are the adjacencies

of π (black edges), while dotted edges are the adjacencies of the identity (grey edges).

Breakpoint graphs are closely related to adjacency graphs, in fact, adjacency graph is a line graph of

a breakpoint graph � for each edge in BG(π) there is a vertex in AG(π, ı) and two vertices in AG(π, ı)

are connected, if the corresponding edges are incident in BG(π). Our result rev(π) ≥ dcj (π, ı) can be

translated into the language of a breakpoint graphs as:

rev(π) ≥ n+ 1− c, (∗)

where c is the number of cycles in BG(π).

Also note that if grey edge corresponds to an opposite pair, the incident black edges should be cut

in order to move the pair together. We will denote vi the grey edge connecting i+ and (i+ 1)− and for

opposite pair (i, i+ 1), we will denote ρ(vi) the corresponding reversal that brings i and i+ 1 together.

Side e�ects of reversals. Notice that if two grey edges vi and vj are disjoint or nested, they do not

a�ect each other. On the other hand, if they overlap, then vi contains only one of the endpoints j and

j + 1. Thus, performing the reversal ρ(vi) changes the orientation of exactly one of the markers j and

j + 1 and the pair turns from opposite to aligned or from aligned to opposite. The overlap relation

between grey edges is therefore important.

Moreover, if vi overlaps edges vj and vk and we perform the reversal ρ(vi), the overlap relation

between vj and vk changes � if vj and vk overlapped, they will not overlap and if they did not overlap,

they will (see Fig. 2.8).

ρ(vi)

vj

vk

ρ(vi)

vj

vk

Figure 2.8: E�ect of reversal on overlapping edges: Grey edge vi overlaps edges vj and vk. If vj and vk

do not overlap (left), they will overlap after the application of reversal ρ(vi) (right) and vice versa.

This motivates the introduction of an overlap graph � a structure that will capture all the grey edges

� opposite and aligned pairs � and the overlapping relation between them.

Overlap graph. The overlap graph of a permutation π is the graph OV (π) whose vertices are the

n + 1 grey edges of BG(π) and two vertices are connected, if the corresponding grey edges overlap.

Furthermore, we will colour vertices corresponding to opposite pairs black and vertices corresponding
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−→
0

−→
3

←−
5

−→
8

←−
6

−→
4

←−
7

−→
9

−→
2

−→
1

−→
10

−→
11

−→
13

←−
12

−→
14

v0

v1

v2

v3 v4v5 v7 v8 v3 v4 v7 v6 v8 v9 v10 v11v12
v13

(a) Permutation π and the grey edges of its breakpoint graph.

−→
0

−→
3

←−
5

−→
8

←−
6

−→
4

←−
7

−→
9

−→
2

−→
1

−→
10

−→
11

−→
13

←−
12

−→
14

(b) Framed common intervals of π depicted as boxes; the smaller boxes are frames of the FCIs. The smallest FCI

is an adjacency, which consists of the frames only, here indicated by a line connecting
−→
10 and

−→
11.

v0 v1
v2

v3

v4

v5
v6v7

v8

v9

v10

v11

v12

v13 A

B

C

(c) Overlap graph OV (π) consisting of four connected components; v10 is an isolated vertex corresponding to adjacency

(
−→
10,
−→
11), components B and C are good components, and A is a bad component (all its vertices are white).

Figure 2.9: Permutation π, its framed common intervals and its overlap graph.

to aligned pairs white. Note that an isolated vertex in OV (π) corresponds to an adjacency in π. Thus,

when we are sorting π into the identity permutation, we are trying to isolate all vertices.

Let v be a black vertex in OV (π) representing an opposite pair in π. In the light of the above

observations, we can think of performing the reversal ρ(v) as follows: We are given a bicoloured graph

G. When we �click� on a black vertex v, it becomes a white isolated vertex, the colour of all its

neighbours is �ipped and the set of edges between them is complemented. This operation is called local

complementation of v in G and we denote the resulting graph by G/v.

The observations made above are formulated in the following lemma:

Lemma 3. Let π be a signed permutation and let v be a vertex in OV (π) corresponding to an opposite

pair. Then performing the reversal ρ(v) corresponds to local complementation of v's neighbourhood:

OV (π ◦ ρ(v)) = OV (π)/v.

The overlap graph may consist of several connected components (Fig. 2.9(c)). We say that a com-

ponent is good, if it contains a black vertex, otherwise it is a bad component (unless it is just a single

isolated vertex). When sorting a good component, we want to isolate black vertices by clicking on them,

but at the same time, we try to turn other vertices black so that we do not get stuck with all vertices

white.
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−→
0

←−
12

−→
3

←−
5

−→
4

−→
6

−→
8

−→
7

−→
9

←−
10

−→
11

−→
2

−→
1

−→
13

←−
18

−→
16

←−
17

−→
15

←−
14

−→
20

←−
21

−→
22

−→
19

−→
23

Figure 2.10: Framed common intervals of a permutation. Note that grey edges of one component are

inside of one FCI and not inside the nested FCIs. Also notice the structure of FCIs: every two FCIs are

either disjoint, nested, or linked. Interval from
−→
3 to

−→
11 is a chain of three linked FCIs; another chain

consists of FCI (
−→
0 ,
−→
13) and (

−→
13,
−→
23).

We will describe how to do that properly in the next section and in the following section, we will

describe how to cope with bad components, culminating in a formula for the reversal distance. However

�rst, let us introduce the concept of framed intervals, that establishes a nice alternative characterization

of good and bad components (and the other concepts we will run into).

Framed common intervals. An interval (or a segment) of a permutation π is a set {πi, πi+1, . . . , πi+k}.
A set I is a common interval of π and ı, if I is an interval in both π and in ı. That is, if the set

{πi, . . . , πi+k} is a set of consecutive numbers {m,m + 1,m + 2 . . . ,m + k}. Moreover, interval I is a

framed common interval (FCI) of π and ı, if in addition to being a common interval, it either starts

with the smallest and ends with the highest marker positively oriented: πi = −→m, πi+k =
−−−→
m+ k, or

ends with the smallest and starts with the highest marker negatively oriented: πi =
←−−−
m+ k, πi+k = ←−m.

Furthermore, we will require that |I| ≥ 2 and I is not a union of two such intervals (an example of an

FCI is on Fig. 2.9(b)). Markers πi and πi+k are called frames of the interval. The smallest possible FCI

consists of just these two frame markers and it corresponds to a common adjacency with ı.

The connection with overlap graphs is shown on Fig. 2.10. Since an FCI consists of consecutive

numbers {m, . . . ,m + k} and the smallest and the highest markers frame the interval, there is no grey

edge going from within the FCI outside and grey edges of one FCI cannot overlap with grey edges outside

of the interval. Consequently, a single FCI corresponds to one or several connected components of the

overlap graph.

On the other hand, if we take an FCI and throw out all the nested FCIs, we end up with a single

component. More precisely, we will say that an FCI {m, . . . ,m + k} contains all the extremities inside

it, excluding the outer extremities m− and (m + k)+. We say that extremity p belongs to the smallest

FCI that contains it. All the grey edges connecting extremities belonging to a single FCI form a single

connected component in OV (π).

The relation of belonging is well-de�ned, since it can be easily proved that FCIs cannot overlap by

more than one frame element. Two FCIs can be disjoint, nested, or they may overlap at exactly one

frame element and then we say the FCIs are linked. A maximal sequence of linked FCIs is called a chain

(see Fig. 2.10).
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If we assume that all the nested FCIs of a given FCI are already sorted, or equivalently, if we treat

every nested chain as a single element (with orientation of its frame elements), then the corresponding

component is bad if and only if all the elements of the permutation have the same orientation. For

example component
−→
6 ,
−→
8 ,
−→
7 ,
−→
9 in Fig. 2.10 is bad.

All the FCIs, good and bad components can be found in linear time as shown by Bergeron et al.

(2002).

2.3.1 Sorting Good Components

Good components are the ones, which contain a black vertex. A reversal is called safe, if it does not

create new bad components. In this section, we will show that given an overlap graph with no bad

components, there is always a safe reversal corresponding to an opposite pair.

We will say that a graph is tight, if all its components are good. The main result of this section is:

Theorem 2. If an overlap graph of permutation π is tight, the lower bound (∗) is tight, that is,

rev(π) = dcj (π, ı) = n+ 1− c,

where c is the number of cycles in BG(π).

Local complementation game. Let us denote by N [v] the closed neighbourhood of vertex v, i.e., the

set of vertices adjacent to v with v itself. Local complementation of a black vertex v in G results in a new

graph G/v, where the colours of vertices in N [v] are �ipped and the edges in N [v] are complemented.

We say that s = u1, . . . , uk is a sequence of black vertices for G, if for each i, ui is a black vertex in

G/u1/u2/ · · · /ui−1.
We can formulate the problem of sorting good components as a local complementation game: Given a

tight graph with n vertices, �nd a sequence of black vertices u1, u2, . . . , un forG such thatG/u1/u2/ · · · /un
consists of n isolated vertices. If G is an overlap graph of some permutation, the sequence of reversals

ρ(u1), ρ(u2), . . . , ρ(un) sorts the permutation. See Fig. 2.11 for an example of sorting a permutation by

playing the local complementation game.

Approach of Bergeron (2005). Let v be a black vertex; its score is the number of black vertices in

G/v. Bergeron (2005) proved that we can win the local complementation game by always choosing a

black vertex with the maximum score. In other words,

Theorem 3 (Bergeron (2005)). If u is a vertex in OV (π) with the highest score, then reversal ρ(u)

is safe.

Proof. Since score(v) = t + w − b − 1, where t is the total number of black vertices in G and b, w is

the number of black and white neighbours of v, a vertex with the highest score is one with the highest

di�erence between the number of white and black neighbours.

40



−→
0
−→
3
−→
1
−→
6
−→
5
←−
2
−→
4
−→
7

v0
v1

v2

v3v4

v5

v6

(a) The input permutation. Step 1: ρ(v1).

−→
0
−→
3
−→
1
−→
2
←−
5
←−
6
−→
4
−→
7

v0
v1

v2

v3v4

v5

v6

(b) Step 2: ρ(v6).

−→
0
−→
3
−→
1
−→
2
←−
5
←−
4
−→
6
−→
7

v0
v1

v2

v3v4

v5

v6

(c) Step 3: ρ(v3).

−→
0
−→
3
−→
4
−→
5
←−
2
←−
1
−→
6
−→
7

v0
v1

v2

v3v4

v5

v6

(d) Step 4: ρ(v0).

−→
0
−→
1
−→
2
←−
5
←−
4
←−
3
−→
6
−→
7

v0
v1

v2

v3v4

v5

v6

(e) Step 5: ρ(v2).

−→
0
−→
1
−→
2
−→
3
−→
4
−→
5
−→
6
−→
7

v0
v1

v2

v3v4

v5

v6

(f) Sorted permutation.

Figure 2.11: One way of sorting permutation (
−→
0 ,
−→
3 ,
−→
1 ,
−→
6 ,
−→
5 ,
←−
2 ,
−→
4 ,
−→
7 ) by 5 reversals.

The proof is by contradiction: let u be a vertex with the highest score and C a bad component in

G/u. Since G did not contain bad components, there must have been a black vertex v in C, which was

adjacent to u in G. In fact, v must have been adjacent to all the white neighbours of u. Thus, if we

denote b, w and b′, w′ the number of black and white neighbours of u and v respectively, we have w′ ≥ w.
Furthermore, all the black neighbours of v must have turned white, so they must have been neighbours

of v and b′ ≤ b. From the two inequalities, we have w′ − b′ ≥ w − b and since u had the highest

score, this is only possible if w = w′ and b = b′, which means that u and v share exactly the same

neighbourhood. However, in this case, v becomes an isolated vertex inG/u, which is not a bad component

� a contradiction. �

Approach of Tannier et al. (2007). The following approach, combined with an e�cient data struc-

ture, constitutes the fastest approach to sorting good components so far. Let G be a tight graph and

u1, . . . , uk a sequence of vertices; we will denote the subsequence u1, . . . , ui by si and we will write G/si

for the graph G/u1/ · · · /ui. Let s = u1, . . . , uk be a sequence of black vertices for G, (i.e., ui is black in

G/si−1); we say that s is maximal, if we cannot extend it � there is no black vertex in G/s. We say that

a sequence of black vertices is total, if it is maximal and G/s consists of isolated vertices only.

Theorem 4 (Tannier et al. (2007)). Let G be a tight graph and s a maximal but not total sequence

of black vertices. Then s can be split into two sequences s = s1, s3 and there is a nonempty sequence s2

such that s1, s2, s3 is a sequence of black vertices for G.
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Proof. Let B be the set of non-isolated vertices in G/s � these form the bad components we end up with

� and let u` be the �rst vertex in sequence s such that all vertices of B are in bad components in G/s`.

We will call G/s` a �bad� graph and denote it GB (Fig. 2.12(b)). We will denote the previous graph, just

before local complementation of v`, by G1 (Fig. 2.12(a)). We split sequence s into s1 = u1, . . . , u`−1 and

s3 = u`, . . . , uk (thus G1 = G/s1 and GB = G1/v`). Let C be the set of vertices in good components of

G1 � these are the vertices which become isolated by sequence s3 � and �nally, let NB and NC be the

neighbours of v` in B and C, respectively (see Fig. 2.12(a)).

w1

w2

v`

B

NB

NC

C

(a) G1

v`

B

NB

NC

C

(b) GB

w1

w2

v`

B

NB

NC

C

(c) G1/w1

w1

w2

v`

B

NB

NC

C

(d) G1/w1/w2

Figure 2.12: Figure (a) shows graph G1 that we obtain after application of s1; (b) after local comple-

mentation of v`, we end up with a �bad� graph GB ; C and B consist of bad and good components,

respectively; NB and NC are neighbours of v` in B and C in G1. Figures (c) and (d) show that if we

apply vertices w1 and w2, the subgraph induced by C ∪{v`} remains the same as in G1 and thus we can

continue with sequence s3.

Since B consists only of bad components in GB , the vertices of NB must have been all black and

vertices of B −NB must have been all white in G1. Since B and C are disconnected in GB , there must

have been all possible edges between NB and NC in G1. Finally, there must have been no edges going

from B −NB outside of B and from C −NC outside of C.

In NB , there must be a vertex w1 such that w1 and v` have di�erent closed neighbourhoods, N [w1] 6=
N [v`] (otherwise NB would be a clique isolated from N −NB and after the local complementation of v`,

NB would be a set of isolated vertices, which is a contradiction). Moreover, there must be a vertex w2 in

the symmetric di�erence N [w1]⊕N [v`]. It can be easily proved that after local complementation of w1

and w2 the subgraph induced by C∪{v`} remains unchanged (compare Fig. 2.12(a) and Fig. 2.12(d)), so

s3 is a sequence of black vertices in G/w1/w2 and we may extend sequence s by inserting the two-element

sequence s2 = w1, w2. �

Tannier et al. (2007) use a data structure by Kaplan and Verbin (2005) or Han (2006) to maintain

information about all vertices. They can choose and perform a single reversal in O(
√
n) time and repair

the sequence in O(
√
n). Swenson et al. (2010) only maintain information about the �rst opposite pair
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so they can perform a single reversal in O(log n). When they get stuck with all-white components, the

recovery is costly � in linear time. However, their experiments with sorting random permutations suggest

that the number of repairs is usually very small (constant average and variance).

2.3.2 Sorting Bad Components

Bad components are FCIs where all elements have the same orientation (nested chains are treated as

single elements). In this section, we will describe how to get rid of bad components. In fact, this can be

done at the beginning in linear time so the hard part is actually sorting the good components (without

creating new bad ones).

Cutting and merging bad components. If B is a bad component, then any reversal acting on two

black edges belonging to one cycle in B turns it to a good component and leaves the number of cycles

of the permutation unchanged. In particular, the reversal corresponding to an aligned pair (πi, πi+1)

in a bad component is such a reversal. This actually corresponds to �clicking� on a white vertex w in

the overlap graph of π, which results in complementation of w's neighbourhood and �ipping w's colour.

(Unlike clicking on a black vertex, here, we do not remove edges incident to w; so when we click on a

white vertex, we can turn a bad component into a good one, but this move does not isolate the vertex.)

This operation is called cutting the bad component.

The other operation, called merging, acts on two black edges from two di�erent bad components. In

particular, we can take a reversal ranging from one frame to another as in the following example:

−→
0

−→
5

−→
7

−→
6

−→
8

−→
1

−→
3

−→
2

−→
4

−→
9  −→

0
−→
5

−→
7

−→
6

←−
1

←−
8

−→
3

−→
2

−→
4

−→
9

Note that merging two components actually merges two cycles in the breakpoint graph (which is bad

� when sorting, we try to increase the number of cycles). So in this case, cutting both components with

two reversals would have the same e�ect. However, the advantage of merging is that by one operation,

we actually destroy all the bad components which have one frame in the interval:

−→
0

−→
2

−→
4

−→
6

−→
5

−→
7

−→
3

−→
8

−→
10

−→
12

−→
14

−→
13

−→
15

−→
11

−→
16

−→
1

−→
9

−→
17

 −→
0

−→
2

−→
4

−→
6

←−
14

←−
12

←−
10

←−
8

←−
3

←−
7

←−
5

−→
13

−→
15

−→
11

−→
16

−→
1

−→
9

−→
17

Component tree. Let us represent the components with the nesting relation by a component tree Tπ,

which is de�ned as follows:
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� each component is represented by a round node; good components and adjacencies are black and

bad components are white;

� each chain of components is represented by a square node whose children are round nodes repre-

senting the linked components (in that order);

� each square node is a child of the smallest component that contains the chain.

Let A and B be two components, vertices in Tπ, and notice the unique path connecting A and B.

If the highest vertex on the path is round, it corresponds to the smallest common component C, which

includes both A and B. Otherwise, if the highest vertex is square, A and B are nested in two components

of a single chain and no component on the path contains both A and B.

As we noted above, there are two strategies for destroying bad components � cutting, which �xes the

corresponding vertex in Tπ and merging, which �xes the corresponding two vertices, but also as a bonus,

it �xes all the bad components on the unique path connecting these two components.

Covers. This motivates the introduction of path covers: a path cover of the component tree Tπ is

a collection of paths connecting all the bad components of π, such that each terminal node of a path

belongs to a unique path.

A path consisting of a single bad component, called a short path, corresponds to cutting the bad

component and it is assigned cost 1. A path consisting of two or more bad components is a long path

and corresponds to merging the terminal nodes. The cost of a long path is 2, since merging decreases

the number of cycles.

Thus, each cover of Tπ corresponds to a sequence of cutting and merging reversals that �x all the bad

components in π. The cost of a cover is the sum of the costs of its paths; it is optimal, if it has minimal

cost.

Theorem 5 (Bergeron and Mixtacki (2004)). If a permutation π has c cycles in the breakpoint

graph and an optimal path cover of its component tree Tπ costs t,

rev(π) = dcj (π, ı) + t = n+ 1− c+ t.

The reversal distance formula. The last problem is how to compute the optimal path cover for a

given component tree. We state the result without proof.

Let T ′ be the smallest unrooted4 subtree of Tπ containing all the bad components of π (remove all

the dangling black nodes and square nodes from Tπ). De�ne a branch of a tree as the set of nodes from

a leaf up to, but excluding, the next node of degree at least 3. A short branch of T ′ contains only a

single bad component while a long branch contains two or more bad components.

4since we extend our permutation by
−→
0 and

−−−→
n+ 1, the whole permutation is an FCI, which constitutes a root of Tπ ;

here we treat Tπ as unrooted, so the root actually counts as one of the leaves
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Theorem 6 (Bergeron and Mixtacki (2004)). Let T ′ be the smallest unrooted subtree of Tπ con-

taining all the bad components; let T ′ have ` leaves.

� If ` is even or if there is a leaf on a short branch in T ′, t = `,

� otherwise, t = `+ 1.

2.4 Reversal-Translocation Distance

As we have mentioned in Section 1.2, nuclear genomes of eukaryotic organisms usually consist of multiple

linear chromosomes. These genomes evolve mainly by reversals and translocations (and fusions and

�ssions, which are considered as a special case of translocation). The smallest number of reversals and

translocations is the reversal-translocation distance, or simply RT-distance.

History. The �rst solution was given by Hannenhalli and Pevzner (1995) who also introduced the

problem; hence the RT-model is also called the Hannenhalli-Pevzner, or HP-model; RT-distance is also

called HP-distance. This result has a quite long history of �debugging� � �rst errors and gaps were found

and �xed by Tesler (2002), who implemented the algorithm in a software called GRIMM. Another counter-

example was found by Ozery-Flato and Shamir (2003) and the RT-distance formula was corrected again.

This was the presumably correct formula until Jean and Nikolski (2007) found another bug and patched

the result.

We will present the results of Bergeron et al. (2008) who tried hard to simplify the result using their

insights from DCJ sorting, FCIs, and path covers. They extended the result on sorting by reversals and

formulated the RT-distance formula as

rt(π, γ) = dcj (π, γ) + t,

where t is the cost of an optimal path cover of a certain component tree Tπ,γ .

RT via DCJ. We will treat the RT-model as a restriction of the more general DCJ model to multilinear

genomes. A DCJ operation is called linear, if it does not create circular chromosomes. Given a multilinear

genome, the linear operations are exactly reversals and translocations. The RT-distance between two

multilinear genomes π and γ is the minimum number of linear DCJ operations needed to transform π

into γ; we immediately have that dcj (π, γ) ≤ rt(π, γ).

FCIs and components. An interval I = {`, . . . , r} in π is a set of consecutive markers or telomeres

within a chromosome of π. Telomeres and extremities of these markers form a path in π and the

endpoints of this path are called frames of the interval. A framed common interval (FCI) of π and γ

is a set {`, . . . , r} that is an interval with the same frames in π and γ and is not the union of two such

intervals. Two FCIs are either disjoint, nested, or overlap at exactly one marker.

45



We say that an adjacency belongs to the smallest FCI that contains it and all the adjacencies that

belong to a single FCI constitute a component. The adjacency graph AG(C) of a component C is the

subgraph of the adjacency graph AG(π, γ) induced by the adjacencies of C. It can be proved that AG(C)

consists of a union of (whole) paths and cycles of AG(π, γ).

We say that a component C is good, if there is a linear DCJ operation increasing the number of

cycles in AG(C). It can be shown that C is good if and only if

� it contains two elements with di�erent orientation (nested chains are treated as single elements),

� or if AG(C) contains two paths of even length.

Otherwise, the component is bad. The lower bound given by the DCJ distance is tight,

rt(π, γ) = dcj (π, γ),

if and only if there are no bad components.

Component tree. Given a chromosome C of genome π and its components relative to genome γ,

de�ne the forest FC,γ by the following construction:

� each component is represented by a round node; good components and adjacencies are black, bad

components without telomeres are white, and bad components with one or two telomeres are grey;

� every chain is represented by a square node whose children are the round nodes representing the

linked components (in that order);

� each square node is the child of the smallest component that contains the chain.

Suppose that genome π consists of chromosomes {C1, C2, . . . , Ck}. The tree Tπ,γ is given by the

following construction:

� the root is a black round node;

� all trees in the forests FC1,γ , FC2,γ , . . . , FCk,γ are children of the root.

Cutting and merging of components. If C is a bad component, then any reversal acting on ad-

jacencies of the same cycle or the same path in AG(C) turns C into a good component, but leaves the

number of paths and cycles in AG(C) unchanged. Such an operation is called cutting the bad component.

A DCJ operation acting on adjacencies of two di�erent bad components A and B destroys or �xes

all the components on the path from A to B in Tπ,γ without creating any new bad components. This

operation is called merging of the bad components.
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Covers. Let T ′ be the smallest subtree of Tπ,γ that contains all the bad components, that is, all the

white and grey nodes. A path cover of T ′ is a collection of paths connecting all the bad components,

such that each terminal node of a path belongs to a unique path.

A path consisting of just a single vertex is a short path and a path with two grey endpoints is a grey

path. All the other paths are long. The cost of short and grey paths is 1, while the cost of long paths

is 2. The cost of a cover is the sum of the costs of its paths and a cover is optimal, if it has minimal cost.

Theorem 7 (Bergeron et al. (2008)). If t is the cost of an optimal cover of T ′, the smallest subtree

of Tπ,γ that contains all the bad components, then:

rt(π, γ) = dcj (π, γ) + t.

An optimal cover can be found in linear time (Erdös et al., 2011).

2.5 Other Distances

In the �nal section of this chapter, we very brie�y review other rearrangement models. For a more

comprehensive survey of the �eld, see the excellent book by Fertin et al. (2009), Combinatorics of

Genome Rearrangements.

Distances between unsigned permutations. If the orientation of markers is not known (this may

be the case for instance, if the data come from in situ hybridization), we can model genomes by classical

(unsigned) permutations.

Unlike sorting signed permutations, sorting by reversals is NP-hard for unsigned permutations as

shown by Caprara (1997). For signed permutations, we gave a lower bound rev(π) ≥ n + 1 − c, where
c is the number of cycles in the breakpoint graph BG(π). An analogous result holds for unsigned

permutations.

Recall that when π is a signed permutation, every element πi corresponds to two vertices, π
−
i and π+i ,

so each vertex in the BG(π) is incident with one black and one grey edge. Consequently, BG(π) consists

of alternating (black-and-grey) cycles only. However, when π is unsigned, each element corresponds to a

single vertex of degree 4 in BG(π) and there are many di�erent decompositions of BG(π) into a set of

alternating edge-disjoint cycles (see Fig. 2.13). The problem of decomposing a given breakpoint graph

into maximum number of alternating cycles is NP-hard.

The complexity of sorting by transpositions was a long standing open problem since Bafna and

Pevzner (1998) introduced it. A recent paper by Bulteau et al. (2012b) proves that sorting by transpo-

sitions is NP-hard.

By contrast, sorting by block interchanges is easy: Let us treat permutation π as a signed permutation,

add the sentinels, and compute its DCJ distance from identity. The DCJ distance on linear genomes is

the minimum weight of a sequence of reversals (weight 1) and block interchanges (weight 2). However,
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Table 2.2: Distances between unsigned permutations.

Model Distance Sorting Notes, References

breakpoint O(n) � Sanko� and Blanchette (1997)

see Section 2.1

reversal NP-hard Caprara (1997); not approximable

within 1.0008, thus APX-hard

(Berman and Karpinski, 1999);

11/8-approximable (Berman et al., 2002)

transposition NP-hard Bulteau et al. (2012b); 11/8-approximable

(Elias and Hartman, 2006)

block interchange O(n) O(n log n) Christie (1996); Feng and Zhu (2007)

0 4 3 1 5 6 8 2 7 9

(a) Breakpoint graph of the unsigned permutation π; compare this with breakpoint graph of a signed permutation on Fig. 2.7

with unique alternating cycle decomposition.

0 4 3 1 5 6 8 2 7 9

(b) The same breakpoint graph redrawn to display its decomposition into the maximum number of edge-disjoint alternating

cycles. For unsigned reversal distance, we have rev(π) ≥ n+ 1− c∗; in this case c∗ = 5 and rev(π) = 4.

Figure 2.13: Unsigned permutation π = (4, 3, 1, 5, 6, 8, 2, 7) and its breakpoint graph.

as we found out in Section 2.3, no reversal is optimal (in the DCJ model), if all the elements have the

same orientation. Thus, the block interchange distance is exactly the DCJ distance divided by 2.

Distances between signed permutations. The breakpoint distance and conserved interval dis-

tance are distance measures between signed permutations with no underlying rearrangement oper-

ations. Conserved interval distance was introduced by Bergeron et al. (2002) and is computed as

ci(π, γ) = f(π) + f(γ)− 2f(γ−1 ◦ π), where f(π) is the number of FCIs in π.

We have studied the reversal distance in Section 2.3. Even though the distance and one sorting

scenario can be computed in polynomial time, there are usually exponentially many di�erent optimal

sorting scenarios. Some of the scenarios may be more preferable (from the biological point of view) and

therefore, it makes sense to add some restrictions to the model.
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Table 2.3: Distances between signed permutations.

Model Distance Sorting Notes, References

breakpoint O(n) � Sanko� and Blanchette (1997)

see Section 2.1

conserved intervals O(n) � Bergeron et al. (2002)

reversal O(n) O(n1.5) Hannenhalli and Pevzner (1999);

Bader et al. (2001); Tannier et al.

(2007); see Section 2.3

reversal- open there are several variants;

-transposition (1 + ε)-approximable, if a trans-

position has weight 2 (Eriksen, 2002)

reversals and O(n) O(n log n) if block interchanges have weight 2

block interchanges see Chapter 6

S-perfect reversals NP-hard even if S is nested (Figeac and

Varré, 2004); polynomial if S is

separable (Bérard et al., 2007)

One such restriction is called perfectness. If I is a common interval and ρ is a reversal, such that

the reversed interval and I overlap, we say that ρ breaks the common interval I. A perfect scenario is

one that does not break common intervals. More generally, if S is some subset of common intervals, a

scenario is S-perfect, if the reversals do not break any interval in S.

Figeac and Varré (2004) proved that computing the S-perfect reversal distance is NP-hard, even if S

is nested, i.e., no pair of intervals in S overlap. On the other hand, Bérard et al. (2007) showed that the

distance can be computed in polynomial time if S is separable. A common interval is strong, if it does

not overlap any other common interval and we say that S is separable, if every strong interval of S is

the union of two overlapping intervals from S.

Di�erent models arise when we combine reversals with another rearrangement operation. If we add

block interchanges of weight 2 to reversals, we get the DCJ distance. Reversals combined with transpo-

sitions are more di�cult. Several approximation results are known for di�erent variants � depending on

the weight of transpositions and whether a transreversal operation is allowed (transposition followed by

reversal of the transposed segment as one operation).

Multichromosomal models. Multichromosomal genomes are modeled as collections of paths or cy-

cles. We have studied the RT-distance in the previous section. A model containing only translocations

alone was also studied. For unsigned genomes, the problem is NP-hard and not approximable within

49



Table 2.4: Multichromosomal models.

Model Distance Sorting Notes, References

breakpoint O(n) � Tannier et al. (2009), see Section 2.1

translocations O(n) O(n1.5) Bergeron et al. (2006a),

Ozery-Flato and Shamir (2006)

reversals- O(n) O(n1.5) Hannenhalli and Pevzner (1995),

-translocations Bergeron et al. (2009), see Section 2.4

DCJ O(n) Bergeron et al. (2006b), see Section 2.2

restricted DCJ O(n) O(n log n) see Chapter 6

S-perfect DCJ NP-hard for weakly separable S, but polynomial

for nested S (Bérard et al., 2009)

k-break O(nk−2 + n) Alekseyev and Pevzner (2008)

5717/5716 (Zhu and Wang, 2006) but (1.5 + ε)-approximable (Cui et al., 2008), while for signed genomes,

it is solvable in polynomial time (Bergeron et al., 2006a). A variation of the problem is sorting by

translocations preserving centromeres. A centromere is a region of DNA involved in cell division (we can

model it by a special vertex); we say that a genome is legal, if every chromosome contains exactly one

centromere and a translocation preserves centromeres, if the resulting genome is legal. Ozery-Flato and

Shamir (2007) devised a polynomial-time algorithm for sorting by translocations preserving centromeres.

We have described the DCJ model in Section 2.2. An interesting result on perfect DCJ distance was

shown by Bérard et al. (2009): unlike perfect reversal distance, computing S-perfect DCJ distance is

polynomial for nested S and NP-hard for weakly separable S (S is weakly separable, if every strong

interval of length at least 3 in S is the union of two overlapping intervals from S).

The DCJ model was further generalized by Alekseyev and Pevzner (2008) to a k-break model, which

breaks the genome at k di�erent places and joins the 2k extremities in arbitrary way. They give linear-

time algorithms for computing the distance for any �xed k and a dynamic programming solution running

in time O(nk−2 + n).

Distances between arbitrary strings. As we mentioned in Section 1.2, genomes evolve not only by

rearrangement operations, but also by duplications, insertions, deletions, or replacements. In this case,

we may model unichromosomal genomes as strings, or signed strings over an alphabet of genes.

There are basically two approaches to de�ning a distance between arbitrary strings. In the block

edit models, we add new operations such as duplications or deletions to the panoply of rearrangement

operations and we de�ne the distance as the minimum number of operations required to transform one

genome into another. In the match-and-prune models, we �rst try to �nd the best matching of the
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corresponding markers in both genomes (for instance, if π and γ contain two copies of marker m, we

�rst try to decide, which copy in π corresponds to which copy in γ), then we remove all the unmatched

markers and compute a classical rearrangement distance between the matched-and-pruned genomes.

Unfortunately, computing distance in most of these models is NP-hard and even inapproximable. To

give a taste of what kinds of problems are studied in this �eld, we describe tree examples. Many more

results can be found in the monograph by Fertin et al. (2009).

In the exemplar breakpoint model, we are given two strings s and t and the task is to remove all

but one copy of each symbol in s and t in such a way that the breakpoint distance of the resulting

permutations is minimized. This problem is NP-hard (Bryant, 2000) and even not approximable at all

(Chen et al., 2006).

Our second example is the minimum common string partition problem (MCSP): Two strings are

balanced when they have the same number of occurrences of each symbol; we denote the number of

occurrences of the most frequent symbol by c. A partition of a string s is a set of substrings {s1, . . . , sp}
such that the concatenation of s1 · · · sp is s.

In the MCSP problem, we are given two balanced strings s and t and we seek to �nd the smallest

set of substrings that is a partition of both s and t. This problem is APX-hard even if c = 2, i.e.,

every symbol occurs at most twice in s and t (Goldstein et al., 2005). The problem is also NP-hard

when there is only one symbol occurring more than once (Blin et al., 2004). On the other hand, the

problem is 1.1037-approximable for c = 2, 4-approximable for c = 3 (Goldstein et al., 2005), and both

4c-approximable and O(log n log∗ n)-approximable in general (Kolman and Walen, 2007).

Our third example is sorting signed strings by reversals. This problem is NP-hard even for binary

alphabets and it is also NP-hard if there is at most one positive and one negative occurrence of each

symbol (Radcli�e et al., 2006). The problem is O(n0.69)-approximable (Chrobak et al., 2005) and O(c)-

approximable.
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Chapter 3

Median Problem

Median. In this chapter, we will study the median problem for di�erent rearrangement distances.

Recall that in the median problem, we are given genomes π1, π2, and an outgroup genome π3, and we

try to reconstruct the genome of the common ancestor of π1 and π2. The most parsimonious solution,

a genome that minimizes the total distance from π1, π2, and π3, is called median.

Throughout the chapter, π1, π2, and π3 will denote the input genomes. We de�ne the score of M as

S(M) = d(M,π1) + d(M,π2) + d(M,π3),

so that median is a genome with the minimum score. We denote this score and the set of all medians by

S∗ = S∗(π1, π2, π3) = min
M

S(M) and M = M(π1, π2, π3) = {M | S(M) = S∗ }.

Apart from reconstructing the ancestral genomes, medians were also used to model consensus genomes

when di�erent sources are inconsistent (Jackson et al., 2007). Bourque et al. (2005) tried to infer statistics

on the rearrangement rates on di�erent lineages using medians. Finally, median solvers are often used

repeatedly when addressing more general problems such as small and large phylogeny, which we review

in Chapter 5.

Bounds. As we shall see in the next few sections, computing median is usually a hard problem.

However, our search may be guided by the following lower bound which easily follows from the triangle

inequality:

S∗ ≥
⌈
d1,2 + d2,3 + d3,1

2

⌉
, where di,j = d(πi, πj). (∗)

A median is called perfect, if this lower bound is reached.

On the other hand,

S∗ ≤ min
{
S(π1), S(π2), S(π3)

}
= min

{
(d1,2 + d1,3), (d2,1 + d2,3), (d3,1 + d3,2)

}
.

From the lower bound it follows that a trivial algorithm, which picks one of the genomes π1, π2, or

π3 with the minimum score, is in fact a 4/3-approximation algorithm.
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Table 3.1: Complexity of computing median in various genome models. The unichromosomal models

may be linear or circular � the problems are equivalent. The multichromosomal models may be circular

or mixed.

Genome Model Complexity Notes, references

breakpoint

unichromosomal NP-hard (Pe'er and Shamir, 1998; Bryant, 1998), Section 3.1

multilinear NP-hard (Tannier et al., 2009)

multichromosomal O(n3), O(n
√
n) (Tannier et al., 2009), Chapter 8

DCJ

unichromosomal NP-hard (Caprara, 2003), Section 3.2

multilinear NP-hard (Tannier et al., 2009)

multichromosomal NP-hard Chapter 6

RT
unichromosomal NP-hard (Caprara, 2003)

multilinear NP-hard? open

Circular genomes and matchings. In this chapter, we consider mainly genomes with (possibly

multiple) circular chromosomes, which are easier to work with. Recall that the set of adjacencies in such

genomes forms a perfect matching of all extremities. (From now on, we will refer to perfect matchings

simply as matchings.)

Note well the di�erence between unichromosomal and multichromosomal models � in the former, we

require the median to be unichromosomal. For example in the unichromosomal DCJ model, given three

circular genomes

π1 = [
−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ], π2 = [

−→
2 ,
−→
1 ,
−→
3 ,
−→
4 ], π3 = [

−→
2 ,
−→
3 ,
−→
1 ,
−→
4 ],

any one of the input genomes is also median with median score 0 + 2 + 2 = 4 (we can get one genome

from another by one block interchange). However, if multiple chromosomes are allowed, genome M =

[
−→
1 ], [
−→
2 ,
−→
3 ,
−→
4 ] has score 1 + 1 + 1 = 3 (incorporating [

−→
1 ] at the proper place takes just one operation).

Outline of this chapter. In the next two sections, we study the median problem in the breakpoint,

DCJ, and RT model de�ned in the previous chapter. Unfortunately, the median problem is NP-hard

in almost all of the studied models, see Table 3.1. Thus, we will also focus on fast exact and heuristic

solutions.

3.1 Breakpoint Median

Breakpoint median problem was introduced by Sanko� and Blanchette (1997) and Blanchette et al.

(1997). Pe'er and Shamir (1998) and Bryant (1998) proved that the problem is NP-hard for unichromo-

somal models; Pe'er and Shamir (2000) and Caprara (2002) then studied some approximation algorithms,

Sanko� and Blanchette (1997) and Bryant (2004) gave a better lower bound for breakpoint median.
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3.1.1 Unichromosomal Breakpoint Median

Properties of breakpoint median. A signed breakpoint median always contains the edges that are

shared by all three input genomes, i.e., (π1 ∩ π2 ∩ π3) ⊆ M for all M ∈ M. This holds in both linear

and circular breakpoint model. However, for unsigned genomes, this does not hold so strictly; there is

always a median containing all shared edges, but there may be other medians which do not.

On the other hand, the dual inclusion M ⊆ (π1 ∪ π2 ∪ π3) does not always hold. For example, if

π1 = [1, 6, 7, 8, 5, 2, 3, 4, 9] π2 = [1, 2, 6, 7, 5, 3, 4, 8, 9] π3 = [1, 2, 3, 6, 5, 4, 7, 8, 9],

then M = {[1, 2, 3, 4, 5, 6, 7, 8, 9]}, even though (4, 5) does not belong to any of π1, π2, π3.

Since breakpoint distance is a distance measure, lower bound (∗) on the breakpoint median holds. A

better lower bound was given by Sanko� and Blanchette (1997): Let λi denote the number of distinct

adjacencies shared by i input genomes, let n be the number of markers and let Λ = Λ(π1, π2, π3) =

2n−2λ3−λ2. Then S∗ ≥ Λ and this bound is realized if and only if there is a genomeM ⊆ (π1∪π2∪π3)

that contains all the adjacencies shared by two or three input genomes.

Exact algorithms. Sanko� and Blanchette (1997) provide a simple reduction from the breakpoint me-

dian problem to the traveling salesman problem (TSP). Given three unsigned circular genomes π1, π2, π3,

let G be a complete graph whose vertices are markers and edges have weight w(x, y) = 3−m(x, y), where

m(x, y) is the number of input genomes, which share adjacency xy. Then �nding an unsigned circular

median is equivalent to �nding a Hamiltonian cycle of minimum length.

In the signed model, G is a complete graph on extremities, edges are weighted in the same manner,

we just put su�ciently small weights w(m−,m+) on the marker edges to ensure that they are chosen in

the Hamiltonian cycle.

Sanko� and Blanchette (1997) use a branch and bound algorithm based on the lower bound S∗ ≥ Λ.

(The lower bound can be generalized to the case when some adjacencies of the median are already �xed.)

Complexity. The breakpoint median problem is NP-hard for signed (unichromosomal) circular genomes.

The proof by Bryant (1998) is by reduction from Directed-Hamiltonian-Cycle problem which is still

NP-hard for graphs with maximum degree 3 (Garey and Johnson, 1979). If G is such directed graph,

we can construct a three-coloured multigraph G′, which can be decomposed into three monochromatic

Hamiltonian cycles (these correspond to the input genomes π1, π2, π3). Furthermore, each Hamiltonian

cycle of G will correspond to a Hamiltonian cycle of G′, which contains one from each set of parallel

edges. This in turn corresponds to a unique median of π1, π2, and π3 with score S∗ = Λ (it contains all

edges of weight 2 or 3 and no edges of weight 0). Thus, if we could e�ciently �nd a breakpoint median

or at least decide whether S∗ = Λ, we could also decide the Directed-Hamiltonian-Cycle problem.

We construct graph G′ by �rst substituting each vertex in G for a path of length 2 to get graph G2. It

is straightforward to colour its edges, possibly adding parallel edges so that edges of one colour form either

whole or a subset of Hamiltonian cycle. We �nish the Hamiltonian cycles by connecting the fragments
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a b

x
y

z

a b

Figure 3.1: Suppose that one red fragment ends at a, another begins at b, and x is another vertex

di�erent from a and b (left). By splitting x into three vertices and adding the dashed edges (right) we

connect these red fragments. This way we can gradually transform graph G2 into G′ consisting of three

monochromatic Hamiltonian cycles. Notice that a median with score S∗ = Λ exists, it must contain

edges x→ y → z, which are shared by green and blue genomes (it must not contain edges a→ y → b).

as shown in Fig. 3.1. Each monochromatic Hamiltonian cycle of the resulting graph G′ corresponds to

one input genome (more precisely, these are the monochromatic matchings after we replace each vertex

x by a pair x−, x+ connected with a marker edge x− → x+).

Thus, the median breakpoint problem for signed genomes is NP-hard. It remains NP-hard even with

the constraint that M ⊆ (π1 ∪ π2 ∪ π3) and it is also NP-hard to decide given three genomes and their

median whether the median is unique (consequently it is NP-hard to determine those edges which are

shared by all medians).

Other results. Not surprisingly, the problem is also NP-hard for linear genomes. The median problems

are essentially equivalent for signed and unsigned genomes: Let π be a signed circular genome and let

f(π) = π ∪ B. If we treat each extremity m−, m+ as a single marker, we get an unsigned genome

with twice as many markers. It is not hard to prove that S∗(π1, π2, π3) = S∗(f(π1), f(π2), f(π3)) and

M(π1, π2, π3) = M(f(π1), f(π2), f(π3)).

For signed permutations, the median problem is 7/6-approximable (Pe'er and Shamir, 2000), for

unsigned permutations, it is 5/3-approximable (Caprara, 2002).

Bryant (2004) gave a better lower bound for breakpoint median: let bpm(π, γ) = 0, if marker m is

followed by the same marker in π as in γ, and let bpm(π, γ) = 1 otherwise. Let π1, π2, and π3 be the

input permutations. For any permutation M de�ne bpm(M) = bpm(M,π1) + bpm(M,π2) + bpm(M,π3);

then

S∗ = min
M

∑
m

bpm(M) ≥
∑
m

min
M

bpm(M).

Bryant (2004) showed how to compute this lower bound in polynomial time and how to improve it using

Lagrange multiplier techniques.

3.1.2 Multichromosomal Breakpoint Median

Tannier et al. (2009) proved that the median problem is still NP-hard for multilinear breakpoint model.

However, for multichromosomal circular or mixed genomes, the problem is polynomially solvable. Note
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that these are the only interesting genome models, for which a polynomial solution is known!

The solution is actually fairly simple: For circular genomes, we take a complete graph on extremities

and assign weight w(x, y) = number of genomes containing adjacency xy. For mixed genomes, we

add a telomere vertex Tx for each extremity x; Tx will only be connected with x by edge of weight

w(x,Tx) = 1/2 · (number of genomes containing the telomeric adjacency xTx). The maximum weight

perfect matching in this graph then de�nes the optimal median. This result may be easily generalized

to computing median of more than 3 species. In Section 8.3, we show a more e�cient algorithm.

3.2 DCJ and Reversal Medians

3.2.1 Complexity

Bad news �rst. All the studied variants of DCJ and reversal median are NP-hard, even APX-hard1.

The results are proved by reduction from the Breakpoint-Graph-Decomposition problem, which is

intimately related to unsigned sorting by reversals.

Breakpoint graph decomposition. We say that a graph is bicoloured if all its edges are coloured

either red or blue; we say that a bicoloured graph is balanced if all the vertices have degree 2 or 4, every

vertex is incident to the same number of red and blue edges, and there is no cycle formed by only red

or only blue edges. Caprara (1999) proved that balanced graphs are exactly the breakpoint graphs2 of

some permutations.

A cycle is alternating, if it has even length and red and blue edges alternate along the cycle.

Problem 7 (Breakpoint graph decomposition). Given a balanced graph G, partition the edges of

G into a maximum number of edge-disjoint alternating cycles.

Caprara (1999) proved the NP-hardness of this problem and Berman and Karpinski (1999) strength-

ened the result by proving its APX-hardness.

Caprara (2003) �rst noticed the connection between the median problem and breakpoint graph decom-

positions and proved NP-hardness of reversal and unichromosomal DCJ median. Using his techniques,

Tannier et al. (2009) proved NP-hardness for other variants of the DCJ model.

The reduction from breakpoint graph decomposition to DCJ median problem and the idea of the

proof are depicted in Fig. 3.2. Let n2 and n4 be the number of vertices of degree 2 and 4, respectively.

It can be shown that there exists a genome M such that S(M) ≤ n2 + 3n4− k if and only if there exists

at least k edge-disjoint alternating cycles in G.

1namely, the DCJ median problem is APX-hard regardless of whether we use a unichromosomal or a multichromosomal,

linear, circular, or mixed variant; reversal median is NP-hard; RT-median was not studied and is conjectured to be NP-hard
2in the original de�nition, the breakpoint graph BG(π, γ) did not contain 2-cycles corresponding to common adjacencies;

each edge corresponded to a breakpoint in π or γ � hence the name �breakpoint graph�
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Figure 3.2: Reduction from breakpoint graph decomposition to DCJ median problem. Every vertex v of

a balanced graph with its incident edges (left) is replaced by a subgraph on the right. It can be shown

(see the adequate subgraph theory in the next section) that any median can be modi�ed to a median

not containing red edges; choosing either green or blue edges for DCJ median corresponds to forming

alternating cycles from top and bottom edges versus left and right edges.

For unichromosomal DCJ, we need to prove that there is a base matching B such that πi ·∪B form a

Hamiltonian cycle. For the reversal model, the genomes are further modi�ed to ensure that for median

M the distances rev(M,πi) are equal to dcj (M,πi); the hardness result then follows.

3.2.2 Exact Algorithms

Branch and Bound

Siepel's median solver. A branch and bound algorithm for reversal median was proposed by Siepel

and Moret (2001). The algorithm uses a more general version of the lower bound based on triangle

inequality: Let π1, π2, and π3 be the input permutations such that π2 and π3 are separated by distance

d2,3, and let M be one of their medians. Let φ be another permutation on some optimal path from π1

to some median. Let φ be separated from π1, π2, and π3 by distances d1,φ, d2,φ, and d3,φ, respectively.

Then the median score obeys these bounds:

Lφ = d1,φ +

⌈
d2,φ + d3,φ + d2,3

2

⌉
≤ S∗ ≤ d1,φ + min

{
(dφ,2 + dφ,3), (d2,φ + d2,3), (d3,φ + d3,2)

}
= Uφ

In other words, if we denote Sφ the minimum median score of some permutation M ′ such that φ lies on

an optimal path from π1 to M ′ (d(π1, φ) + d(φ,M ′) = d(π1,M
′)), then for all φ

Lφ ≤ S∗ ≤ Sφ ≤ Uφ

and for φ on an optimal path from π1 to some median, S∗ = Sφ.

Without loss of generality, let π1 have the lowest median score from π1, π2, and π3. We start with

φ = π1 and try to trace a path from π1 to some medianM . In each step, we will have a set of candidates

for φ and we pick the �most promising� one. We �nd all of its as-yet-unvisited neighbours (obtained by

a single reversal), which are farther from π1 and add them to the set of candidates.

Siepel's algorithm �rst computes the �global� upper and lower bounds U,L for the median score.

Furthermore, for each solution φ, we keep its own upper and lower bounds Uφ, Lφ. Solutions can be
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pruned when their best possible scores exceed the current global upper bound (U ≤ Lφ). The upper

bound is lowered when a solution is found that has a lower upper bound.

The search ends when a score equal to the global lower bound is found or when no vertex in the

queue has a best-possible score lower than the upper bound.

An interesting subproblem in this approach is, given permutations π, to list all optimal reversals (i.e.,

such that rev(π ◦ ρ) = rev(π) − 1). Note that some permutations may have Ω(n2) sorting reversals.

Siepel and Moret (2001) described an algorithm �nding all such reversals in O(n3). Recently, Swenson

et al. (2011) devised a quadratic algorithm, provided that π does not contain bad components. It is an

open problem, whether a more e�cient output sensitive algorithm exists (running in, say O(k) + o(n2),

where k is the number of sorting reversals).

Caprara's median solver. An alternative branch and bound algorithm was proposed by Caprara

(2003) for the unichromosomal DCJ distance; Zhang et al. (2008, 2009) implemented a median solver for

RT and DCJ distance based on the same idea.

The main idea is to construct the median by gradually �xing its adjacencies. Let π1, π2, and π3 be

the input genomes and suppose we �x adjacency pq of the median M . If necessary, apply a single DCJ

operation to get genomes π′1, π
′
2, and π

′
3, which contain the adjacency pq. Let m be the number of DCJ

operations needed (0 ≤ m ≤ 3) and let d′i,j be the distances between the resulting genomes; then

m+

⌈
d′1,2 + d′2,3 + d′3,1

2

⌉
≤ Spq,

where Spq is the best median score for a solution containing adjacency pq.

To speed up the search, in the �rst phase, we search for a perfect median, i.e., M such that S(M) =

L =
⌈
d1,2+d2,3+d3,1

2

⌉
; if the input genomes do not have perfect median, we know that S(M) ≥ L+ 1 and

we search for genome reaching the new lower bound; if none exists, S(M) ≥ L + 2, etc. This is faster

when the medians are close to perfect.

Decomposition of Multiple Breakpoint Graph

The Caprara's branch and bound algorithm was substantially improved by Xu and Sanko� (2008) using

their decomposition theory. We will assume the DCJ model and genomes consisting of (possibly multiple)

circular chromosomes.

Multiple breakpoint graph. Recall that we can think of circular genomes as matchings of the

extremities. We de�ne a multiple breakpoint graph MBG(π1, π2, . . . , πk) to be a coloured multigraph

consisting of the given k matchings, each having its own colour. Note that breakpoint graph BG(π)

de�ned in Section 2.3 is a MBG for two genomes � π (with black edges) and identity (with grey edges).

Let π1, π2, and π3 be the input genomes, corresponding to, say red, green, and blue matchings in the

breakpoint graph G = MBG(π1, π2, π3). Recall that the DCJ distance between two circular genomes πi
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and πj is dcj (πi, πj) = n − ci,j , where n is the number of markers and ci,j is the number of cycles in

πi ·∪ πj .
Let M be another genome with a black matching. Adding edges of M to G results in a so called

median graph MBG(M,π1, π2, π3). The median score of M is

S(M) = dcj (M,π1) + dcj (M,π2) + dcj (M,π3) = 3n− (c1(M) + c2(M) + c3(M)),

where ci(M) is the number of cycles in M ·∪ πi.
Thus, we may reformulate the DCJ median problem as follows: We are given a coloured multigraph

G consisting of three matchings (each has edges of di�erent colour) and we seek another matching, such

that c = c1 + c2 + c3 is maximized.

Decomposers. By the term subgraph of an MBG G, we will mean an induced proper subgraph of

G with an even number of vertices. Its size will be half the number of its vertices. Let H be such a

subgraph.

The edges in E(H,H), i.e., having one endpoint in H and the other outside H, are called H-crossing

edges. We say that a matching is H-crossing if it contains at least one H-crossing edge.

Graph H is called a decomposer if for any MBG G containing it, there is an optimal matching that

is not H-crossing. It is a strong decomposer if for any MBG G containing it, no optimal matching is

H-crossing. Thus, if we �nd a decomposer H in G, we can decompose our problem into �nding an

optimal matching in H and an optimal matching in H.

Note that for genomes with n markers G has 2n vertices and (2n − 1)!! = (2n−1)!
2nn! matchings. If H

has 2m vertices, after the decomposition, the search space is reduced to only (2m− 1)!!(2(n−m)− 1)!!

matchings. Furthermore, it is often not necessary to try all the optimal matchings of H. A minimal

set of optimal matchings of H which guarantees that at least one of them must appear in an optimal

matching of any MBG G, is called a major set of H.

The idea is to build a repertoire of small decomposers (together with their major sets) and to search

them in the MBG G and thus reduce the problem.

Adequate graphs. If M is a (perfect) matching on H, we denote cM,i(H) the number of cycles in

M ·∪ πi, and c∗(H) the maximum number of cycles cM,1(H) + cM,2(H) + cM,3(H) for subgraph H over

all matchings M .

We say that graph H of size m (with 2m vertices) is adequate, if c∗(H) ≥ 3/2m; it is strongly adequate,

if the given inequality is strict.

Theorem 8 (Xu and Sanko� (2008)). Any adequate graph is a decomposer. Any strongly adequate

graph is a strong decomposer.

A (strongly) adequate graph H is simple if it does not contain another (strongly) adequate subgraph

as an induced subgraph. All the simple adequate graphs of size 1, 2, and 4 were found by exhaustive

search and they are shown on Fig. 3.3.
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Figure 3.3: Repertoire of all simple adequate graphs of size 1, 2, and 4.

Xu (2009) proved that there are in�nitely many simple adequate graphs. If H is a simple adequate

graph, all its vertices have degree 2 or 3. Except for size 1, all the simple adequate graphs have even

size m and c∗(H) is exactly 3/2m.

Algorithm. The algorithm ASMedian is in fact an extension of Caprara's branch and bound algorithm

where the median is constructed by gradually �xing its edges (each time, all the possible edges going

from one vertex are tried). To speed up the algorithm, in each step we search for an adequate subgraph.

If we �nd one, we �x the edges to one of its optimal matching (we try all the matchings in the major

set); if none is found, we resort to trying all possible edges from one vertex.

A clean way of �xing some edges of the resulting median is to shrink these edges. Graph G′, the

result of shrinking edge e in MBG G, is obtained by deleting the endpoints of e together with edges

parallel to e and connecting the adjacent edges with the same colour (see Fig. 3.4).

e

Figure 3.4: Shrinking of the black edge e: delete the endpoints of e together with all parallel edges,

connect the adjacent edges with the same colour.

3.2.3 Heuristics

Although the median problem is NP-hard, we would like to use a median solver repeatedly as a quick sub-

routine in the phylogeny reconstruction and even to compute medians of large genomes (e.g., mammalian

genomes have around 25 000 genes). Therefore, fast heuristics are needed.
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Good rearrangements. A well known heuristic for median �nding is MGR (Bourque and Pevzner, 2002;

Adam and Sanko�, 2008) based on good rearrangements. We say that a rearrangement operation is good,

if it moves one genome towards both other genomes. For example, let π1, π2, π3 be the input permutations

and let π′1 = π1 ◦ρ. Reversal ρ is good if d(π′1, π2) = d(π1, π2)−1 and d(π′1, π3) = d(π1, π3)−1. We apply

ρ on π1 and thus reduce the problem to �nding median of π′1, π2, π3; this way, we move π1, π2, and π3

towards each other in hope that the good reversals preserve medians, i.e. M(π′1, π2, π3) ⊆M(π1, π2, π3).

Unfortunately, not all good reversals are median-preserving. Take for example permutations π1 =

(
−→
1 ,
←−
6 ,
−→
4 ,
←−
3 ,
−→
5 ,
←−
2 ), π2 = (

−→
3 ,
−→
1 ,
←−
4 ,
−→
6 ,
←−
5 ,
−→
2 ), π3 = (

←−
1 ,
←−
5 ,
←−
4 ,
←−
2 ,
←−
6 ,
−→
3 ), and let ρ be a good reversal

which �ips the whole genome, so that π1 ◦ ρ = π′1 = (
−→
2 ,
←−
5 ,
−→
3 ,
←−
4 ,
−→
6 ,
←−
1 ). While the best score for the

input permutations is S∗(π1, π2, π3) = 9, after applying the good reversal ρ, S∗(π′1, π2, π3) = 10. On the

other hand, even though good rearrangements are not necessarily median-preserving, in practice they

produce genomes with good median scores.

There are several variants to the basic idea depending on which good rearrangements do we choose,

how do we apply them and when do we stop. We can either apply random good rearrangements, or look

ahead and greedily choose such good rearrangement, which leaves as many good rearrangements for the

next genome as possible. In a �serial� variant, we apply a good rearrangement on π1 to get π′1, then

a good rearrangement on π2 with respect to π′1 and π3 to get π′2, and on π3 with respect to the new

genomes π′1 and π′2. An alternative is a �parallel� variant, where we apply a good rearrangement on π1,

π2, and π3 with respect to the original genomes π1, π2, and π3. We can stop when some genome has

no good rearrangement, or when none of the genomes has a good rearrangement. Then, we can either

output one of the genomes as median, or continue with some �not-so-good� rearrangements until the

input genomes meet at one point, which we declare our median. Finally, we may perform a local search

and possibly �nd a better genome in the neighbourhood.

Experiments with reversal model and random permutations indicates that the change in stopping

condition and the choice of serial or parallel variant have no signi�cant impact on performance. On the

other hand, perhaps surprisingly, heuristics that returned median when no good reversal was available,

were on par or even slightly outperformed the traditional solver MGR (Bourque and Pevzner, 2002), which

resorts to �not-so-good� reversals and performs a local search at the end. The experiments indicate that

the expensive local search has little e�ect on the median score.

Maximal signatures. A more recent and better heuristic to �nd a median is the method of maximal

signatures (Swenson and Moret, 2009). Let P (π, γ) be the set of all genomes on some optimal path from

π to γ. The intersection P (π1, π2) ∩ P (π1, π3) is called a signature of π1 with respect to π2 and π3, and

is denoted S(π1;π2, π3), see Fig. 3.5. This is a set of genomes θ such that d(π1, π2) = d(π1, θ) + d(θ, π2)

and d(π1, π3) = d(π1, θ) + d(θ, π3); or equivalently, these are the genomes which are reachable from π1

using only good rearrangements (with respect to π2 and π3).

Maximal signatures are those members of S(π1;π2, π3) for which no good rearrangement exists.
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−→
2 ,
−→
3 )

π1

(
←−
2 ,
←−
1 ,
−→
3 ) (

−→
1 ,
−→
2 ,
←−
3 ) (

−→
1 ,
←−
2 ,
−→
3 )

(
←−
2 ,
←−
3 ,
−→
1 ) (

←−
2 ,
←−
1 ,
←−
3 ) (

−→
2 ,
←−
1 ,
−→
3 ) (

−→
1 ,
←−
2 ,
←−
3 )

(
←−
2 ,
−→
3 ,
−→
1 )

π2

(
−→
2 ,
←−
1 ,
←−
3 )

π3

(a) All the optimal scenarios transforming π1 into π2 and π3 by reversals; the bold permutations which are both on an

optimal path to π2 and to π3 constitute the signature S(π1;π2, π3). The bold arrows going from π1 are the good reversals;

(
←−
2 ,
←−
1 ,
←−
3 ) is the maximal signature.

(
−→
1 ,
−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 )

π1

(
−→
1 ,
−→
2 ,
←−
3 ,
−→
4 ,
−→
5 ,
−→
6 ) (

←−
4 ,
←−
3 ,
←−
2 ,
←−
1 ,
−→
5 ,
−→
6 ) (

←−
5 ,
←−
4 ,
←−
3 ,
←−
2 ,
←−
1 ,
−→
6 ) (

←−
3 ,
←−
2 ,
←−
1 ,
−→
4 ,
−→
5 ,
−→
6 ) (

−→
1 ,
−→
2 ,
←−
5 ,
←−
4 ,
←−
3 ,
−→
6 ) (

←−
6 ,
←−
5 ,
←−
4 ,
←−
3 ,
←−
2 ,
←−
1 ) (

−→
1 ,
−→
2 ,
←−
4 ,
←−
3 ,
−→
5 ,
−→
6 ) (

−→
1 ,
−→
2 ,
←−
6 ,
←−
5 ,
←−
4 ,
←−
3 )

(
←−
4 ,
−→
3 ,
←−
2 ,
←−
1 ,
−→
5 ,
−→
6 ) (

−→
3 ,
←−
2 ,
←−
1 ,
−→
4 ,
−→
5 ,
−→
6 ) (

←−
4 ,
−→
1 ,
−→
2 ,
−→
3 ,
−→
5 ,
−→
6 ) (

←−
6 ,
−→
3 ,
−→
4 ,
−→
5 ,
←−
2 ,
←−
1 ) (

←−
6 ,
←−
5 ,
−→
3 ,
−→
4 ,
←−
2 ,
←−
1 ) (

−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
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2 ,
←−
1 )

(
←−
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1 ,
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−→
5 ,
−→
6 ) (
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1 ,
−→
2 ,
←−
6 ,
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←−
3 ) (

←−
4 ,
−→
1 ,
−→
2 ,
←−
5 ,
←−
3 ,
−→
6 )
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←−
4 ,
−→
1 ,
←−
5 ,
−→
2 ,
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6 ,
−→
3 )

π2

(
←−
4 ,
−→
1 ,
←−
5 ,
−→
2 ,
←−
6 ,
−→
3 )

π3

(b) A slightly more complicated example; only the permutations from signature S(π1;π2, π3) are shown; the arrows going

from π1 are the good reversals, the topmost permutations are maximal signatures, for which no good reversal exists. The

dotted arrows represent several reversals from the rest of the scenarios. Notice that not all maximal signatures are equally

far from π1; only the 3 permutations on the left are maximum signatures.

Figure 3.5: Two examples of signatures.

These are the �last� genomes that are common to sorting paths from π1 to both π2 and π3 and can be

easily found. On the other hand, maximum signatures are the maximal signatures, with the maximum

distance from π1 (see Fig. 3.5(b)). The complexity of �nding maximum signatures is unknown.

Rajan et al. (2010) suggested a heuristic based on maximal signatures instead of good rearrangements:

�nd maximal signature of each genome with respect to the other genomes and return the best solution.

Experiments on simulated data show that the maximal signature heuristic consistently outperforms

heuristics based on good rearrangements.

Multiple breakpoint graph decomposition. The most recent and most promising heuristic median

solver is based on the decomposition theory of Xu and Sanko� (2008) described in the previous section.

Recall that the ASMedian algorithm has a repertoire of adequate graphs, which are searched in the input

MBG G. If an adequate subgraph is found in G, we can safely �x some edges of the median, however,

when G contains no adequate subgraph, ASMedian resorts to exhaustive search.
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Heuristic by Rajan et al. (2010) searches for adequate subgraphs, but avoids the exhaustive search

by �xing some adjacency of the median heuristically. They de�ne adequacy of a subgraph as c − 3/2m,

where c is the number of alternating cycles and m is the number of edges. They propose to choose an

edge that maximizes the adequacy of the solution built so far.

Note that the resulting median may be multichromosomal even though the inputs were unichro-

mosomal. If we seek a unichromosomal median, the result is post-processed and small extra circular

chromosomes are incorporated into the largest chromosome greedily, increasing the median score as little

as possible.

The ASM heuristic clearly dominates both MGR and maximal signature heuristic in terms of both

accuracy and running time; it constitutes the current state of the art median solver.
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Chapter 4

Whole Genome Duplication and

Halving Problems

4.1 Introduction

Whole genome duplication (WGD) is a rare mutation which dramatically changes the genome architec-

ture: the size of the genome doubles and each gene gains two copies. In this chapter, we study various

problems motivated by a WGD. While the general question remains the same:

Can we reconstruct the ancestral gene order?

the duplicated genomes introduce some new twists and complications to the problems.

Let us �rst de�ne more precisely, what do we mean by a duplicated and a perfectly duplicated

genome. Then we de�ne a distance between such genomes and formally state the halving and guided

halving problems which are studied in the sections that follow.

Representing duplicated genomes. Consider a genome where each gene has possibly multiple copies

called paralogs. For each gene g with k copies, we may label the paralogs by g1, g2, . . . , gk and then rep-

resent the genome as in Section 2.1, treating each copy as a di�erent marker. We call such representation

δ a di�erentiated genome.

However, since the labeling of paralogs was completely arbitrary, we consider two genomes that

di�er only in the subscripts of some genes as equivalent. A single genome with duplicated genes thus

corresponds to the equivalence class [δ] of all di�erentiated genomes obtained from δ by relabeling the

paralogs.

In this chapter, we consider mainly duplicated genomes that underwent a single whole genome dupli-

cation and thus have exactly two copies of each gene. If g is one copy, we denote the other paralogous

copy by ḡi (so ḡ1 = g2 and ḡ2 = g1). Similarly, if p is an extremity, we will denote by p̄ the paralogous
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extremity and if x = pq is an adjacency (possibly telomeric), then x̄ = p̄q̄ will denote the paralogous

adjacency.

Doubled genomes. We say that a duplicated genome immediately after the WGD is perfectly dupli-

cated or simply doubled. Formally, we say that a di�erentiated genome θ is doubled, if for each adjacency

pq in θ, adjacency p̄q̄ is also in θ and p 6= q̄. This is the same as saying that if we ignore the subscripts

(1's and 2's), every linear chromosome has an identical copy and every circular chromosome has either

an identical copy, or is itself composed of two successive identical copies (see Fig. 4.1).

11 22 31

12 21 32

41 52

42 51

61 71 62 72

Figure 4.1: Example of a doubled genome.

If α is an ordinary (not duplicated) genome, the pre-duplication ancestor, we denote by α⊕α the set

of all (di�erentiated) perfectly duplicated genomes obtained by doubling of α.

Distance between duplicated genomes. If δ and γ are two di�erentiated genomes, we can compute

the genomic distance as in Chapter 2. How do we compute the distance between two duplicated genomes

[δ] and [γ]? Note that we do not know which copy of g in [δ] corresponds to which copy of g in [γ].

Applying the parsimony principle again, we may de�ne the distance between two duplicated genomes

[γ] and [δ] as the minimum distance between di�erentiated genomes γ′ ∈ [γ] and δ′ ∈ [δ]. In fact, we can

�x one γ′ ∈ [γ] and take the minimum over δ′ ∈ [δ].

Similarly, we can de�ne the distance between an ordinary genome α and a duplicated genome [δ], also

called double distance and denoted dd(α, [δ]) as the minimum distance between θ ∈ α ⊕ α and δ′ ∈ [δ].

Again, without loss of generality, we can �x one δ′ ∈ [δ] and �nd the minimum over θ ∈ α⊕ α.

Problem 8 (Double distance). Given a duplicated genome [δ] and an ordinary genome α, com-

pute dd(α, [δ]).

Genome halving. Now we are ready to de�ne precisely the halving problem: Imagine genome α that

underwent a whole genome duplication and then evolved into genome [δ] (see Fig. 4.2). We are given [δ]

and our goal is to reconstruct genome θ right after the whole genome duplication (or equivalently, the

ancestral genome α).

Problem 6' (Genome Halving). Given a (di�erentiated) duplicated genome δ, �nd a doubled genome

θ such that d(θ, δ) is minimal. Equivalently, the problem is to �nd the pre-duplication ancestor α such that

the double distance dd(α, [δ]) is minimal. This distance is called the halving distance of [δ], written h(δ).

We will study the halving problem in the following section.
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extant species [δ]
1 4 3 4 5 1 2 −2−3 5

1 2 3 4 5

11 21 31 41 51 12 22 32 42 52

11 21 52 12 22 32 42 31 41 51

11 42 31 41 51 12 22 32 21 52

11 42 31 41 51 12 22−21−3252

time

pre-duplication ancestor α

WGD

doubled ancestor θ ∈ α⊕ α

Figure 4.2: The ancestral genome undergoes a whole genome duplication and subsequently evolves by

rearrangements. The goal of genome halving is to reconstruct the genome immediately after the whole

genome duplication, given the gene order of the extant species.

Guided genome halving. Genome halving is a well-de�ned optimization problem, which can be

moreover solved in polynomial time in many interesting cases, as we will see in the next section. The

only drawback is that, usually, there are many di�erent optimal solutions (Seoighe and Wolfe, 1998).

To remedy this situation, we can use the approach inspired by the median problem: In the median

problem, we try to reconstruct the common ancestor α of two species by considering a third, outgroup

species and then minimizing the sum of distances from α. Similarly, when we are trying to reconstruct

the pre-duplication ancestor α of [δ], we may consider an ordinary (not duplicated) outgroup ρ and

minimize the sum of distances from α. This is the so called guided halving problem:

Problem 9 (Guided halving). Given a duplicated genome [δ] and an ordinary genome ρ, �nd an

ordinary genome α that minimizes

S(α) = d(ρ, α) + dd(α, [δ]).

We study the guided halving problem in Section 4.3.2. The known results on the halving and guided

halving problems are summarized in Table 4.1.

4.2 Halving Problems in the Breakpoint Model

The halving problems in the breakpoint model were studied only recently by Zheng et al. (2008) and

Tannier et al. (2009).

General breakpoint model. In the general breakpoint model, we are allowed to have multiple linear

or circular chromosomes. Recall, that the breakpoint distance is de�ned as

bp(π, γ) = n− a(π, γ)− e(π, γ)

2
,
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Table 4.1: Complexity of halving and guided halving in various genome models. The unichromosomal

models may be linear or circular, the multichromosomal models may be circular or mixed. References:

a) Section 8.2, b) Section 8.3, c) Tannier et al. (2009), d) Zheng et al. (2008), e) Alekseyev and Pevzner

(2007c), f) Section 6.3, g) Mixtacki (2008), h) El-Mabrouk and Sanko� (2003), however, the result contains

�aws.

Genome Model Halving Double Distance Guided Halving

breakpoint

unichromosomal NP-hard a) O(n) NP-hard d)

multilinear NP-hard a) O(n) NP-hard d)

multichromosomal O(n3), O(n) b) O(n) c) O(n3), O(n
√
n) b)

DCJ

unichromosomal O(n) e)

open (not studied)

multilinear O(n) f)

multichromosomal O(n) g) NP-hard c) NP-hard c)

RT
unichromosomal O(n2) e)

open (not studied)

multilinear polynomial? h)

where a(π, γ) is the number of adjacencies and e(π, γ) the number of telomeres that π and γ have in

common.

The double distance can be computed similarly (Tannier et al., 2009):

ddbp(π, [δ]) = 2n− a(π, [δ])− e(π, [δ])

2
,

where a(π, [δ]) is the sum, for every adjacency xy in π, of the number of adjacencies among x1y1, x1y2, x2y1, x2y2

in δ. In other words, we say that π and [δ] have adjacency xy in common, if x, y are adjacent in π and

xi, yj are adjacent in δ for some i and j. We say that they have the adjacency xy twice in common, if

either x1y1 and x2y2, or x1y2 and x2y1 are adjacent in δ. Then a(π, [δ]) is the number of adjacencies

in common and e(π, [δ]) the number of telomeric adjacencies in common, where adjacencies twice in

common are counted as 2.

Tannier et al. (2009) also showed that the halving problems are easily solved in cubic time. The

algorithms are similar to the algorithm for breakpoint median we reviewed in Section 3.1.2.

For the halving problem, we take a complete graph on extremities and assign weight w(x, y) = number

of adjacencies among {x1y1, x1y2, x2y1, x2y2} in δ. For mixed genomes, we add a telomere vertex Tx for

each extremity x and an edge xTx of weight w(x,Tx) = 1/2·(number of adjacencies among {x1Tx1
, x2Tx2

}
in δ. Thus, the weights in this graph are w(x, y) ∈ {0, 1, 2} and w(x,Tx) ∈ {0, 12 , 1}. The maximum

weight perfect matching in this graph de�nes the pre-duplication ancestor.

Similarly, for the guided halving problem, we take the same graph and weights w(x, y) = number of

adjacencies among xy in ρ and {x1y1, x1y2, x2y1, x2y2} in δ and w(x,Tx) = 1/2 · (number of adjacencies

among xTx in ρ and {x1Tx1
, x2Tx2

} in δ. In this case, the weights are w(x, y) ∈ {0, 1, 2, 3} and w(x,Tx) ∈
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{0, 12 , 1, 32} and again, the maximum weight perfect matching in this graph de�nes the optimal pre-

duplication ancestor.

We show more e�cient algorithms for the halving and guided halving problems advertised in Table 4.1

in Section 8.3.

Multilinear and unichromosomal models. In the multilinear and unichromosomal models, where

the number and type of chromosomes is restricted, the guided halving problem is NP-hard. This was

shown by (Zheng et al., 2008) using a reduction from the breakpoint median problem that we have

studied in Section 3.1.

Tannier et al. (2009) state that the double distance formula for the general breakpoint model remains

valid in the multilinear model. They also conjectured that the halving problem is tractable � after all, it

can be solved in linear time in much more complicated models. Alas, in Section 8.2, we show the halving

problem in multilinear and unichromosomal models is NP-hard.

4.3 Halving Problems in the DCJ Model

4.3.1 Halving

In this section, we study the genome halving problem under the DCJ model. We may treat the halving

problems in other models (such as reversal, RT, or multilinear DCJ) as restricted versions of DCJ halving.

Historically, the research on the halving problem started with the most complicated reversal-translo-

cation model. The problem was introduced by El-Mabrouk and Nadeau (1998) and studied in a series of

papers by El-Mabrouk et al. (1999); El-Mabrouk and Sanko� (1999b, 2003). This e�ort culminated in a

paper by El-Mabrouk and Sanko� (2003) announcing a linear-time algorithm for genome halving in the

RT-model, which was entitled �one of the most technically challenging results in computational biology�

by Alekseyev and Pevzner. Its proof spans almost 40 pages.

Unfortunately, the result is not entirely correct: the �rst �aw was noticed by Alekseyev and Pevzner

(2007c); also note that the result was based on Tesler's formula for RT-distance which was itself �awed,

as we discussed in Section 2.4.

Alekseyev and Pevzner (2007b) gave a quadratic-time algorithm in the (circular) reversal model

and Alekseyev and Pevzner (2007a) generalized the result to multichromosomal circular RT, DCJ, and

3-break models.

DCJ halving. In the much simpler DCJ model, the halving problem was solved by Warren and Sanko�

(2009b) and Mixtacki (2008) (which corrected a small error and simpli�ed the result).

The halving distance, a perfectly duplicated ancestor and one particular halving scenario can be

calculated using a concept similar to an adjacency graph from Section 2.2 � a so called natural graph

NG(δ) (El-Mabrouk and Sanko�, 2003). Vertices of this multigraph are adjacencies of δ, and two
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adjacencies are connected by an edge, if they share a paralogous extremity. The natural graph consists

of paths and cycles only, and θ is perfectly duplicated if and only if NG(θ) consists of 2-cycles and

1-paths only.

In fact, we may consider the adjacency graph as a special case of a natural graph: if π and γ are

two ordinary genomes and we denote π1⊕ γ2 a duplicated genome obtained as a union of π and γ where

genes from π are labeled by 1 and genes from γ are labeled by 2, then AG(π, γ) = NG(π1 ⊕ γ2). In

this curious way, we may view the sorting problem as a restricted halving problem, where we are only

allowed to rearrange one half of the genome.

Our analysis from Section 2.2 can be easily adapted to the case of halving: Let ce be the number of

even cycles and po the number of odd paths in the natural graph NG(δ). Since a single DCJ operation

can only change the number of even cycles by at most 1 or the number of odd paths by at most 2, we

immediately obtain a lower bound on the halving distance

hdcj (δ) ≥ n− (ce + bpo/2c).

(Compare this formula with Corollary 1 on page 33; the missing �oor function is not need there, since

adjacency graphs are bipartite and contain even number of odd-length paths.)

Similarly, it is easy to prove that there is always a DCJ operation that increases either the number

of even cycles or the number of odd paths by 2 so the lower bound is tight (see an example on Fig. 4.3).

Theorem 9 (Mixtacki (2008)). Let δ be a duplicated genome with 2n markers. The minimal distance

between δ and any doubled genome is

h(δ) = n− (ce + bpo/2c),

where ce is the number of even cycles and po the number of odd paths in the natural graph NG(δ).

4.3.2 Guided Halving

Shortly after the halving problem was introduced, Seoighe and Wolfe (1998) noted the extreme non-

uniqueness in the solution space and suggested using outgroup species to �guide� the reconstruction of

the pre-duplication ancestor.

The guided halving problem was �rst tackled computationally by Zheng et al. (2006). However, they

proposed only a heuristic solution: exhaustively enumerate or just sample the space of optimal halving

solutions and starting from these, do a local search trying to minimize the guided halving score. In fact,

Zheng et al. (2006) only considered optimal paths from some halving solution α and outgroup ρ. This

seemed acceptable for the short genomes they were working with.

In their follow-up paper, Zheng et al. (2008) proposed a much faster greedy heuristic. They also

considered the problem of genome halving with two (or multiple) outgroups guiding the ancestral re-

construction and applied their software to reconstructing the pre-duplication ancestor of Saccharomyces
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(a) Input genome δ with 6 duplicated genes.
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(b) The natural graph NG(δ) contains 1 even cycle

and 2 odd paths so hdcj (δ) = 6 − (1 + b2/2c) = 4.
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(d) Step 3: Cut 5−
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−
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1 , 5
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−
2
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−
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+
2
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+
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(e) Step 4: Cut 5−
2 6+1 . The natural graph after this

step will consist only of 2-cycles and 1-paths so the

genome will be perfectly duplicated.

11 22

12 21

31 42 32 41
51 −61

52 −62

(f) The reconstructed perfectly duplicated ancestral

genome.

Figure 4.3: Example of DCJ halving. Genome δ (top left) is transformed into a perfectly duplicated

genome (bottom right) using 4 DCJs.

cerevisiae and Candida glabrata guided by the genomes of three other yeasts that diverged before the

WGD event.

The hope for an exact e�cient algorithm was shattered by Tannier et al. (2009). They proved that

not only the guided halving problem, but even computing the DCJ double distance is NP-hard. Thus,

even computing the guided halving score for an arbitrary genome α is hard.

Interestingly, in the DCJ model, the halving problem can be solved in linear time, even though the

double distance, the very function we try to optimize, is NP-hard to compute. This is not a contradiction

since in the halving problem, we just compute the minimum over all genomes, we do not need to compute

the double distance for the inputs constructed to be hard.

The proofs of Tannier et al. (2009) are similar to proving hardness of the median problem and use the

techniques of Caprara (2003), which we discussed in Section 3.2. These arguments seem to go through for

the more complicated models such as reversal or RT, so double distance and guided halving is conjectured

to be NP-hard in these models too.

Inspired by the progress on the median problem, Gavranovi¢ and Tannier (2010) proposed a new

lower bound for guided genome halving: Recall, that the median score can be lower bounded by

S(M) ≥ d(π1, π2) + d(π2, π3) + d(π3, π1)

2

� a result that easily follows from the triangle inequality. Similarly, the guided halving score can be lower
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p q r s
→

p q r s

(a) We obtain three parallel edges by cutting pq, rs and joining ps, qr.

p q r s t u
→

p q r s t u

(b) Here, we obtain 3 parallel edges connecting qt and 2 parallel edges connecting rs using 2 DCJ operations: pq, tu→ pu, qt

and qr, st→ qt, rs.

p q r s

t u v w

→

p
q r

s

t
u v

w

(c) In this case, using 2 DCJ operations (pq, rs → ps, qr and tu, vw → tw, uv), we obtain two pairs of parallel blue edges

forming a double-blue/red cycle of length 4 (the result on the right). This is followed by a DCJ operation on the red edges

(qu, rv → qr, uv) forming two triple edges.

Figure 4.4: The subgraphs identi�ed by the algorithm of Gavranovi¢ and Tannier (2010) and their

resolution (in order of precedence).

bounded by

S(α) ≥ dd(ρ, [δ]) + h(δ)

2
.

A little catch here is that for example for DCJ, computing the double distance dd(ρ, [δ]) is NP-hard.

Gavranovi¢ and Tannier (2010) therefore suggest to use a looser lower bound replacing dddcj (ρ, [δ]) by

ddbp(ρ, [δ])/2.

Gavranovi¢ and Tannier (2010) also designed a more precise heuristic algorithm: They use the notion

of a contracted breakpoint graph1 CBG(ρ, [δ]) where vertices are extremities of ρ and vertices p, q are

connected by a red edge if pq is an adjacency in ρ, and by k ∈ {0, 1, 2} blue edges if there are k

adjacencies of the form piqj in δ. Finding an optimal pre-duplication ancestor is then equivalent to

�nding the shortest sequence of DCJ operations which transforms this graph into a graph where all

connected vertices are connected by three parallel edges.

The algorithm is inspired by the theory of adequate subgraphs by Xu and Sanko� (2008) (see Sec-

tion 3.2.2). It tries to identify certain subgraphs with known optimal solution in the contracted breakpoint

graph (see Fig. 4.4). If no such pattern is found, the algorithm greedily chooses a random optimal halving

rearrangement.

Unfortunately, Gavranovi¢ and Tannier (2010) found only a few subgraphs and developed no under-

lying theory comparable to the theory of decomposers by Xu and Sanko� (2008).

1this is an analogy of a multiple breakpoint graph we used in Section 3.2.2; it is also a line-graph of the natural graph

used by Mixtacki (2008)
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4.4 Other Variants

Halving of hybrid genomes. El-Mabrouk and Sanko� (1999a) studied variants of the halving and

guided halving problems inspired by hybridization of two di�erent existing species (this is most widespread

in the plant kingdom). Imagine two genomes π and γ over two disjoint sets of genes A and B. These

genomes hybridize forming a single genome θ = π ⊕ γ � a union of the chromosomes in π and γ � and

then all three species evolve and their genomes are rearranged into the present-day form π′, γ′, and θ′.

Given the present-day order θ′ and sets A and B, can we reconstruct the ancestral genome θ such

that all chromosomes in θ contain only genes from one set, while minimizing the distance d(θ, θ′)? Given

the present-day gene-orders θ′, π′, and γ′, can we reconstruct the ancestral genomes θ, π, and γ such that

θ = π ⊕ γ, while minimizing the sum of distances d(π, π′) + d(γ, γ′) + d(θ, θ′)? El-Mabrouk and Sanko�

(1999a) gave a linear-time exact algorithm for the former problem in the RT model and a heuristic

solution for the latter.

Aliquoting. A natural generalization of the halving problem, where a genome undergoes a whole

genome duplication and each gene has exactly two copies is the aliquoting problem. Here, we imagine

a genome that undergoes a k-way polyploidization event (e.g., several whole genome duplications), so

that each gene has exactly k copies and each chromosome has k perfect copies. We call such a genome a

polyploid. Again, throughout the evolution, the genes are shu�ed over the genome and the problem is to

reconstruct the genome just before the polyploidization event such that the number of rearrangements

throughout the evolution is minimized.

Warren and Sanko� (2009a) introduced the problem and proposed a heuristic solution. Warren and

Sanko� (2011) solved the problem for the general breakpoint model and gave a 2-approximation algorithm

in the DCJ model. The problem is conjectured to be NP-hard (for the DCJ and similar models). For

k = 3 the problem reminds of the classical median problem except that instead of 3 distinct genomes,

we have only a single genome and di�erent copies of the ancestral chromosomes may get intermixed.
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Chapter 5

Reconstructing Phylogenies

5.1 Introduction

Tree of life. Phylogeny is a reconstruction of evolutionary history of a group of organisms, and is

usually represented in a form of a rooted or an unrooted phylogenetic tree, where leaves represent extant

species and internal nodes represent their ancestors (see Fig. 5.1).1

Figure 5.1: Tree of life.

From the times of Charles Darwin, an ambitious project of biologists is to reconstruct the whole

1In some cases, for instance among some species of bacteria and archaea, it is possible that the genetic information

is exchanged between organisms from di�erent species. This is known as horizontal gene transfer and in such case, the

phylogeny forms a directed acyclic graph rather than a tree. In this chapter, we will not concern ourselves with such events

and we will assume that the phylogeny is indeed a tree.
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�tree of life� � the phylogenetic tree of all species. Currently, an ongoing Tree of Life Web Project

(http://www.tolweb.org/tree/) gathers and provides information about phylogeny and diversity of

life on Earth.

First phylogenetic tree reconstructions were based on morphological data. These are however hard to

quantify, measure, and compare; they are not very informative about more distant species and sometimes

they could be even misleading.

With advent of molecular biology, it became possible to reconstruct phylogenetic trees based on

genetic sequences � DNA, RNA, or proteins. There are essentially two types of genomic data we can use

for phylogeny reconstruction:

1. sequence data, and

2. gene order data.

Since there is considerable overlap between the methods for reconstructing phylogenies from sequence

and from gene-order data, we review both data types in the sections to follow.

Phylogenies from sequence data. When reconstructing phylogeny from sequence data, we �rst

have to �nd segments from di�erent organisms (usually genes) which most likely evolved from a common

ancestral sequence. The sequences are assumed to evolve by point mutations, but also by short insertions

and deletions (see Fig. 5.2(a)). Therefore, in the next step, we have to align the sequences � add �gap�

characters representing inserted or deleted bases so that all sequences have the same length and a single

column in the alignment corresponds to the evolution of a single position in the ancestral sequence. We

try to achieve this by aligning identical or similar characters while adding as few gaps as possible. Only

the third step is the actual phylogeny reconstruction, which is usually done column-by-column, assuming

the neighbouring columns evolve independently.

Phylogenies from gene-order data. When reconstructing phylogeny from gene-order data, we �rst

have to �nd segments (genes or synteny blocks) that all the studied species have in common and determine

their order and orientation. If our genome model does not support duplications and deletions, we might

have to discard some data. Then we assume the genomes evolved by the rearrangement operations of

our model and we try to �nd the most parsimonious reconstruction of the evolutionary history (see

Fig. 5.2(b)).

Sequence data vs. gene-order data. Reconstruction from sequence data has several advantages:

Firstly, when working with sequence data, we only need to determine the sequence of one or few genes

as opposed to gene orders, where the whole genome is explored. While the sequence data are abundant,

this is not the case for gene-order data.

Secondly, the evolution by point mutations and small insertions/deletions is much better understood

than rearrangements. We have good probabilistic models for substitutions. In contrast, we do not have
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AAGACTT

TAGCCCT

TGGACTT

AGCACTT

TAGCCCA TAGACTT TGAACTT AGCACAA AGCGCTT

(a)

1 −4 −3 −2 5

1 −4 3 −5 2 −1 4 −3 −2 5

−2 −4 −3 1 5

−2 −5 −1 3 4

−2 −4 −5 −1 3

−2 −4 −5 −1 3 −2 −4 −5 −1 −3

1 2 3 4 5

1 −4 −3 −5 2 −1 −4 −3 −2 5

−2 −1 3 4 5

(b)

Figure 5.2: Reconstructing phylogeny from (a) sequence and (b) gene-order data. Genomes at leaves are

the extant species, while genomes at internal vertices represent the reconstructed ancestral species.

any good probabilistic model of rearrangements. We have strong evidence for reversals, but only some

evidence for transpositions, and the relative prevalence of various rearrangement events is unknown. Also

it turns out that reversals of di�erent lengths are not equally frequent.

Thirdly, reconstruction from sequence data seems to be easier computationally. Even though recon-

structing the phylogenetic tree is NP-hard for both data types, reconstruction of ancestral genomes when

the phylogenetic tree is given is solvable in polynomial time for sequence data (see Sections 5.3 and 5.4),

while the small phylogeny problem is NP-hard in most rearrangement models even for three genomes (as

we have seen in Chapter 3).

The sequence data have disadvantages as well. One serious problem with sequence data is that by

analyzing di�erent genes, we may obtain di�erent reconstructed phylogenies. Alas, this is not a bug

but a feature: the individual genes may indeed have had quite di�erent evolutionary histories. This

discrepancy between the phylogenetic tree of the studied species and trees of individual genes is known

as the gene tree vs. species tree problem (Page and Charleston, 1997; Maddison, 1997). We can either do

a combined analysis where all sequences of one species are concatenated, or a separate analysis followed

by reconciliation of the resulting gene trees. In this case, some sort of consensus tree is searched (Doyon

et al., 2011).

Another disadvantage of sequence data is caused by insertions and deletions � these are handled in

the �rst step by aligning all the sequences. However, alignment of multiple sequences is hard and only

poorly solved (Moret, 2005). In contrast, note that there are no problems with alignment and no gene
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tree vs. species tree con�icts when working with gene-order data.

Finally, the advantage of gene-order data already mentioned in Chapter 1 is that rearrangement

events are much rarer than point mutations in the evolution (Rokas and Holland, 2000). This enables

us to look farther in the evolutionary history and to reconstruct phylogenies of far more distant species.

Methods. The phylogeny reconstruction methods can be roughly divided into three categories: distance-

based methods, parsimony, and maximum likelihood methods (including Bayesian methods). We study

these methods in the sections that follow.

Note that there are two more approaches to phylogeny reconstruction that are beyond the scope of

our survey and we do not cover them: the model-free methods and metamethods.

In the model-free methods, there are no de�nitions of rearrangement operations or genomic distance.

We simply �nd features common to the extant species such as common adjacencies, common intervals,

or common �near-intervals� and then we try to reconstruct ancestral genomes with such features. These

features may be usually written in a matrix form and the problem is formulated using some variant of a

consecutive ones problem (see Chauve and Tannier (2008); Gavranovi¢ et al. (2011); Ma et al. (2006)).

Since the phylogeny reconstruction is a hard problem, we may try to decompose the set of species

into a number of overlapping subsets, use any method discussed in this chapter for each subset, and

then combine the resulting phylogenetic trees to produce a phylogeny for the whole dataset. Readers

interested in such metamethods are referred to the publications of Warnow (2006) and Bininda-Emonds

(2004).

5.2 Distance-based Methods

The distance-based methods rely solely on the distances between the species and thus can be used with

sequence data as well as with gene-order data. These methods only reconstruct the phylogenetic tree,

not the ancestral genomes.

One popular strategy is neighbour joining (Studier et al., 1988): Given the distances between all

pairs of genomes, we construct the tree gradually from leaves bottom-up. In each step, we �nd a pair of

genomes i and j which minimize the value

Q(i, j) = (n− 2)di,j −
n∑
k=1

di,k −
n∑
k=1

dj,k

where n is the number of species and di,j is the distance between ith and jth genome. We create their

common ancestor k, join i and j with k in the resulting tree, and repeat the procedure with i and j

replaced by their ancestor k and distances from k set to dk,` = (di,` + dj,` − di,j)/2.
The main advantage of this approach is that it can be implemented in polynomial time and thus it

is feasible even for phylogenies spanning thousands of species. The canonical algorithm runs in O(n3) in

the worst case, however, there are e�cient implementations which are much faster on average. Wheeler

(2009) describe an implementation named NINJA which can scale to inputs larger than 100,000 species.
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A desirable feature of the neighbour joining method is that, if given correct distances, it reconstructs

the correct tree. More precisely, if the given distances are additive, i.e., there exists a tree with edge

lengths such that the distance between two species equals the sum of the edge lengths along the path

connecting them, neighbour joining �nds this tree. Atteson (1997) proved that this remains true even

for �nearly additive� distances and thus the method is statistically consistent under many models of

evolution.

Bruno et al. (2000) proposed a variant of neighbour joining called Weighbor which improves the

accuracy by taking into account the fact that errors in distance estimates are usually much larger for

longer distances.

A di�erent phylogeny reconstruction algorithm based on the balanced minimum evolution method

was developed by Desper and Gascuel (2004). Their program FastME has shown better topological

accuracy than other distance based method such as neighbour joining or Weighbor.

Note that the accuracy of distance methods depends entirely on the accuracy of the distance estima-

tion. This motivates the study of algorithms for estimating the true evolutionary distance (as opposed

to the minimum number of rearrangements). We refer the interested reader to the works of Wang and

Warnow (2001); Moret et al. (2002a); Lin and Moret (2008). Most recently, Lin et al. (2010) showed

how to estimate the true evolutionary distances in the DCJ model with duplications and losses.

5.3 Parsimony Methods

Parsimony methods try to reconstruct both phylogenetic tree and ancestral genomes while minimizing

the overall number of mutations.

Sequence data. If we work with sequence data, we can use Hamming distance (or its modi�cation)

as a distance measure. Note that given a phylogenetic tree and sequences of the extant species, it is

easy to reconstruct the ancestral sequences (minimizing the total Hamming distance on edges of the

tree) character by character by simple bottom-up dynamic programming (Fitch and Margoliash, 1967).

On the other hand, Foulds and Graham (1982) showed that determining the best tree together with

ancestral sequences is NP-hard. Indeed, if the input sequences are binary, the problem is to �nd a full

Steiner tree of minimum length on an n-dimensional hypercube (in the full Steiner tree, all the input

vertices have to be its leaves). The reduction is from the Exact-3-Set-Cover problem; see also Day

(1983) for other variants of the problem.

Gene-order data. For gene-order data, the phylogeny problems seem to be even harder � even for

three extant species, we get the median problem as a special case and we have shown in Chapter 3 that

the median problem is NP-hard for most rearrangement distances.

The ancestral genome reconstruction problem under the maximum parsimony criterion is known as

the small phylogeny problem. More precisely, �x the set of all genomes G in some model; consider a
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phylogenetic tree T = (V,E) with the set of leaves L and genomes of extant species π : L → G. An

evolutionary history is a function H : V → G extending π to the internal (ancestral) vertices. Our goal

is to �nd an evolutionary history H which minimizes the score

ST (H) =
∑

{u,v}∈E
d(H(u), H(v)).

ST (H) is the overall evolutionary distance, the total number of rearrangement operations in history H.

In the large phylogeny problem, both the best tree T and the evolutionary history H (minimizing

ST (H)) should be reconstructed. We may think of the large phylogeny problem as a variant of the full

Steiner tree problem: imagine a graph where G is the set of vertices and two genomes are connected by

an edge, if their distance is 1. The problem is to connect the extant species (the Steiner vertices) by as

few edges as possible. Obviously, this is a huge graph given only implicitly and it would be impractical

to actually construct it.

Character encodings. One of the approaches to rearrangement phylogeny problems proposed by

Cosner (1993) was to encode the gene-order data as sequences, use the algorithms for analysis of sequence

data, and �nally convert the results back to gene-orders.

One possibility is to use maximum parsimony on binary encodings (MPBE) (Cosner, 1993; Cosner

et al., 2000). We have a character Xpq for each adjacency pq present in at least one of the input genomes

and we de�ne Xk
pq = 1 if genome πk contains adjacency pq, and 0 otherwise.

Another possibility is to use maximum parsimony on multistate encodings (MPME) (Bryant, 2004;

Wang et al., 2002; Tang and Wang, 2005). In this encoding, we have characters Xm and X−m for each

marker m; value of Xk
m is the (signed) marker immediately following m in genome πk; Xk

−m is de�ned

analogously for the other strand so that X` = m if and only if X−m = −`. Bryant (2004) showed that

MPME can be converted into MPBE by Hamming distance-preserving mapping and the best score under

MPME encoding approximates the breakpoint score of the tree better than MPBE.

The problem with character encodings is that the ancestral sequences resulting from sequence analysis

may not correspond to any genomes. Cosner et al. (2000) proposed to ignore these sequences, use the tree

topology only, and compute the ancestral genomes by other methods. Tang and Wang (2005) attempted

to transform the ancestral sequences into valid MPBE encodings of (unichromosomal) genomes while

minimizing the Hamming distance. They claim the problem is NP-hard, while the analogous problem

for MPME is open.

Steinerization approach to small phylogeny. The prevailing method for reconstructing ancestral

genomes (given a phylogenetic tree) is the Steinerization method proposed by Blanchette et al. (1997);

Sanko� and Blanchette (1998) (we show a new, more general approach in Chapter 7). The idea is to

start with some ancestral genomes and then repeatedly replace genomes by medians of genomes in the

neighbouring vertices until a local optimum is reached (see Algorithm 1). This optimum may not be
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Algorithm 1: Steinerization (Sanko� et al., 1976, 1996)

Data: phylogenetic tree T and initial evolutionary history H

Result: locally optimal evolutionary history

repeat1

for v ∈ V − L do2

let π1, π2, π3 be the genomes in the neighbouring vertices;3

compute M ∈M(π1, π2, π3);4

if M is better than H(v) then5

replace H(v) by M ;6

end7

end8

until no improvement ;9

return H10

global but in practice, Steinerization gives good results. The algorithm is implemented in BPAnalysis

(Blanchette et al., 1997; Sanko� and Blanchette, 1998) and GRAPPA (Moret et al., 2001a,b, 2002a).

In BPAnalysis, the median solver used is the branch and bound algorithm for travelling salesman

problem; Moret et al. (2001b) use approximate TSP solvers, Sanko� et al. (2000) a heuristic median

solver. In GRAPPA, both Caprara's and Siepel's median solvers are implemented (Caprara, 2001; Siepel

and Moret, 2001).

Large phylogeny. In BPAnalysis and GRAPPA, the best phylogenetic tree is found by exhaustive

search � such approaches are only possible for a very limited number of species (around 13, since there

are (2n−5)!! unrooted trees on n labeled leaves). During the search, it is important to be able to estimate

the best score of a tree to discard most of the topologies that do not look promising (Moret and Tang

(2005) report 500-fold speedup obtained by improving the tree lower bound of BPAnalysis).

If σ is a circular permutation of the leaves of tree T under some planar embedding of T , then Cσ(T ) =

1/2
∑
d(πσi

, πσi+1
) is the circular lower bound of T (Sanko� et al., 1996; Moret et al., 2002a). Maximum

over all circular orderings can be computed in O(n2) (Bachrach et al., 2005), however, heuristics are

preferred in the implemented software.

A better lower bound can be computed using linear programming (Bachrach et al., 2005; Tang, 2005).

Sequential addition. Since there are too many possible tree phylogenies, Bourque and Pevzner (2002)

proposed to build a single phylogenetic tree directly. The idea is to greedily add new genomes to an

already partially built tree. To add a new genome π to the tree, we need to �nd a suitable edge

{u, v} with genomes πu, πv and replace it by a 3-star. Genome π then becomes a new leaf and the

genome at the middle vertex is a median Mu,v ∈ M(π, πu, πv). The cost of adding π at {u, v} is
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∆(u, v) = S(Mu,v)− d(πu, πv) and we always search for an edge {u, v} which minimally a�ects the total

score, i.e., one with the minimum ∆(u, v). This method is implemented in the MGR software.

One advantage of this approach is that we do not have to start from scratch, but we can add new

genomes to an already built tree (possibly constructed by a di�erent method). On the other hand, a

drawback of this method is that the reconstructed phylogenetic tree depends on the ordering of the

input genomes and �xing one (out of many) medians permanently a�ects the score of the tree and

all the subsequent choices. Therefore, Bernt et al. (2007) propose to abandon the de�nitive choices.

Instead, in each step, they choose one of the remaining genomes, a splitting edge, generate the whole set

M(π, πu, πv), and try out several optimal medians. These modi�cations are implemented in amGRP.

5.4 Maximum Likelihood Methods

Another approach to reconstructing phylogenies is to design a probabilistic model of evolution and then

search the most likely parameters. If θ are parameters of our model and D are observed data, likelihood of

parameters θ is L(θ) = L(θ | D) = Pr(D | θ). Note that by Bayes' theorem, Pr(θ | D) = const·Pr(θ)·L(θ),

so if the parameters θ have uniform prior distribution, the posterior probability Pr(θ | D) is proportional

to the likelihood of θ.

Sequence data. We assume that sequences evolve by substitutions, which are usually modeled as a

continuous random walk on the bases A, C, G, T, and we derive the probability Pr(y | x, t) of sequence x
evolving into y by point mutations over time t. Several substitution models were proposed and studied,

see Jukes and Cantor (1969); Kimura (1980); Felsenstein (1981); Hasegawa et al. (1985); Tamura (1992);

Tamura and Nei (1993).

Again, by bottom-up dynamic programming (Felsenstein, 1981), it is possible to compute probability

Pr( ~X | T,~t) of input data ~X (sequences of extant species) given a phylogenetic tree T and times on its

branches ~t. This is the likelihood of the parameters T and ~t (L(T,~t) = Pr( ~X | T,~t)). The maximum

likelihood methods search for T and ~t which maximize the likelihood function.

Given a phylogenetic tree T , the branch lengths which maximize the likelihood can be found by

expectation-maximization, hill-climbing, or other standard optimization algorithms. The computational

complexity of this problem is unknown.

Chor and Tuller (2006) proved that maximum likelihood reconstruction of phylogenetic trees is NP-

hard. Moreover, even approximating the logarithm of the maximum likelihood within a factor of 1.00175

is hard (Chor and Tuller, 2005). On the other hand, Elias and Tuller (2007) show an FPT and a

2-approximation algorithms solving this problem.

In practice, to maximize over all trees, the best tree is searched exhaustively or heuristically by

topological changes of an initial tree (see Nei and Kumar (2000); Guindon and Gascuel (2003); Sta-

matakis et al. (2005)). Such methods are implemented in many software packages which are available for

phylogeny reconstruction, such as PAUP* (Swo�ord, 2003), MacClade (Maddison and Maddison, 2000),
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Mesquite (Maddison and Maddison, 2004), Phylip (Felsenstein, 2002), MEGA5 (Tamura et al., 2011),

PhyML (Guindon et al., 2010), or RAxML (Stamatakis, 2006).

Another possibility is to sample trees and branch lengths from the posterior probability Pr(T,~t | ~X).

A notable example is MrBayes software (Ronquist and Huelsenbeck, 2003), which is based on the Markov

Chain Monte Carlo algorithm (MCMC). The main idea is to perform a random walk on all trees and

branch lengths. In each step, a new tree and new branch lengths are proposed, and these can be

either accepted or rejected by the Metropolis-Hastings method. By rejecting proposals with a suitable

probability, we can ensure that the stationary distribution (which is attained in the limit) is Pr(T,~t | ~X).

In other words, after making su�ciently many steps, the probability of the random walk being in state

(T,~t) is approximately Pr(T,~t | ~X). Sampling of trees and branch lengths is done by sampling the states

of the random walk.

Gene-order data. For gene-order data, an MCMC algorithm was proposed by Larget et al. (2005)

(implemented in BADGER). In their model of evolution, all unrooted trees are equally likely. The branch

lengths are selected independently from a gamma distribution and given length `, a Poisson number of

reversals with mean ` are realized. Only reversal operations are allowed and all reversals have the same

probability.

One advantage of probabilistic inference is that we also obtain probabilities for individual edges, so we

know, which edges are more and which are less certain. Another advantage pointed out by Larget et al.

(2005) is, that the most parsimonious solutions do not necessarily occur with the highest probability.

Consider these two examples:

π1 = (
−→
8 ,
−→
3 ,
−→
7 ,
−→
1 ,
←−
5 ,
←−
4 ,
←−
6 ,
−→
2 ) and π2 = (

−→
2 ,
−→
3 ,
−→
4 ,
−→
5 ,
−→
6 ,
−→
8 ,
−→
1 ,
−→
7 ).

Since rev(π1) = 4 and rev(π2) = 5, we may be inclined to say that, starting from the identity permutation,

it is more probable to generate π1 than π2 by random reversals. Actually, the contrary is true. The

reason is that π2 can be obtained from the identity in much more di�erent ways. There is just one sorting

scenario of length 4 and only 8 sorting scenarios of length 5 for π1, while π2 has 200 sorting scenarios of

length 5. While π2 has 2 668 and 147 282 scenarios of length 6 and 7, π1 has only 791 and 9 918.
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Chapter 6

Restricted DCJ model

6.1 Introduction

In this chapter, we study classical problems of genome rearrangement � sorting, halving, and median

problems � in a restricted double cut and join model.

The DCJ model, described in Section 2.2, was introduced by Yancopoulos et al. (2005) to model most

of the large-scale mutation events, such as reversals, translocations, fusions, and �ssions in a uni�ed way.

Transpositions and block interchanges can be simulated in this model by two operations: an appropriate

segment of a chromosome is extracted, creating a temporary circular chromosome, and then reinserted

at the proper place in the next step.

The generalization by Bergeron et al. (2006b) further simpli�ed the model by allowing mixed genomes

containing both linear and circular chromosomes. They proposed a simple linear-time algorithm for

DCJ sorting which �nds a sequence of DCJ operations without any explicit mention of the underlying

operations (reversals, translocations, block interchanges, etc.). This algorithm does not keep track of the

chromosomes and in consequence, many circular chromosomes may coexist at intermediate stages of the

sorting process (see Fig. 6.1(a)).

However, when working with multilinear genomes (e.g., genomes of eukaryotic organisms), such sort-

ing sequences are not biologically plausible. The intermediate circular chromosomes are thus considered

an artifact of the DCJ model.

In this chapter, we revisit the model from the original study of Yancopoulos et al. (2005), restricting

the DCJ model to genomes with multiple linear chromosomes. In particular, we require that each excision

of a circular chromosome is always immediately followed by its reincorporation. This is equivalent

to sorting by reversals, translocations, fusions and �ssions, and block interchanges with weight 2 (see

Fig. 6.1(b)). Interestingly, this restriction does not change the distance and Yancopoulos et al. (2005)

gave a quadratic algorithm for �nding an optimal restricted scenario.

We borrow techniques from other studies on sorting by reversals and block interchanges (Christie,
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a h i j k b ` m c g f e d

a b ` m c g f e d h i j k

a b ` m c d e g f h i j k

a b c d ` m e g f h i j k

a b c d e g f ` m h i j k

a b c d e f g h i j k ` m

a b c d e f g h i j k ` m

a b c d e f g h i j k ` m

a b c d e f g h i j k ` m

(a) An optimal DCJ sorting scenario.

a h i j k b ` m c g f e d

a b ` m c g f e d h i j k

a b h i j k ` m c g f e d

a b h i j k ` m c g f e d

a b c g f e d h i j k ` m

a b c d e g f h i j k ` m

a b c d e g f h i j k ` m

a b c d e f g h i j k ` m

a b c d e f g h i j k ` m

(b) Restricted DCJ sorting scenario.

Figure 6.1: Two optimal DCJ sorting scenarios transforming the �rst genome into the last one in eight

operations. In the unrestricted model, the scenario on the left is a possible result of sorting. Even

though the number of operations is minimal, the scenario is not biologically plausible: We started and

�nished with linear chromosomes, but the intermediate genomes contain many circular chromosomes.

In contrast, the scenario on the right is restricted: each circular excision is immediately followed by

its reincorporation. Thus, we can, for instance, treat the �rst circular excision plus reintegration as a

transposition of the block (h, i, j, k) between markers b and `.

1996; Feng and Zhu, 2007; Swenson et al., 2010) and propose a new algorithm that sorts multichromo-

somal linear genomes in the restricted DCJ model in O(n log n) time. This improves the original result

by Yancopoulos et al. (2005).

Furthermore, we present a new result on the halving problem. If no restriction on the linearity of

chromosomes is imposed, and no guarantee concerning circular reintegration is required, we can use

linear-time algorithms proposed by Warren and Sanko� (2009b) and Mixtacki (2008) to reconstruct the

ancestor. However, given a multilinear genome, these algorithms may predict circular chromosomes in

the ancestral genome. In the worst case, these algorithms may even produce Ω(n) circular chromosomes

given a single linear chromosome of length n (see Fig. 6.2). Again, this is not biologically plausible, when

organisms with linear genomes are considered.

The restricted halving problem has not been studied previously and is stated as open in Tannier

et al. (2009). In Section 6.3, we propose a new algorithm that reconstructs a multichromosomal linear

perfectly duplicated ancestor in linear time. One particular restricted halving scenario can be found in

O(n log n) time.

Finally, in Section 6.4, we show that the median problem is NP-hard in the restricted DCJ model, as

conjectured by Tannier et al. (2009).

This chapter is based on joint work with Robert Warren, Marília Braga, and Jens Stoye during my

research visit at Bielefeld University in Germany. The results were presented at the RECOMB-CG 2010
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a1 a2 b1 b2 c1 c2 d1 d2

a1 a2 b1 b2 c1 c2 d1 d2

a1 a2 b1 b2 c1 c2 d1 d2

a1 a2 b1 b2 c1 c2 d1 d2

a1 a2 b1 b2 c1 c2 d1 d2

(a) An optimal perfectly duplicated ancestor in the

DCJ model.

a1 a2 b1 b2 c1 c2 d1 d2

a1 a2 b1 b2 c1 c2 d1 d2

a1 b2 c1 c2 d1 d2 a2 b1

a1 b2 c1 a2 b1 c2 d1 d2

a1 b2 c1 d2 a2 b1 c2 d1

(b) An optimal perfectly duplicated an-

cestor in the restricted DCJ model.

Figure 6.2: Two di�erent halving scenarios of the same genome at the top. The halving distance is the

same in both cases, but the algorithm of Mixtacki (2008) predicts that the ancestor of our linear genome

had four circular chromosomes, which is biologically implausible.

conference (Ková£ et al., 2010) and published in Journal of Computational Biology (Ková£ et al., 2011b).

6.2 Restricted DCJ Sorting

Bergeron et al. (2006b) gave a linear-time algorithm for DCJ sorting, disregarding the constraint of

immediate reincorporation of circular chromosomes. The solution can be easily adapted to a quadratic-

time algorithm for the restricted version: after each step, check whether a circular chromosome was

created and if so, �nd the appropriate DCJ operation acting on adjacencies in the circular and the

original linear chromosome that reintegrates the circular chromosome. It is not clear how to do this

e�ciently (say, in polylogarithmic time).

Yancopoulos et al. (2005) proposed to transform genome π into γ by restricted sorting in four stages:

0. Add caps at the ends of linear chromosomes.

1. By translocations, fusions, and �ssions, transform π into π′, where π′ is a genome with chromosomes

that have the same marker contents as chromosomes in γ.

2. Perform oriented reversals to transform π′ into π′′, where orientation of all markers in genome π′′

matches the orientation of markers in γ.

3. Finally, use block interchanges to transform π′′ into γ.

Stages 2 and 3 can be implemented in O(n log n) time using the data structure described in Sec-

tion 6.2.2 (Swenson et al., 2010; Feng and Zhu, 2007). Thus, a unichromosomal restricted DCJ sorting

can be solved easily in O(n log n) time. However, it is not clear, how to implement stage 1 e�ciently.

(Actually, we hypothesize that it is not possible in polylogarithmic time.)

85



In the rest of this section, we �rst introduce our new algorithm for restricted DCJ sorting. In

Section 6.2.2, we describe the data structure necessary to implement this algorithm e�ciently and in

Section 6.2.3, we comment on perfect restricted sorting scenarios.

6.2.1 Algorithm

Our algorithm is based on the following observation:

Observation 1. Let g, h be two markers that are adjacent in γ, but not in π. If g and h are on

di�erent chromosomes in π, there is a translocation that puts them together. If g and h are on the

same chromosome and have a di�erent orientation, there is a reversal that puts them together. These

operations are optimal in the DCJ model. Transposition and block interchange take two DCJ operations.

These operations are optimal if they create two new non-telomeric common adjacencies and destroy none.

This is simply because, even more generally, k operations, that create k new non-telomeric adjacencies

and destroy none, create k new cycles in the adjacency graph, and thus decrease the distance by k.

Theorem 10. A restricted optimal DCJ sorting scenario transforming multilinear genome π into mul-

tilinear genome γ can be found in O(n log n) time.

Proof. The ends of linear chromosomes, telomeres, produce some di�culties and nasty special cases.

Capping is an elegant technique to deal with them: the idea is to adjoin new markers (called caps) to

the ends of chromosomes in such a way that we do not change the distance but we do not have to worry

about telomeres any more.

We �nd all the paths in the adjacency graph AG(π, γ). Paths of odd length have one end in π and

one in γ � simply adjoin a new marker (properly oriented) to the two telomeres (see Fig. 6.3(a)). This

increases the number of markers by one, but instead of an odd path, we have a cycle and a 1-path, so the

distance does not change. For paths starting and ending in π, add two new markers to the ends of π and

add a new chromosome consisting of just these two markers (properly oriented) to γ (see Fig. 6.3(b)).

The case with a path starting and ending in γ is symmetric. The number of markers increases by 2, but

instead of an even path, we have a cycle and two 1-paths, so the distance does not change. Capping of

all chromosomes can be done in linear time.

Without loss of generality, we may assume that the markers in chromosomes of γ are consecutive

numbers (
−→
k0, . . . ,

−−−−→
k1 − 1), (

−→
k1, . . . ,

−−−−→
k2 − 1), . . . , (

−−→
ks−1, . . . ,

−−−−→
ks − 1) where 0 = k0 < k1 < k2 < · · · < ks = n

(otherwise renumber the markers).

We will be transforming π into γ gradually �from left to right�: once we have transformed the

beginning of a chromosome in π to
−→
ki ,
−−−→
ki + 1, . . . ,

−→
j , we extend it by moving j + 1 next to

−→
j .

There are several cases we need to consider:

1. If
−−−→
j + 1 is already next to

−→
j , we are done.
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(a) Capping odd paths: an odd path in AG(π, γ) is transformed into a

1-path and a cycle.
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π

γ
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π
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−
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C
+
1 p qC−

2

C
+
1 C

+
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−
1 C

+
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cap1 cap2

(b) Capping even paths: an even path in AG(π, γ) is transformed into two 1-paths and a cycle.

Figure 6.3: Capping the chromosomes: We add new markers (caps) at the ends of chromosomes. Note

that the DCJ distance preserved and after the transformation, the two genomes have all the telomeres

in common and all the paths in their adjacency graph are 1-paths.

2. If j + 1 is on a di�erent chromosome than
−→
j , we can always use a translocation. In the rest of the

proof, we assume that j + 1 is on the same chromosome, located to the right of
−→
j .

3. If
−→
j and

←−−−
j + 1 have di�erent orientation, we can use a reversal.

Otherwise, following Christie (1996), �nd the marker m with the highest number between
−→
j and

−−−→
j + 1

and �nd m+ 1.

4. If m + 1 is on a di�erent chromosome, we can use a translocation to move it next to m; this

operation also moves
−−−→
j + 1 to another chromosome, so we can use another translocation to move

it next to
−→
j .

Otherwise the situation is
−→
j , . . . ,m, . . . ,

−−−→
j + 1, . . . ,m+ 1 (since m is the highest number between

−→
j and

−−−→
j + 1 and the part of the chromosome to the left of

−→
j is already sorted, m + 1 must be located to the

right of
−−−→
j + 1).

5. If m and m+ 1 have di�erent orientation, we can use a reversal to move m+ 1 next to m; this will

also change the orientation of
−−−→
j + 1, so in the next step, we can use another reversal to move

←−−−
j + 1

next to
−→
j .

6. Finally, if m and m+ 1 have the same orientation, we interchange blocks

−→
j ,
[
. . . ,−→m

]
, . . . ,

[−−−→
j + 1, . . .

]
,
−−−→
m+ 1  

−→
j ,
−−−→
j + 1, . . . ,−→m,−−−→m+ 1,
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if both −→m and
−−−→
m+ 1 have positive direction and

−→
j ,
[
. . .
]
,←−m, . . . ,

[−−−→
j + 1, . . . ,

←−−−
m+ 1

]
 

−→
j ,
−−−→
j + 1, . . . ,

←−−−
m+ 1,←−m,

if ←−m and
←−−−
m+ 1 have both negative direction. By two operations we move

−−−→
j + 1 to

−→
j and −→m to

−−−→
m+ 1.

Every step can be implemented in O(log n) time using the data structure described in the next section.

�

6.2.2 Data Structure for Handling Permutations

Our sorting algorithm uses a data structure for handling permutations by Kaplan and Verbin (2005). It

can be traced back to Chrobak et al. (1990), where it was used to improve heuristics for the traveling

salesman problem. It supports the following three operations in logarithmic time:

1. �nd the ith marker in a linear chromosome,

2. return the position of marker g, and

3. perform a reversal operation.

Linear chromosomes can be represented by a balanced tree supporting operations split and merge

(e.g. red-black tree or splay tree). The order is the same as the left-to-right order of markers on the

chromosome. In each node of the tree, we store one marker, its orientation, number of descendants, and

a reverse �ag. A reverse �ag being �on� signi�es that the whole subtree is reversed. The reverse �ag of

node v can be cleared (�pushed down�) by changing v's orientation, swapping its children and �ipping

their reverse �ags.

Reversing a segment from i to j can be implemented as follows:

1. Find the ith and jth marker (using the information about sizes of subtrees and reverse �ags).

2. Split the tree into three parts: T1 with markers located before i, T3 with markers located after j,

and T2 with the segment from i to j.

3. Flip the reverse �ag in the root of T2, and

4. Merge T1, T2 and T3.

We store a lookup table with a pointer to the corresponding node of a tree for every marker. In this

way, we can �nd the position of any marker in logarithmic time.

This data structure can be easily extended to support multiple linear chromosomes and the following

operations required in our sorting algorithm:

1. Find the chromosome that contains a given marker.
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2. Perform a DCJ operation.

3. Given an interval from i to j, �nd the marker with the highest number on the chromosome between

i and j.

To support multilinear genomes, we simply concatenate the chromosomes with a delimiter between

each pair, and in each node, we store the number of delimiters in its subtree. This way, given a marker

g, we can determine its chromosome simply by counting the number of delimiters before g.

To support di�erent rearrangement operations, we can express them as a sequence of reversals. For

example, block interchange can be mimicked by four reversals; if we add su�ciently many delimiters at

the end of the sequence (representing empty chromosomes), we can also mimic fusions and �ssions.

To support the last query, we store the highest number in the subtree in each node.

6.2.3 Perfect DCJ scenarios

Bérard et al. (2009) studied the problem of �nding a scenario transforming genome π into γ that does

not break a given set of common intervals. An interval in genome π is a set of markers such that the

subgraph of Gπ induced by their extremities is connected. Intervals of π have zero or two borders �

adjacencies such that one extremity is inside and one outside. Let I be any set of markers with zero or

two borders. A DCJ operation preserves I, if I still has zero or two borders in the resulting genome.

Bérard et al. (2009) showed that for nested sets of common intervals (when the intervals do not overlap),

the shortest scenario can be found in polynomial time and for weakly separable sets, the problem is

NP-hard but �xed parameter tractable.

Since their algorithms use algorithms for DCJ distance and sorting as a black box, one can use them

in conjunction with our algorithm to get perfect restricted DCJ scenarios.

6.3 Restricted DCJ Halving

The simple approach that works for sorting � perform a DCJ operation, test whether a circular chromo-

some was created and reincorporate it � does not work for halving: In some cases, the circular chromosome

cannot be reincorporated. For example, take chromosome (a1, a2, . . . , d1, d2) from Fig. 6.2(a). After ex-

cision of circular chromosome [a1, a2], it is not possible to reincorporate it and the algorithm of Mixtacki

(2008) ends with four (perfectly duplicated) circular chromosomes. On the other hand, by �ssions and

translocations, we can get the restricted scenario as shown in Fig. 6.2(b).

We describe a new algorithm �nding a multilinear doubled ancestor in linear time. A particular

restricted halving scenario can then be found in O(n log n) time by sorting. We also prove that the

halving distance is always the same in the restricted and the unrestricted case, and can be computed in

linear time from the natural graph (Mixtacki, 2008).

Our new algorithm works in three steps:
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1. First, we use the halving algorithm by Mixtacki (see Section 4.3) that computes a doubled genome

in linear time.

2. In general, the result may contain circular chromosomes. Thus, in the next step, we transform it

into a multilinear doubled genome. We prove that this can be done in linear time while preserving

optimality of the result.

3. Finally, if a particular halving scenario is needed, we can use the sorting algorithm from Section 6.2

to obtain a scenario transforming the given genome into a doubled genome.

Theorem 11. Given a duplicated genome π and a doubled genome θ � a result of halving π, we can �nd

a multilinear doubled genome θ′ within the same DCJ distance from π in linear time.

Proof. For convenience, assume that π and θ are properly capped. The capping procedure is similar to

the one described in Section 6.2. However, we will treat the corresponding caps at the beginning of two

paralogous chromosomes in θ as paralogs and for each added chromosome consisting of two caps, we add

a paralogous copy to both π and θ. This way we ensure that

1. both π and θ contain exactly two copies of each marker,

2. θ is a doubled genome (in particular, every linear chromosome has an exact second copy in θ),

3. the distance between π and θ is preserved, and

4. for each (linear) chromosome in π, there is a linear chromosome in θ beginning with the same

marker.

The main idea of our �linearization� algorithm is to search for adjacencies {x, y} in π such that in θ,

x belongs to a linear chromosome, while y belongs to a circular chromosome. We will call such an

adjacency {x, y} an integrating adjacency, since if {x, p} and {y, q} are the adjacencies in θ, and we

replace

{x, p}, {y, q} with {x, y}, {p, q} and (6.1)

{x, p}, {y, q} with {x, y}, {p, q}, (6.2)

we incorporate the circular chromosome (and its copy) into the linear chromosome (and its copy). Our

algorithm searches for integrating adjacencies in π and incorporates circular chromosomes.

It remains to be proven that:

1. Replacing the adjacencies results in a doubled genome (i.e., the result is still perfectly duplicated),

with fewer circular chromosomes.

2. Replacing the adjacencies preserves the DCJ distance dcj (π, θ).

3. If there is no integrating adjacency in π, there are no circular chromosomes in θ.
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x p

y q

L1 L2

C

x p

y q

L1 L2

C

(a) The resulting chromosomes are

(L1, C, L2) and (L1, C, L2).

x p

y q

L1 L2

p x

q y

L2 L1

C C

(b) The resulting chromosomes are

(L1, C, L2) and (L1, C, L2).

Figure 6.4: We transform a doubled genome by incorporating circular chromosomes. We cut adjacencies

{x, p}, {y, q} and replace them by {x, y}, {p, q} (bold). We do the same with the paralogous copies.

There are two cases, depending on whether {y, q} and {y, q} are in two paralogous chromosomes (left), or

in one doubled chromosome (right). Note that in both cases, the resulting genome is a doubled genome

with fewer circular chromosomes.

4. The algorithm can be implemented in linear time.

Claim 1: Figure 6.4 illustrates the proof of the �rst claim.

Claim 2: To see the second claim, let θ be the genome before, and θ′ the genome after the two

replacements. Note that the replacements (1) and (2) are actually two DCJ operations, so the di�erence

between dcj (π, θ′) and dcj (π, θ) cannot be more than two. Furthermore, note that the �rst operation

decreases the distance between π and θ, so dcj (π, θ′) ≤ dcj (π, θ). However, since θ is optimal, we also

have dcj (π, θ) ≤ dcj (π, θ′).

Claim 3: Let m be a marker belonging to a circular chromosome in θ and let L be the chromosome

in π containing m. We can write L as L = (m1,m2,m3, . . . ,m, . . .). Thanks to capping, m1 belongs

to a linear chromosome in θ. Let mk+1 be the �rst marker of L belonging to a circular chromosome

in θ, then there is an adjacency between mk and mk+1 in π such that the �rst extremity belongs to a

linear chromosome and the second one belongs to a circular chromosome in θ. In other words, if θ has a

circular chromosome, there is always an integrating adjacency in π. This proves our third claim.

Claim 4: We implement the algorithm as follows: First, we traverse all chromosomes in θ and populate

a lookup table that stores the type of chromosome (linear or circular) for each extremity. Let ` be the list

of all extremities in linear chromosomes of θ (this list will grow as we incorporate circular chromosomes).

For each extremity x in `, let {x, y} be an adjacency in π and let C be the chromosome in θ containing y.

If {x, y} is integrating, i.e., if C is a circular chromosome, we set the chromosome type of each extremity

of C to linear in the lookup table, we append these extremities to the list ` and incorporate the circular

chromosome(s) by replacing adjacencies as in (6.1) and (6.2).

The algorithm obviously runs in linear time since for each extremity, we determine only once whether
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it belongs to a linear or a circular chromosome. We change this information at most once (when a circular

chromosome is incorporated in a linear one), and once the extremity belongs to a linear chromosome, we

check at most once whether the extremity adjacent in π belongs to a circular chromosome. �

Corollary 2. The halving distance is the same in the DCJ and in the restricted DCJ model. The distance

and one multilinear doubled genome can be computed in linear time. A restricted halving scenario can

be computed in time O(n log n).

6.4 Restricted DCJ Median

In sorting and halving problems, the reincorporation restriction did not change the distance, and we were

just searching for restricted scenarios that better explain the evolutionary history. This is not the case

for the median problem: Consider three linear genomes (1, 2, 3), (2, 1, 3), and (2, 3, 1). Their median in

the unrestricted case consists of a linear chromosome (2, 3) and a circular chromosome [1]. Since we can

obtain any of the linear genomes by a single operation (reincorporation of chromosome [1]), the median

score is 3. This score, however, cannot be achieved in the restricted model. Generalizing this pattern,

we can get genomes of length 3n, with unrestricted median score 3n, and restricted median score 4n.

Caprara (2003) proved that �nding a median in a DCJ model restricted to unichromosomal linear

genomes1 is NP-hard. The median problem in the restricted DCJ model was not studied; it was conjec-

tured NP-hard, but stated as open in Tannier et al. (2009). We show that the NP-hardness follows from

the result of Caprara (2003):

Theorem 12. The median problem is NP-hard in the restricted DCJ model.

Proof. We show that if we could solve the multichromosomal linear DCJ median e�ciently, we could

also solve the unichromosomal linear DCJ median e�ciently. Let π1, π2, π3 be three (unichromosomal)

linear genomes and let M be their multilinear median. We show that we can join telomeres of M and

fuse chromosomes into a single chromosome M ′ while preserving the median score.

Consider two linear chromosomes in M . Each of them has two telomeres, so we can join them in

four di�erent ways. What happens to the distance dcj (M,πi), if we join two telomeres? Recall that the

DCJ distance between two genomes is calculated as n− (c+ po/2), where c is the number of cycles, and

po is the number of odd length paths in their adjacency graph.

1. If the telomeres belong to two di�erent paths of even length, the distance remains unchanged.

2. If the telomeres belong to the same path of even length, by joining them, we create a cycle and the

distance decreases.

3. Finally, if the telomeres belong to two (di�erent) odd length paths, by joining the telomeres, we

get a path of even length and the distance increases. This is the bad case.

1Caprara called it the cycle median problem � the DCJ model did not exist yet
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However, since each of the input genomes π1, π2, π3 is linear, it has only two telomeres and the

adjacency graph AG(πi,M) may contain at most two paths of odd length. That is, if the bad case

occurs, all of the other three possibilities of joining the telomeres are good (do not change the distance,

or can even decrease it). Since there are four ways of joining the telomeres, but for each genome

π1, π2, π3, at most one way corresponds to the bad case, we can always fuse the linear chromosomes

without increasing the total distance. The solution to the multichromosomal restricted DCJ median can

thus be transformed into a solution to the unichromosomal restricted DCJ median. �

6.5 Conclusion

In this chapter, we have revisited the restricted DCJ model for multichromosomal linear genomes, where

a temporary circular chromosome is immediately reincorporated after its excision. We improved on the

quadratic-time algorithm by Yancopoulos et al. (2005), and proposed an algorithm that runs in O(n log n)

time. Furthermore, we have solved an open problem from Tannier et al. (2009) by giving an algorithm for

the restricted halving problem. The algorithm shows that the halving distance for the restricted version

is the same as the distance for the unrestricted version, and given a multilinear duplicated genome,

an optimal multilinear perfectly duplicated genome can always be found in linear time. Finally, we

con�rmed the conjecture from Tannier et al. (2009), and proved that the median problem is NP-hard in

the restricted DCJ model.
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Chapter 7

PIVO

7.1 Introduction

This chapter is based on joint work with Bro¬a Brejová and Tomá² Vina°. It was motivated by our

collaboration with Matú² Valach, �ubomír Tomá²ka, and Jozef Nosek from the Faculty of Natural

Sciences of Comenius University and other researchers who studied mitochondrial genomes of yeasts from

the `CTG clade' of Hemiascomycetes. This clade (see Fig. 7.1) is very interesting from the biological

point of view, since it contains closely related species with great genome architecture diversity. While

C. subhashii, C. parapsilosis, and C. orthopsilosis are linear, C. frijolesensis has two linear chromosomes,

and the rest of the species have circular chromosomes.

The ultimate goal is to understand this variety and the mechanisms leading to it; to describe molecular

processes a�ecting the genome architecture; to explain the origin and mechanisms for the maintenance

of telomeres. We have already mentioned that most of the prokaryotic genomes are circular, while

eukaryotic genomes have multiple linear chromosomes. Evolution and the biological role of these linear

chromosomes is one of the big open problems in biology. To shed some light on what was happening

during the evolution of these species, we were interested in reconstructing their rearrangement history.

Here, we present our work on developing a new method and implementing a new software for such

reconstructions.

The motivation behind this project was twofold: The �rst, more pragmatic reason was that there

was simply no software available which could accommodate such variety of genome architectures (single

vs. multiple chromosomes, linear vs. circular chromosomes; most of the existing software accepts only

linear or multilinear genomes). In our software called PIVO (Phylogeny by IteratiVe Optimization), we

have implemented the DCJ, restricted DCJ, and reversal models for measuring rearrangement distance

and, of course, our method can be easily applied to other rearrangement distance measures.

In Section 5.3, we have reviewed methods for reconstructing evolutionary history � the so called

small phylogeny problem. By far the most popular approach is the Steinerization method and it seems
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Figure 7.1: Phylogenetic tree of 16 species of the Hemiascomycetes' clade and their mitochondrial

genomes. Due to space constraints, only selected markers are shown. Rounded ends of chromosomes

designate circular chromosomes.

95



that the trend in current research is to come up with fast heuristics which enable analyses of high-

resolution whole-genome data with thousands of markers. In contrast, we were interested in analysing

small mitochondrial genomes, and getting more precise results even at the cost of being slower than the

other solutions. Thus our second, more ambitious goal was to develop a better method for reconstructing

evolutionary history in this setting.

We describe our new method based on proposing candidate ancestral genomes and choosing the best

combination in the next section. Then, in Section 7.3, we show experimental results and compare PIVO

with other existing solutions. We demonstrate the accuracy of our program on the well-studied dataset of

Campanulaceae chloroplast genomes (Cosner et al., 2000), and apply it to the reconstruction of rearrange-

ment histories of newly sequenced mitochondrial genomes of pathogenic yeasts from Hemiascomycetes

clade (Valach et al., 2011).

This chapter is based on the paper presented at the WABI 2011 conference (Ková£ et al., 2011a).

Our results on the yeast genomes also made a contribution to the biological paper by Valach et al. (2011)

published in the Nucleic Acids Research journal.

7.2 Methods

In this section, we introduce a new general approach to the small phylogeny problem based on iterative

local optimization. The basic idea is that in each step, we propose multiple candidates for ancestral

genomes in each internal node of the tree and choose the most parsimonious combination of the candidates

by dynamic programming. We will formulate the method in general terms for any rearrangement distance

measure d that can be e�ciently computed and for any strategy for proposing candidate ancestral

genomes. Speci�c strategies will be discussed in Section 7.2.2

Recall from Section 5.3 that given a phylogenetic tree T = (V,E) with the set of leaves L and genomes

of extant species π : L→ G, our goal is to �nd an evolutionary history H : V → G which minimizes the

score

S(H) =
∑

{u,v}∈E
d(H(u), H(v)).

We start with some historyH0. For a particular historyH and each internal vertex v, we propose a set

of candidates cand(H, v). We de�ne a neighbourhood of history H as the set of all possible combinations

of candidate genomes N(H) = {H ′ | ∀v ∈ V : H ′(v) ∈ cand(H, v)}. We then �nd the best history in

the neighbourhood N(H) by a dynamic programming algorithm. If the new history is better than the

previous one, we take it and repeat the iteration. Otherwise, we have found a local minimum and the

algorithm terminates. We repeat the local optimization several times starting from di�erent histories

H0. Algorithm 2 summarizes the local optimization method.

Example #1: For each internal vertex v, the set of candidates cand(H, v) can be the set of all the

genomes within the distance 1 from H(v). The neighbourhood of H is then the set of all histories, we

can obtain from H by performing at most one operation to each ancestral genome. Note that the size
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Algorithm 2: Iterative local optimization
Data: phylogenetic tree T and initial evolutionary history H

Result: locally optimal evolutionary history

s′ ← S(H), s←∞ ;1

while s′ < s do2

cand← generate lists of candidates (neighbourhood of H);3

H ← best(cand);4

s← s′, s′ ← S(H);5

end6

return H7

of N(H) is exponential in the number of internal vertices, but as we will see later, we will never have to

enumerate the entire neighbourhood.

Example #2: The Steinerization approach mentioned in Section 5.3 is a special case of our method:

Here, H(v) is the only candidate for all vertices except for one vertex w with neighbours a, b, c, for which

there are two candidates: the current genome H(w) and one possible median of the genomes in the

neighbouring vertices:

cand(H, v) =

{H(v) } for v 6= w

{H(w),M } where M ∈M(H(a), H(b), H(c)).

Proposing multiple candidates and then choosing the best combination is a crucial feature of our

algorithm. Consider a simple example on a quartet phylogeny in Figure 7.2. The Steinerization approach

may get stuck in a local optimum as in Figure 7.2(a) (both ancestral genomes are medians of the

neighbouring vertices). To avoid such local optima, the Steinerization method is repeated from di�erent

starting con�gurations. On the other hand, if we consider the neighbouring genomes (that are within

one DCJ operation from the current ancestors) and then choose the best combination, we obtain a better

solution, shown in Figure 7.2(b).

We can generalize this example to con�gurations that will result in arbitrarily bad local optima of

the Steinerization method, whereas the global optimum can be found by our method.

7.2.1 Finding the Best History in a Neighbourhood

Even though the size of the neighbourhood N(H) can be exponential (it has
∏
v | cand(H, v)| elements),

the best history can be found in polynomial time using dynamic programming.

Let cui be the i-th candidate from cand(H,u) and let M [u, i] be the lowest score, we can achieve for

the subtree rooted at u if we choose candidate cui as an ancestor. M [u, i] = 0 if u is a leaf. If u is an
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(a) The Steinerization method can get stuck in this local

optimum.
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(b) The global optimum for the given extant genomes.
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...

(c) Our method proposes various candidates for each an-

cestral genome and then takes the best combination.

Figure 7.2: A simple example showing a situation, where our more general approach outperforms the

Steinerization method. Given a quartet phylogeny and genomes at the leaves, the Steinerization method

has a local optimum with score 5 under the DCJ model (a), while there is a better solution with score 4

(b) which may be obtained when considering multiple candidates and choosing their best combination

(c).

internal vertex with children v and w, we �rst compute values M [v, j], M [w, k] for all j, k. Then

M [u, i] = min
j
{M [v, j] + d(cui , c

v
j )}+ min

k
{M [w, k] + d(cui , c

w
k )}.

This algorithm can be easily generalized for non-binary phylogenetic trees.

If n is the number of species, m is the number of markers in each genome, and k is the number of

candidates for each ancestor, the best history can be found in time O(nmk2) (provided that the distance

between two genomes can be computed in O(m) time).

7.2.2 Strategies for Proposing Candidates

A crucial part of our method is proposing good candidates. By proposing more candidates, we explore

a larger neighbourhood, but �nding the best combination of candidates is slower. Furthermore, if we

propose only candidates that are close to the genomes in the current history, the convergence to the local

optimum may be slow. Here, we list several strategies for proposing candidates.

Extant species. In the initialization step, we can take genomes of the extant species as candidates in

each internal node to get an evolutionary history to start with.

98



Intermediates. For a vertex v with adjacent vertices u and w, we can take intermediate genomes as

candidates, i.e. if π, γ are genomes at u and w, we can sample genomes θ such that d(π, θ) + d(θ, γ) =

d(π, γ).

Medians. The Steinerization method uses a median of the genomes in the three adjacent vertices as

a candidate. Note that often there are many medians with the same score. Furthermore, Eriksen (2007)

shows that medians of moderately distant genomes may be spread wide apart. In our method, we do not

need to decide beforehand which median to use. Instead, we consider all the medians as candidates, as

already advocated by Eriksen (2009) and Bernt et al. (2007) in amGRP (amGRP, however, backtracks over

di�erent choices).

If we compute the median by branch-and-bound, the time to list all medians is comparable to the

time to �nd just one median (median solvers of Siepel and Moret (2001), and Caprara (2001) are capable

of listing all medians). If we try to �nd the median heuristically, by repeatedly moving the given genomes

closer to each other, we can take the intermediate genomes as candidates. Another option is to �nd just

a single median and search its neighbourhood for medians which can be added to the candidate list.

Neighbours. We can include neighbourhoods of individual genomes. In particular, if H(v) = π, we

can add the set N(π) = {γ ∈ G | d(π, γ) ≤ 1} to cand(H, v). For most models, the size of N(π) is roughly

quadratic in the number of markers. Since for large genomes this becomes infeasible, we may include

only genomes that do not increase the total distance to adjacent vertices, genomes closer to some genome

in an adjacent vertex, or focus on a particular subset of neighbours.

Best histories. We can take several locally optimal histories and use the reconstructed ancestors as

candidates. In this way we can �recombine� locally optimal solutions discovered previously.

Linearization. In Chapters 2 and 6, we tried to describe various genome models as restricted versions

of the more general DCJ model. When working with linear (or multilinear) genomes, we �rst relax

the linearity constraint and optimize the score over all mixed genomes. Then, starting from these local

optima, we propose similar linear genomes and optimize in the more restricted model.

7.2.3 Unequal Gene Content

A useful extension of our method is to allow a set of possible genomes in each leaf to be given on input

instead of one �xed genome π(v). This feature is useful if we are uncertain about the order of markers

in some genomes. The algorithm will choose one of the alternative gene orders, so as to minimize the

overall parsimony cost. Note that this choice can change between the iterations, and consequently we

do not commit to a particular interpretation of the dataset until the end of the local optimization.

In addition to modeling uncertainty about the gene order in the extant species, we can also use this

method for handling recent duplications or losses. Genome rearrangement models usually require equal

gene content in all considered genomes. However, if one of the genomes contains a duplicated segment

of markers, we can try to delete one or the other copy, producing two alternative gene orders that are

used as candidates for the corresponding leaf of the tree. The algorithm will choose one of them for the
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Table 7.1: The number of operations used to explain Campanulaceae dataset under di�erent models and

with di�erent algorithms.

reversal unichr. general

distance DCJ DCJ

GRAPPA (Moret et al., 2001a) 67

MGR (Bourque and Pevzner, 2002) 65

GRAPPA (Moret et al., 2002b) 64

BADGER (Larget et al., 2005) 64

ABC (Adam and Sanko�, 2008) 64 59

GASTS (Xu and Moret, 2011) 63

PIVO (Ková£ et al., 2011a) 62 62 59

locally optimal history H, presumably the one corresponding to the ancestral state before the duplication

happened. We can extend this idea and use a larger set of candidates in case of multiple duplications

or a gene loss. However, list of candidates will become prohibitively large for genomes with many such

events.

7.3 Results

We have implemented our new method and the strategies for exploring neighbourhoods described in

the previous section using the DCJ and reversal rearrangement models. We demonstrate utility of our

method on two datasets.

The Campanulaceae cpDNA dataset. For comparison, we applied our program to a well-studied

dataset of 13 Campanulaceae chloroplast genomes (Cosner et al., 2000). Each genome in this dataset con-

sists of a circular chromosome with 105 markers. Using the phylogenetic tree in Fig. 7.3(a) reconstructed

by Bourque and Pevzner (2002) with MGR, the results are presented in Table 7.1.

Using GRAPPA software, Moret et al. (2001a) found 216 tree topologies and evolutionary histories with

67 reversals. Bourque and Pevzner (2002) using MGR later found a solution with 65 reversals. Even better

solutions with 64 reversals were found by Moret et al. (2002b) (using GRAPPA) and Larget et al. (2005)

(using BADGER).

Adam and Sanko� (2008) used the more general DCJ model and the phylogenetic tree by Bourque

and Pevzner. They found a history with 64 DCJ operations with ancestors having a single chromosome,

and a history with 59 DCJ operations with unconstrained ancestors. However, as Adam and Sanko� note:

�There is no biological evidence in the Campanulaceae, or other higher plants, of chloroplast genomes

consisting of two or more circles.� The additional circular chromosomes are an artifact of the DCJ
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Adenophora
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(a) Phylogenetic tree of Campanulaceae

C. parapsilosis

C. orthopsilosis (circ.)

C. orthopsilosis (lin.)

C. jiufengensis

L. elongisporus

C. tropicalis

C. sojae

C. viswanathii

C. frijolesensis

C. neerlandica

C. albicans

C. maltosa

C. alai

C. subhashii

D. hansenii

P. sorbitophila

(b) Phylogenetic tree of Candida

Figure 7.3: Phylogenetic trees used in the experiments.

model, where a transposition or a block interchange operation can be simulated by circular excision and

reincorporation.

Even better result for the DCJ model was obtained by Xu and Moret (2011) with their new software

GASTS. Parenthetically, we remark that the result of Xu and Moret (2011) and our own result were

coincidentally presented at the same conference.

In our program, we �rst tried to solve the unconstrained problem. Then we penalized multiple

chromosomes in the dynamic programming objective function to avoid additional circular chromosomes

and found several histories with 62 DCJ operations, where all the ancestors were unichromosomal.

Moreover, these histories only require 62 reversals, which further improves on the best previously known

result of 64 reversals by Moret et al. (2002b) and Larget et al. (2005).

The Hemiascomycetes mtDNA dataset. We have also studied evolution of gene order in 16 mito-

chondrial genomes of pathogenic yeasts from the 'CTG' clade of Hemiascomycetes (Valach et al., 2011).

The phylogenetic tree (Fig. 7.3(b)) was calculated by MrBayes (Ronquist and Huelsenbeck, 2003) from

protein sequences of 14 genes and is supported by high posterior probabilities on most branches.

The genomes consist of 25 markers: 14 protein-coding genes, two rRNA genes, and 24 tRNAs. Several

challenges make this dataset di�cult. First, it combines genomes with a variety of genome architectures:

C. subhashii, C. parapsilosis, and C. orthopsilosis are linear, C. frijolesensis has two linear chromosomes,

and the rest of the species have circular-mapping chromosomes.

Some of the genomes (C. albicans, C. maltosa, C. sojae, C. viswanathii) contain recent duplications

which cannot be handled by the DCJ model. As outlined in Section 7.2.3, we have removed duplicated
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genes, and included both possible forms of the genomes as alternatives in the corresponding leaves.

Similarly, the genomes of C. alai, C. albicans, C. maltosa, C. neerlandica, C. sojae, and L. elongisporus

contain long inverted repeats that are often subject to recombination resulting in reversal of the portion

of the genome between the two repeats. Both forms of the genome are routinely observed in the same

species, and we include both of them in the corresponding leaf.

Finally, we penalized occurrences of multiple circular chromosomes and combinations of linear and

circular chromosomes in ancestral genomes. Such combinations would likely represent artifacts of the

DCJ model.

Our algorithm, using the extant species, neighbours, and best histories strategies, has found an evolu-

tionary history with 78 DCJ operations. More detailed discussion of this dataset (including comparison

to manual reconstruction in a subtree of closely related species) is included elsewhere (Valach et al.,

2011).

7.4 Conclusion

We have developed a new method for reconstructing evolutionary history and ancestral gene orders,

given the gene orders of the extant species and their phylogenetic tree. We have implemented our

method using the double cut and join model and studied evolution of gene order in 16 mitochondrial

yeast genomes, demonstrating applicability of our approach to real biological datasets. We have also

analyzed the thoroughly studied Campanulaceae dataset and improved upon the previous results (Moret

et al., 2001a; Bourque and Pevzner, 2002; Moret et al., 2002b; Larget et al., 2005; Adam and Sanko�,

2008).

Our framework is compatible with a variety of rearrangement models and the optimization can be

adjusted by introducing new strategies of generating candidate ancestral genomes. The use of the DCJ

allowed us to study datasets that contained both linear and circular genomes and to contribute towards

understanding mechanisms of genome linearization during the evolution (Valach et al., 2011).

In our experiments, we have explored only a small fraction of possible strategies o�ered by our

framework. Systematic study of new initialization methods, candidate sets, and rearrangement measures

may lead to even better results for a variety of practical problems. Our work also opened an avenue

towards a systematic solution of the problems with unequal gene content. Similar directions can perhaps

lead to the possibility of incorporating incompletely assembled genomes, a challenge posed by the next-

generation sequencing technologies.
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Figure 7.4: Reconstructed evolutionary history for the mitochondrial genomes of the Hemiascomycetes

yeasts from Fig. 7.1. Numbers on the edges represent the number of DCJ operations from each genome

to its ancestor.
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Chapter 8

Complexity of rearrangement problems

under the breakpoint distance

8.1 Introduction

In this chapter, we study rearrangement problems in di�erent variants of the breakpoint model and

settle several open questions regarding their computational complexity. In Chapter 3, we studied the

problem of reconstructing a single ancestral gene order, the so called median problem. The ultimate

goal is reconstructing evolutionary history of large phylogenies, alas, we have seen that in most of the

genome models (DCJ, restricted DCJ, reversal, unichromosomal or multilinear breakpoint models), even

the median problem is NP-hard.

One notable exception was the general breakpoint model (see Section 3.1.2). Tannier et al. (2009)

observed that if we drop the condition that genomes are unichromosomal and that all chromosomes are

linear, we get a very simple model where the median problem is solvable in polynomial time. Even

though this model is not biologically plausible and more realistic models exist, the breakpoint model

may still be useful for upper and lower bounds, and solutions in this model may serve as good starting

points for more elaborate and complicated models.

Two interesting open questions remained in the work of Tannier et al. (2009). These are also articu-

lated in the monograph by Fertin et al. (2009):

1. The best time complexity for the median and guided halving problems under the breakpoint

distance on multichromosomal genomes (with circular chromosomes allowed) is O(n3), using

a reduction to the maximum weight perfect matching problem. It is an open problem to

devise an ad-hoc algorithm with better complexity.

2. The small parsimony and large parsimony problems under the breakpoint distance are

open regarding multichromosomal signed genomes where linear and circular chromosomes
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Table 8.1: Our new results in context of the previously known results. ∗Tannier et al. (2009) †Zheng

et al. (2008) ‡Pe'er and Shamir (1998); Bryant (1998)

Breakpoint Model Median Halving Guided Halving Small Phylogeny

unichromosomal
NP-hard ‡ NP-hard [new] NP-hard † NP-hard [trivial]

(linear or circular)

multilinear NP-hard ∗ NP-hard [new] NP-hard † NP-hard [trivial]

multichromosomal O(n3) O(n3) ∗ O(n3) ∗
NP-hard [new]

(circular or mixed) O(n
√
n) [new] O(n) [new] O(n

√
n) [new]

are allowed.

We resolve the �rst question in a positive way by showing a more e�cient algorithm running in

O(n
√
n) time. This is by reduction to the maximum cardinality matching problem. Moreover, we show

that maximum cardinality matching can be reduced back to the breakpoint median (by a linear reduction)

and so the two problems have essentially the same complexity. The same technique also improves the

algorithms for halving and guided halving.

The second question is resolved in a negative way. One could expect that the large parsimony

problem is NP-hard for this model, since it is NP-hard even for the Hamming distance on binary strings

(Foulds and Graham, 1982). However, surprisingly, for the breakpoint distance (unlike for the Hamming

distance), the small phylogeny is NP-hard (and APX-hard) even for four species, i.e., a quartet phylogeny.

In other words, while �nding an ancestor for three species is easy, �nding two ancestors for four species

is already hard.

Apart from the general breakpoint model, we also study the unichromosomal and the multilinear

breakpoint model. Tannier et al. (2009) conjectured that the halving problem is tractable in these

models � after all, the halving problem can be solved in linear time in more complex models such as DCJ

or RT. We refute this conjecture by showing that, in the unichromosomal and the multilinear breakpoint

model, the halving problem is NP-hard. Curiously, this is the �rst known rearrangement problem that

is harder in the breakpoint model than in the DCJ or reversal models.

The previous work and our new results are summarized in Table 8.1.

Note on breakpoint distance and similarity. In this chapter, we will work with the general break-

point model as introduced in Section 2.1. Recall that the breakpoint distance is de�ned as

bp(π, γ) = n− sim(π, γ),

where n is the number of genes and

sim(π, γ) = a(π, γ) +
e(π, γ)

2
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is the number of common adjacencies plus half the number of common telomeric adjacencies.

The breakpoint distance satis�es all properties of a metric and is used in the literature, however,

we �nd it easier to work directly with the similarity measure sim(π1, π2). Instead of minimizing the

sum of distances, we will try to maximize the sum of similarities, i.e., maximize the number of common

adjacencies.

Similarly, recall that the double distance in the breakpoint model can be computed according to the

formula

ddbp(π, [δ]) = 2n− sim(π, [δ]),

where we de�ne sim(π, [δ]) as

sim(π, [δ]) = a(π, [δ]) +
e(π, [δ])

2
.

Here, a(π, [δ]) is the number of adjacencies in common and e(π, [δ]) the number of telomeric adjacencies

in common, while adjacencies twice in common are counted as 2.

Road map. In the next section, we refute the conjecture of Tannier et al. (2009) and prove that the

halving problem is NP-hard for the unichromosomal and multilinear breakpoint model. In the following

two sections, we study the general breakpoint model. In Section 8.3, we look at the median problem:

we improve upon the algorithm of Tannier et al. (2009) and show that it is equivalent to the maximum

matching problem. The hardness of the small phylogeny problem is studied in Section 8.4 and we give

concluding remarks in Section 8.5.

These results were presented at the RECOMB-CG 2012 conference and a paper has been accepted

for publication in the Journal of Computational Biology.

8.2 Halving Problem

Bryant (1998) showed that the median problem is NP-hard in the circular breakpoint model by reduction

from the Directed-Hamiltonian-Cycle problem. The halving problem was not studied previously in

the breakpoint model, but we show that it su�ers the same �Hamiltonian� curse as the median problem

� in order to �nd the ancestor, we would in fact have to �nd a Hamiltonian cycle. Our proof is even

simpler than that of Bryant (1998).

As the halving problem is polynomially solvable in more realistic models such as the RT model (El-

Mabrouk and Sanko�, 2003) or the DCJ model (Alekseyev and Pevzner, 2007b; Mixtacki, 2008; Warren

and Sanko�, 2009b; Ková£ et al., 2011b), the halving problem under the breakpoint distance will remain

a mere curiosity: It is the �rst problem which is easier in the DCJ or even in the RT model than in the

breakpoint model. Furthermore, it is the only known case where halving is NP-hard, while the double

distance is computable in polynomial time (e.g., in the DCJ model, the opposite is true � halving is easy,

while the double distance is NP-hard (Tannier et al., 2009)).
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Curiously, the ordinary halving problem was not studied before in the breakpoint model, and Tannier

et al. (2009) also leave it open. Moreover, they conjecture that the problem is polynomially solvable �

this might perhaps be attributed to the fact that the halving problem is polynomially solvable in far

more complicated models such as reversal/translocation (RT) (El-Mabrouk and Sanko�, 2003) or double

cut and join (DCJ) (Alekseyev and Pevzner, 2007b; Mixtacki, 2008; Warren and Sanko�, 2009b; Ková£

et al., 2011b). Nevertheless, we refute this conjecture (unless P = NP) by proving that the halving

problem is NP-complete in the unichromosomal and multilinear models.

Theorem 13. Halving problem is NP-hard in the circular, linear, and multilinear breakpoint models.

Proof. The proof is by reduction from the Directed-Hamiltonian-Cycle problem. Plesník (1979)

proved that this problem is still NP-hard for graphs with maximum degree 2 and the construction implies

the problem is also NP-hard if all in-degrees and out-degrees are equal to 2. Note that such graphs have

an Eulerian cycle.

Let G = (V,E) be such directed graph; the corresponding doubled genome δ will have two copies of

a gene for each vertex in G and an Eulerian cycle in G traversing each vertex twice will be the order of

genes in δ. More precisely, let G′ = (V ′, E′), where V ′ = {x+1 , x−
1 , x

+

2 , x
−
2 : x ∈ V } and the edges in E′

are de�ned as follows: traverse the Eulerian walk and for each edge xy ∈ E, include edge x+i y
−
j in E′,

where i and j is 1 if we are visiting the vertex for the �rst time, and 2 if we are visiting the vertex for

the second time. Note that all edges go from head to tail, E′ is a perfect matching, and G′ de�nes the

doubled genome δ consisting of a single circular chromosome.

Let α be a circular genome that is a solution to the halving problem. Note that δ has no double

adjacencies, so α can have at most n adjacencies in common (none twice in common). This maximum

can be attained if and only if all the adjacencies in α are of the form x+y− (from head to tail) and for

each such adjacency, x+i y
−
j is an adjacency in δ for some i, j. This is true if and only if xy ∈ E. So by

contracting the base matching (each head and tail of a gene into a single vertex) and orienting the edges

(from head to tail), we get a directed Hamiltonian cycle in G.

For the linear and multilinear models, remove one edge xy from G and consider the problem of

deciding whether G contains a directed Hamiltonian path. This problem is still NP-hard and can be

reduced to the halving problem in the linear models: G now has an Eulerian path starting in y and ending

in x. We replace the last adjacency x+2 y
−
1 in δ (corresponding to the removed edge) by two telomeric

adjacencies x+2Tx+2 and y−
1 Ty−1

to get a linear genome. If α is a linear or multilinear solution to the

halving problem, it can reach the maximum similarity if and only if all of its adjacencies (including the

telomeric adjacencies) are in common with δ and this is true if and only if contraction of α is a directed

Hamiltonian path in G. �
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8.3 Median and Halving Problems in the General Model

From now on, we will study the general breakpoint model, i.e., the multichromosomal circular model

where genomes are perfect matchings. We will also note how to extend the results to the mixed model

and use the developed techniques for halving and guided halving problems.

8.3.1 Breakpoint Median

Tannier et al. (2009) noticed that �nding a breakpoint median can be reduced to �nding a maximum

weight perfect matching. This can be done in O(n3) time by algorithm of Gabow (1973) and Lawler

(1976). An open problem from Tannier et al. (2009) and Fertin et al. (2009) asks, whether this can be

improved. We answer this question a�rmatively by showing an O(n
√
n) algorithm.

The solution by Tannier et al. (2009) (if we rephrase it using the similarity measure instead of the

breakpoint distance) was to create a complete weighted graph G where vertices are extremities and weight

w(xy) of edge xy is the number of genomes which contain the adjacency xy. Any perfect matching α

corresponds to some genome and the weight of the matching is equal to its median score S(α).

Notice that instead of �nding a maximum weight perfect matching, we can remove all the zero-weight

edges from G and �nd an ordinary (not necessarily perfect) matching. We can then complete the genome

by joining the free vertices arbitrarily. Since the number of edges in G is now linear, maximum weight

matching can be found in O(n2 log n) time by algorithm of Gabow (1990) or even in Õ(n
√
n) time by the

state of the art algorithm of Gabow and Tarjan (1991) using the fact that the weights are small integers.

More generally and more precisely:

Theorem 14. The Breakpoint-Median problem can be solved in O(kn
√
n · log(kn)

√
α(kn, n) log n)

time for k genomes in the general model. (Here, α(m,n) is the inverse Ackermann function.)

We further improve the algorithm for the most important special case, k = 3: Notice that when xy

is an edge with weight 3, there is no other edge incident to x or y. Therefore, xy must belong to the

maximum weight matching. Moreover, if xy has weight 2, there is a maximum weight matching which

contains xy. Suppose to the contrary that xu and yv were matched in α instead. Then w(xu) and w(yv)

is at most 1 and by exchanging these edges for xy and uv with weights w(xy) = 2 and w(uv) ≥ 0, we

get a matching with the same or even higher weight.

Thus, we can include all edges of weight 2 and 3 in the matching and remove matched vertices

together with their incident edges. The remaining graph has only unit edge weights, so it su�ces to

�nd maximum cardinality matching. This can be done in O(m
√
n) time by the algorithm of Micali and

Vazirani (1980). Thus, we have the following claim.

Theorem 15. The Breakpoint-Median problem for three genomes can be solved in O(n
√
n) time (in

the general model).
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One might still wonder whether there is an even better algorithm for the median problem, which

perhaps can avoid computation of maximum matching. Alas, we show that improving upon our result

would be very hard, since it would immediately imply a better algorithm for the matching problem,

beating the result of Micali and Vazirani (1980) (at least on cubic graphs), which has been an open

problem for more than 30 years.

Biedl (2001) showed that the maximum matching problem is reducible to the maximum matching

problem in cubic graphs by a linear reduction. This means that we can transform any given graph

G with m edges to a cubic graph G′ with O(m) edges such that the maximum matching in G can be

recovered from one in G′ in O(m) time. Thus, any O(f(m)) algorithm for �nding maximum matching

in cubic graphs implies an O(f(m) +m) algorithm for arbitrary graphs.

We say that a reduction is strongly linear if it is linear, and both the number of vertices and the

number of edges increase at most linearly. Such a reduction preserves the running time O(f(m,n))

depending on both the number of vertices and the number of edges.

We prove that the Breakpoint-Median problem is equivalent toMatching under linear reduction

and to Cubic-Matching under strongly linear reduction. If we write ≤` for linear and ≤s` for strongly
linear reduction, we have

Matching ≤` Cubic-Matching ≤s` Breakpoint-Median ≤s` Matching.

The �rst reduction is by Biedl (2001) and the last one was shown in Theorem 15 (in fact, a reduc-

tion to Subcubic-Matching, where the degrees are at most 3, was shown � this is equivalent to

Cubic-Matching under the strongly linear reduction (Biedl, 2001)). We now prove the middle reduc-

tion.

Let G be a cubic graph, an instance of the Cubic-Matching problem. The di�erence between

the Cubic-Matching and Breakpoint-Median problem is that in Breakpoint-Median, the input

multigraph consists of three perfect matchings, i.e., is edge 3-colourable. However, not all cubic graphs

are edge 3-colourable (take for example Petersen's graph).

The solution is to colour edges arbitrarily and resolve con�icts as shown in Figure 8.1(a). We can,

for example, colour the ends of edges at each vertex randomly by three di�erent colours. When both

ends of an edge are assigned the same colour, we colour the edge appropriately. When the ends have

di�erent colours, we subdivide the edge into three parts and use the third colour for the middle edge (see

Figure 8.1(a)). Note that the size of a maximum matching in the modi�ed graph is exactly one more

than the size in the original graph: If xy is matched in the original, xu and vy can be matched in the

modi�ed graph. If xy is not matched, we can still match uv.

Now, the modi�ed graph is edge 3-colourable but not cubic. We remedy this by duplicating the

whole graph and connecting the corresponding vertices of low degree as shown in Figure 8.1(b). As

noted above, we may suppose that the auxiliary double edges aua′u and ava′v are matched, so uau, u′a′u,

vav, and v′a′v are not matched and given the solution for the Breakpoint-Median problem, we can
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x y?

x yu v

(a) Edge xy (top) should be coloured green (this is

the only missing colour at x) and red at the same

time (this is the missing colour at y). We resolve

this con�ict by subdividing edge xy by two new ver-

tices (bottom); we colour xu green, vy red and uv

blue.

u vx yu v

G

G′

au av

a′u a′v

x′ u′ v′ y′

(b) In the second phase, we duplicate

graph G and connect the correspond-

ing vertices with degree 2 as shown in

the �gure.

Figure 8.1: Linear reduction of maximum matching in cubic graphs to breakpoint median problem.

recover the maximum matching of G in O(n) time. The reduction is obviously linear, so we have the

following claim.

Theorem 16. The Breakpoint-Median problem (in the general model) has the same complexity as

�nding maximum cardinality matching in cubic graphs.

8.3.2 Median in the Mixed Model

In the mixed model, weight of a telomeric adjacency xTx is equal to half the number of genomes that

contain xTx. If we multiply all weights by 2, we can use the algorithm by Gabow and Tarjan (1991) for

integer weights, so the result of Theorem 14 remains valid also in the mixed model.

For the median of three genomes, an O(n
√
n) algorithm exists: We observed that we can include all

the double and triple adjacencies in the matching. This is also true for the double and triple telomeric

adjacencies (edges of weight 1 and 11/2): If w(xTx) = 11/2, xTx is a triple adjacency and no other edge is

incident to neither x nor Tx in G. If w(xTx) = 1 but the median α contains adjacency xy instead, then

w(xy) ≤ 1 and since Tx can only be incident to x, it must be unmatched (or matched by a zero-weight

edge) and so we can replace xy by xTx in α.

The remaining graph consists of edges with unit weight and weight 1/2. Note however that all the

1/2-weight edges are of the form xTx, and there is no other edge incident to Tx. We use the doubling

trick again: we take two copies of graph G, and replace all pairs xTx, x′T′x by a single edge xx′ of unit

weight. We can then remove all the telomere vertices. The resulting graph will have only unit weight

edges and the maximum matching will be exactly twice the size of the maximum matching in the original
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graph.

8.3.3 Halving Problems in the General Model

The same tricks can be used for halving and guided halving problems. Recall that in the halving problem,

we are given a duplicated genome γ, and we are searching for genome α that minimizes the double distance

dd(α, γ); in the guided halving problem, we are also given genome ρ and we are minimizing the sum

dd(α, γ) + d(α, ρ).

Again, we construct graph G, where this time, weight of edge xy is the number of adjacencies among

x1y1, x1y2, x2y1, x2y2 in γ and possibly xy in ρ (in case of the guided halving problem). The rest of

the solution is identical, leading to an O(n
√
n) algorithm for the guided halving problem. In the halving

problem, the degrees of vertices in G are at most 2 and after including all the double edges in the solution,

the remaining graph consists only of cycles and the maximum matching can be found trivially in linear

time.

8.4 Breakpoint Phylogeny

In the Small-Phylogeny problem, we try to reconstruct ancestral genomes given a phylogenetic tree

and gene orders of the extant species while minimizing the sum of distances along the edges of the tree.

This problem is NP-hard for most rearrangement distances and for most models; this follows trivially

from the NP-hardness of the Median problem. However, as we have seen in the previous section, this

is not the case in the general breakpoint model and the complexity of the Small-Phylogeny problem

remained open (Tannier et al., 2009; Fertin et al., 2009).

In this section, we prove that the Small-Phylogeny problem is NP-hard also in the general break-

point model. We show that the problem is NP-hard already for four species, a special case that we call

the Breakpoint-Quartet problem.

Given four genomes π1, π2, π3, π4, the Breakpoint-Quartet problem is to �nd ancestral genomes

α1, α2 that maximize the sum of similarities along the edges of the quartet tree (see Fig. 8.2. In other

words, the sum

S(α1, α2) = sim(π1, α1) + sim(π2, α1) + sim(α1, α2) + sim(α2, π3) + sim(α2, π4)

should be maximized.

Theorem 17. The Breakpoint-Quartet problem is NP-hard and even APX-hard in the general

breakpoint model.

The proof is inspired by the work of Dees (2009) who showed that the following problem is NP-hard:

Given two graphs G1 = (V,E1), G2 = (V,E2), �nd two perfect matchings M1 ⊆ E1 and M2 ⊆ E2 with

the maximum overlap M1 ∩M2. The problem is NP-hard even when the components in G1 and G2 are
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π1

π2

π3

π4

α1 α2

Figure 8.2: Quartet tree.

just cycles. In our proof, π1 ∪ π2 will correspond to E1, π3 ∪ π4 will correspond to E2, and the unknown

ancestors α1, α2 will correspond to the unknown perfect matchings M1,M2.

Our proof is, however, much more involved and there are two reasons for this. First, the problem

formulation does not guarantee that α1 ⊆ π1∪π2 and α2 ⊆ π3∪π4. We will say that solution α1, α2 that

satis�es this condition is in a normal form. The hard part of the proof is showing that we can transform

any solution α1, α2 into a solution α′1, α
′
2 that has the same score and moreover it is in the normal form.

The second major di�culty is that we are maximizing the sum S(α1, α2) instead of just the size

of the intersection. A solution with maximum score S(α1, α2) does not necessarily maximize the term

sim(α1, α2), the size of the intersection. To overcome these di�culties, we had to modify the edge gadget

from the original proof and use a more restricted problem for the reduction.

8.4.1 Overview of the Proof

The proof is by reduction from the Cubic-Max-Cut problem. Given a graph G, theMax-Cut problem

is to �nd a cut of maximum size. We may rephrase this as a problem of colouring all vertices in G with

two colours, red or green, while maximizing the number of red-green edges. (Partition of V into the

red part and the green part de�nes a cut and its size is the number of edges with endpoints of di�erent

colour.) In the Cubic-Max-Cut problem, the instances are cubic graphs; this variant is still NP-hard

and APX-hard (Alimonti and Kann, 1997).

Let G = (V,E) be a given cubic graph, an instance of the Cubic-Max-Cut problem. We will

construct genomes π1, π2, π3, and π4 such that the maximum cut in G can be recovered from the

solution α1, α2 of the Breakpoint-Quartet problem in polynomial time.

For each vertex of G, there will be a vertex gadget (see Figure 8.3(a)) made of adjacencies of π1 and

π2. Let π1 be the red matching and π2 the green matching. As we will prove later, we may suppose that

α1 ⊆ π1 ∪ π2, so within each vertex gadget, α1 will contain either the red edges of π1 or the green edges

of π2. This naturally corresponds to a red/green vertex colouring in the Cubic-Max-Cut problem.

The framed vertices in Figure 8.3(a) are called �ports� � this is where the edge gadgets for the three

incident edges are attached. For each edge of G, an edge gadget connecting the ports of the corresponding

vertex gadgets is constructed as shown in Figure 8.3(b). The blue cycles consist of two matchings � the

adjacencies of π3 and π4. Again, as we will prove later, we may suppose that α2 ⊆ π3 ∪ π4, i.e., the
second ancestor consists only of the blue edges.
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Figure 8.3: The vertex and edge gadgets used in our reduction and the terminology used for di�erent

types of vertices and edges. The red and green edges are the adjacencies of π1 and π2, respectively. The

cycles made of blue edges can be decomposed into two matchings � the adjacencies of π3 and π4.

For future reference, let us state here again the claims to be proved in the form of a lemma:

Lemma 4 (Normal form). Let π1, π2, π3, π4 be an instance of the Breakpoint-Quartet problem

constructed from a Cubic-Max-Cut instance as described above. Then any solution α1, α2 can be

transformed in polynomial time into a solution α′1, α
′
2 such that S(α′1, α

′
2) ≥ S(α1, α2) and

α′1 ⊆ π1 ∪ π2 and α′2 ⊆ π3 ∪ π4.

Once we prove the normal form lemma, the rest of the proof is easy: If α1, α2 is a solution in the

normal form, term sim(π1, α1) + sim(π2, α1) is always the same � we get +6 for each vertex gadget and

+6 for each edge gadget. Similarly, term sim(α2, π3) + sim(α2, π4) is always the same � we get +9 for

each edge gadget. So the score S(α1, α2) is maximized, when sim(α1, α2) = |α1 ∩ α2| is maximized. Let

uv be an edge in our graph G from the Cubic-Max-Cut problem. If we choose matchings of the same

colour for both vertex gadgets u and v, then α1 and α2 can only have one edge in common within the

edge gadget uv (see Figure 8.4(a)). However, if u and v have matchings of di�erent colour, we can set

adjacencies of α2 so that α1 and α2 have two edges in common (see Figure 8.4(b)). When we sum up

all these contributions, we get S(α1, α2) = 20m+ c, where m is the number of edges in G, and c is the

size of the cut corresponding to the matching α1, so a polynomial algorithm for Breakpoint-Quartet

would imply a polynomial algorithm for Cubic-Max-Cut.

For the APX-hardness, note that for any graph with m edges, we can easily �nd a cut of size c ≥ m/2.
Let α∗1, α

∗
2 be an optimal solution for an instance of the Breakpoint-Quartet problem and α1, α2 a

solution such that S(α∗1, α
∗
2) ≤ (1 + ε)S(α1, α2). Let both solutions be in the normal form, and let

c∗ and c ≥ m/2 be the sizes of the corresponding cuts. Then 20m + c∗ ≤ (1 + ε)(20m + c), and

c∗ ≤ (1 +ε)c+ 20εm ≤ (1 + 41ε)c. So a (1 +ε)-approximation algorithm for the Breakpoint-Quartet

problem would lead to a (1 + 41ε)-approximation algorithm for the Cubic-Max-Cut problem.

It can also be proved that the phylogenetic tree ((π1, π2), (π3, π4)) is the most parsimonious. The

alternative quartets ((π1, π3), (π2, π4)) and ((π1, π4), (π2, π3)) yield score≤ 20m, so this result also implies
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+1

(a) Adjacencies of the �rst ancestor α1 (red edges)

agree with the adjacencies of π1 at both vertex gadgets.

This corresponds to colouring both vertices red in the

Cubic-Max-Cut problem. Note that α1 and α2 can

only have one adjacency in common.

+1 +1

(b) In the �rst vertex gadget, α1 agrees with π1 (red

edges) and in the second gadget, α1 agrees with π2 (green

edges). This corresponds to colouring the �rst vertex

red and the second vertex green in the Cubic-Max-Cut

problem. In this case, α1 and α2 have two adjacencies in

common.

Figure 8.4: The dashed edges indicate the underlying vertex and edge gadgets, the blue edges are

adjacencies of α2 and the red, green, and yellow edges are adjacencies of α1. Here, we assume that α1

and α2 are in the normal form.

the NP- and APX-hardness of the Large-Phylogeny problem. It remains an open problem whether

computing the correct quartet (without reconstructing the ancestors) is hard.

8.4.2 Notation, Terminology, and Other Conventions

We say that an adjacency e ∈ α1 is supported if e ∈ π1 ∪π2. Similarly, e ∈ α2 is supported if e ∈ π3 ∪π4.
An adjacency that is not supported is unsupported. Furthermore, let Π = π1 ∪ π2 ∪ π3 ∪ π4 be the set

of adjacencies present in at least one extant species. We will say that an adjacency e ∈ αi is weakly

supported, if e ∈ Π.

Let us name the di�erent types of vertices (extremities) and edges (adjacencies) in the following

manner. The framed vertices in Fig. 8.3(a) are called ports and edges from π1 ∪ π2 that connect them

are called port edges. We use the same names also for other (extant or ancestral) adjacencies which are

parallel to these.

Each port consists of two outer extremities called corners, and the middle vertex between them. The

sets of all ports, corners, and middle vertices are denoted by P , C, and M , respectively (P = C ∪M).

The set of intermediate extremities located between ports of vertex gadgets is denoted by I.

The double edges and the two vertices at the top of Fig. 8.3(b) are auxiliary � they just complete the

matchings into perfect matchings.

Since the edge gadget without auxiliary and port edges reminds of a ladder, we use the following

terminology (see Fig. 8.3(b)). The red-green double adjacencies are the rungs and the blue adjacencies

are the rails of the ladder. Again, we use the same name for parallel adjacencies. The set of auxiliary

extremities is denoted by A and the set of ladder extremities is denoted by L.

We say that uv is an X�Y -edge if u ∈ X and v ∈ Y (X and Y do not have to be disjoint); an X-edge
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is any edge uv such that u ∈ X or v ∈ X.

In the proof of the normal form lemma, we will gradually transform a given solution α1, α2 by

exchanging some of the adjacencies in the solution for other adjacencies. The method is analogous to

improving a given matching by an augmenting path. An αi-alternating cycle is a cycle where edges

belonging to αi and edges not belonging to αi alternate. We will say that C1, C2 is a non-negative pair

of cycles for the solution α1, α2, if Ci is an αi-alternating cycle and exchanging the matched and the

unmatched edges of Ci in αi (for i = 1, 2) does not decrease the score:

S(α1 ⊕ C1, α2 ⊕ C2) ≥ S(α1, α2).

One of the cycles may be empty, in which case we simply say that C1 or C2 is a non-negative cycle,

and if the exchange in fact increases the score, we may speak of an augmenting pair of cycles (or an

augmenting cycle).

In the �gures that follow, we will colour adjacencies of α2 blue and adjacencies of α1 red, green, or

yellow. We use red or green for edges in the vertex gadgets that are shared with π1 or π2, respectively

(this corresponds to choosing the red or green colour in the Cubic-Max-Cut problem). We use yellow

for the other edges. We use straight lines for the actual adjacencies and wavy lines for the suggested

adjacencies in non-negative cycles that should be included instead.

In the proof, we will often say

we may suppose that the solution has property P

as a shorthand for a more precise (and longer) statement

Given any solution α1, α2, we can transform it to a solution α′1, α
′
2 with S(α′1, α

′
2) ≥ S(α1, α2)

having property P in polynomial time; in particular, if α1, α2 is an optimal solution, α′1, α
′
2 is

also optimal, with property P. From now on, we will assume that the solution has property P.

With this terminology, we may rephrase the normal formal lemma more succinctly as follows: We may

suppose that solutions of the instances obtained by reduction from Cubic-Max-Cut as described above

have all adjacencies supported.

8.4.3 Proof of the Normal Form Lemma

First, we focus on the adjacencies that the ancestors α1 and α2 have in common. We will show that

these may be assumed to be at least weakly supported.

Proposition 1. We may suppose that all red-green double edges (auxiliary adjacencies and rungs) are

matched in α1 and all blue double edges (auxiliary adjacencies) are matched in α2, i.e., π1 ∩ π2 ⊆ α1

and π3 ∩ π4 ⊆ α2.

Proof. We can alternately replace genome α1 or α2 by the median of its neighbours in the phylogenetic

tree until we converge to a local optimum. As we have already proved in the previous section, we may

assume that a median contains all adjacencies occurring at least twice. �
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Proposition 2. We may suppose that α1 and α2 do not contain unsupported M -edges. In other words,

we may suppose that in both α1 and α2, one of the edges in each port is chosen.

Proof. Let x ∈ M . First, consider the case that xy1 ∈ α1 and xy2 ∈ α2 are both unsupported. Let p

be a neighbouring corner vertex. While xy1 and xy2 contribute at most +1 to the score (if y1 = y2),

common adjacency xp would contribute +3. Let pz1 and pz2 be the actual adjacencies in α1 and α2;

either z1 6= z2, or z1 = z2 and one of the adjacencies is unsupported. Either way, these two edges

contribute at most +2 to the score; so xpz1y1x and xpz2y2x is a non-negative pair of cycles and we can

exchange the edges.

Similarly, if one ancestor contains a port edge xp and the other one adjacencies pz and unsupported

xy, then xpzyx is a non-negative cycle. �

Proposition 3. We may suppose that all L-edges are weakly supported � they are ladder edges.

Proof. In α1, all L-edges are the rung edges by Proposition 1 and are supported. Consequently, contri-

bution of any L-edge in α2 that is not even weakly supported is zero. Let `1x ∈ α2 be such an edge. Let

`1`2 be the middle rail edge and let `2y be the adjacency in α2. If `2y is not weakly supported, `1`2yx`1

is an augmenting cycle. Otherwise, if `2y is a rail edge, it contributes +1 to the score and `1`2yx`1 is a

non-negative cycle.

The last case is that `2y is a rung edge contributing +1 to the score. Let `3 = y, let `3`4 be the other

middle rail edge, and let `4z be the adjacency in α2. Again, if `4z is unsupported, `1`2`3`4zx`1 is an

augmenting cycle, otherwise it is a rail edge and the cycle is non-negative.

It is easy to check that with each non-negative pair of cycles, we get rid of an L-edge that is not

weakly supported, unless we improve the score, which may be done only O(n) times. In the process, we

may introduce unsupported C-edges, which is okay and we will deal with them next. �

Proposition 4. We may suppose that there are no common C-edges other than port edges.

Proof. Let xb be a common C�C-edge in α1 ∩ α2. In the proof, we will use the notation introduced in

Fig. 8.5. From what we have proved so far, we may assume that α1 contains the rung edges `a`b and

`c`d (Proposition 1), am1 is a common adjacency of α1 and α2, and either m2c or m2d is included in α2

(Proposition 2).

First, assume the latter case that m2d ∈ α2 (Fig. 8.5(a) and 8.5(b)). Since the L-edges are weakly

supported, either `b`c ∈ α2 (Fig. 8.5(a)) or both `a`b and `c`d belong to α2 (Fig. 8.5(b)). In either

case, we can add ladder edges to form an alternating b�c-path with score +1 that will be a part of our

non-negative pair of cycles.

Let cz be an adjacency in α2. Since m2 and `c are already matched to di�erent vertices, cz is

unsupported. Now, either cz /∈ α1 and xb . . . czx is a non-negative cycle (see Fig. 8.5(a)), or cz is a

common edge and we will also have to exchange some edges in α1. In particular, xbczx and xb . . . czx is

a non-negative pair of cycles (see Fig. 8.5(b)).

116



Similarly, we can prove the other case when m2c ∈ α2; the non-negative cycle pairs are depicted

in Fig. 8.5(c) and 8.5(d). It can be easily checked that the proof also works when extremities x and b

belong to the same edge gadget (in this case x coincides with c or d, and b coincides with z). A C�C-edge

connecting two corners of a single port is ruled out by Proposition 2.

Note that if α1 and α2 have a common z-edge (Fig. 8.5(b) and 8.5(d)), we may create a new common

unsupported C�C-edge xz. However, the number of common unsupported C�C-edges is decreased by 1

in all cases. �

a b

cd

m1

m2

`a

`d

`b

`c

x

z

–1

0

0

+1

–1

+1

(a) Case 1: α2 contains m2d and cz /∈ α1.

a b
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m1
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`a

`d

`b
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z

–1

+1

–1

+1

–1

+1

–1

+1

0

(b) Case 2: α2 contains m2d and cz ∈ α1 ∩ α2.

a b
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`a

`d

`b

`c

x

z

–1+3–3

+1

–1

+1

0

0

0

(c) Case 3: α2 contains m2c and dz /∈ α1.

a b

cd

m1

m2

`a

`d

`b

`c

x

z

–1+3–3

+1

–1

+1

+10

–1

(d) Case 4: α2 contains m2c and dz ∈ α1 ∩ α2.

Figure 8.5: Di�erent cases that arise when disposing of unsupported common C�C-edges. The dashed

edges represent the underlying edge gadgets; adjacencies of α2 are blue, adjacencies of α1 are yellow,

red, and green. Wavy lines are the new suggested adjacencies that should be exchanged for the present

ones in the non-negative cycles.

Corollary 3. We may suppose that all the common adjacencies of the ancestors α1 and α2 are weakly

supported: α1 ∩ α2 ⊆ Π. More speci�cally, we may suppose that the only common adjacencies are port

edges and rung edges. Consequently, each unsupported adjacency except for rung edges in α2 contributes

zero to the score.

We say that α1 is uniform at a vertex gadget, if all the port edges in the gadget have the same

colour (they all agree with either the π1 edges or the π2 edges). Next, we prove that α1 may be assumed

uniform at all gadgets. Such an ancestor α1 directly corresponds to a cut in G.
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Here, we use the fact that G is cubic: Imagine that G was a complete bipartite graph Kn,n with one

more vertex connected to all the other vertices. Then our reduction would not work, since the optimal

ancestors would colour one bipartition red, the other green, and the extra vertex half green half red (i.e.,

half of the ports would be green and the other half red).

First, let us characterize how the non-uniform gadgets look like.

Proposition 5. We may suppose that the following statements are equivalent:

� α1 is not uniform at a vertex gadget

� there is one unsupported I-edge in α1 incident to the vertex gadget

� there is one unsupported C-edge in α1 incident to the vertex gadget

Proof. Let α1 be non-uniform at a vertex gadget. Without loss of generality, let two of the port edges

be green and one be red (see Fig. 8.6(a)). Denote r the red and g1 and g2 the green edges, such that g1

is closer to r (as in Fig. 8.6(a)). The edge incident to the intermediate extremity between r and g1 is an

unsupported I-edge.

Obviously, if two neighbouring extremities in a vertex gadget are incident with unsupported edges,

there is an augmenting cycle, so we may suppose that the intermediate edge between g1 and g2 is green

and one of the intermediate edges e or f in Fig. 8.6(a) belongs to α1; the other corner has an unsupported

C-edge.

Conversely, if there is an unsupported I-edge or C-edge, the neighbouring ports cannot have edges

of the same colour (this would imply two neighbouring extremities with unsupported edges in α1). �

Now we are ready to prove the normal form lemma.

Proposition 6. We may suppose that in each vertex gadget, the port edges of α1 are either all red or

all green. Thus, we may suppose that all adjacencies in α1 are supported: α1 ⊆ π1 ∪ π2.

Proof. We prove that for each vertex gadget, we may simply look at the three port edges and choose

the colour by majority vote. In the previous proposition, we have shown that non-uniform gadgets have

exactly two unsupported edges so they form cycles as in Fig. 8.6(b). Fig. 8.6(c) shows the non-negative

cycle that we get by including the edges decided by majority vote. In each vertex gadget, we may lose

1 point for switching the port edge (if this was a common edge), but we get 1 extra point for increasing

the number of supported edges. �

Proposition 7. We may suppose that all adjacencies in α2 are supported: α2 ⊆ π3 ∪ π4.

Proof. The only remaining unsupported edges in α2 are the rung edges and C�C-edges. If α2 contains a

rung edge, it must in fact contain both rung edges and in the adjacent ports, only one corner is covered

by a port edge. Thus, the edge gadget is incident to two unsupported C�C-edges.
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(a) A non-uniform ances-

tor α1 at a vertex gadget.

(b) The non-uniform gadgets are connected

by unsupported I-edges and C-edges.

0
0

0

–1

–2

–1

–2–2

+1

+1 +1

+1
+1

+1+1

+1

(c) A non-negative cycle used for dispos-

ing of non-uniform gadgets and unsupported

edges in α1.

Figure 8.6: Non-uniform ancestors at a vertex and a way how to remedy them.

Conversely, it is easy to see that if α2 contains a C�C-edge, in the incident edge gadgets, α2 contains

either both rung or both middle rail edges and there are C�C-edges incident to the corners of the opposite

ports. So the edge gadgets together with the unsupported C�C-edges form cycles and all the rung edges

are in these edge gadgets (see Fig. 8.7).

In each edge gadget, we can join the two corners by a non-negative alternating path (see Fig. 8.7); we

can lose 1 point for destroying a common adjacency of α1 and α2, but we gain 1 point for increasing the

number of supported edges in α2. By exchanging edges along these cycles, we �x both the unsupported

C�C-edges and rung edges. �

This concludes the proof of the normal form lemma and thus also the proof of NP-hardness and

APX-hardness of the Breakpoint-Quartet problem.

8.5 Conclusion

In this chapter, we have settled several open problems concerning the computational complexity of

di�erent rearrangement problems in the breakpoint models. There are at least three intriguing questions

119



0

–1 –1

–2

0

–2

–1

–1 –1

+1

+1

+1

+1

+1

+1 +1

+1

+1

+1

0

Figure 8.7: Example of three edge gadgets connected in a cycle by unsupported C�C-edges. We can join

two corners with unsupported C�C-edges in an edge gadget by a non-negative path. Note that we also

get rid of the blue rung edges in the top and right edge gadgets at the same time.

in this area that remain open. The �rst two are of theoretical interest and are related to approximability

of the Small-Phylogeny problem, the third question is more practical:

1. How well can we approximate Small-Phylogeny? For example, Breakpoint-Quartet problem

can be easily formulated as an integer linear program (we can use di�erent variables for the edges

present only in α1, only in α2, and in the intersection α1 ∩ α2). Its relaxation might lead to an

algorithm with a good approximation ratio.

2. In the Steinerization approach to ancestral reconstruction, we repeatedly replace the ancestral

genomes by medians of genomes in the neighbouring nodes of the tree until we converge to a local

optimum. Despite the fact that this is the most common approach to ancestral reconstruction

(also in the other models) and that preliminary experiments with simulated data suggest that this

heuristic performs very well, no guarantees are known for the method (in any model).

3. Finally, the motivation behind the general breakpoint model is that we can solve the median

problem in polynomial time. Using the Steinerization method, we can also get very good solutions

of the Small-Phylogeny problem rapidly. The question is: Are these solutions useful in practice?

Are they biologically plausible? Or can we adjust them and use them as starting points in more

complicated models?
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Chapter 9

Conclusion

As we have seen in the previous chapters, much progress has been made in the area of genome rearrange-

ments. Still, many important problems remain open. We conclude with three such problems:

� In Chapter 2, we have seen the great progress on the reversal and RT sorting. The �rst polynomial

algorithm by Hannenhalli and Pevzner has been improved from O(n4) time to O(n
√
n) time. There

is also a practical quadratic algorithm which seems to run in O(n log n) in average case. It remains

an open problem, whether we can sort signed permutations by reversals in O(n log n) time in worst

case.

� There has been considerable progress on the median problem since the �rst results by Siepel and

Caprara. However, our understanding of the slightly more complicated halving problems is lagging

behind. The current state of the art median solvers are based on the decomposition theory and

adequate subgraphs. Can we extend the theory and apply it to other problems such as double

distance, guided halving, genome aliquoting, or even phylogeny problems?

� Finally, a very hard problem, which is widely open: Design a good probabilistic model for genome

rearrangements.
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