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Abstract

Search for sequence similarity in genomic databases is one of the essential problems
in bioinformatics. Genomic sequences evolve by local changes affecting one or several
adjacent symbols, as well as by large-scale rearrangements and duplications. In this
thesis we address two different problems, one connected to the local changes and the
other to the large-scale events. Both problems deal with genomic databases with
a rich internal structure consisting of repeating sequences.

First, considering only the local changes, we discuss the problem of distinguishing
random matches from biologically relevant similarities. Customary approach to this
task is to compute statistical P -value of each found match between a query and
the searched database. Biological databases often contain redundant identical or
very similar sequences. This fact is not taken into account in P -value estimation,
resulting in pessimistic estimates. We propose to use a lower effective database
size instead of its real size and to estimate the effective size of a database by its
compressed size. We evaluate our approach on real and simulated databases.

Next, we concentrate on large-scale duplications and rearrangements, which lead to
mosaic sequences with various degree of similarity between regions within a single
genome or in genomes of related organisms. Our goal is to segment DNA to regions
and to assign such regions to classes so that regions within a single class are similar
and there is low or no similarity between regions of different classes. We provide
a formal definition of the segmentation problem, prove its NP-hardness, and give two
practical heuristic algorithms. We evaluated the algorithms on real and simulated
data. Segments found by our algorithm can be used as markers in a wide range of
evolutionary studies.

Keywords: homology search, statistical significance, genomic data compression, se-
quence segmentation, NP-completeness, dynamic programming, heuristic algorithms



Abstrakt

Hľadanie podobností medzi sekvenciami v genomických databázach je jedným z ú-
stredných problémov bioinformatiky. Genomické sekvencie evolvujú malými zme-
nami ovplyvňujúcimi iba jednu prípadne niekoľko za sebou idúcich báz, rovnako
ako aj preusporiadaniami a duplikáciami veľkých blokov v rámci jednej sekvencie.
V tejto práci sa zaoberáme dvoma problémami, pričom prvý súvisí s lokálnymi zme-
nami v sekvenciách a druhý s blokovými preusporiadaniami a duplikáciami.

V prvej časti sa venujeme problému rozoznávania biologicky významných sekvenč-
ných podobností od náhodných zhôd. Zvyčajným postupom pri riešení tohto prob-
lému je výpočet štatistickej P -hodnoty pre každú nájdenú podobnosť medzi dotazo-
vanou sekvenciou a prehľadávanou databázou. Biologické databázy často obsahujú
niekoľko kópií identických alebo veľmi podobných sekvencií. Tento fakto sa neberie
do úvahy pri odhadovaní P -hodnoty, čo spôsobuje pesimistické odhady. Navrhujeme
v odhade použiť namiesto reálnej veľkosti databázy menšiu efektívnu veľkosť, ktorú
určíme ako veľkosť databázy po kompresii. Náš prístup testujeme na reálnych ako
aj simulovaných databázach.

Pri riešení druhého problému sa sústredíme na blokové preusporiadania a dup-
likácie. Tieto evolučné udalosti vytvárajú mozaikové sekvencie s rôznym stupňom
podobnosti medzi regiónmi v rámci jedného genómu ako aj medzi regiónmi v genó-
moch evolučne blízkych organizmov. Našim cieľom je segmentovať DNA na regióny
a rozdeliť tieto regióny do tried tak, že regióny patriace do jednej triedy sa navzájom
podobajú, ale podobnosť medzi regiónmi patriacimi do rôznych tried je výrazne
nižšia. V tejto práci formálne zadefinujeme problém segmentácie, dokážeme, že je
NP-ťažký a popíšeme dva praktické heuristické algoritmy. Úspešnosť našich algorit-
mov vyhodnotíme na reálnych aj simulovaných dátach. Segmenty nájdené takýmto
spôsobom môžu slúžiť ako vstupné dáta pre štúdium evolúcie.

Kľúčové slová: hľadanie homológov, štatistická významnosť, kompresia genomic-
kých dát, segmentácia sekvencií, NP-úplnosť, dynamické programovanie, heuristické
algoritmy
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Introduction

Search for similarities between biological sequences is one of the essential problems in

bioinformatics. Importance of the search grows with increasing amount of available

genomic sequences as sequence similarity possibly indicates functional similarity or

homology (shored evolutionary origin) of the similar sequences. Results of such

similarity search combined with experimental bio-molecular methods allow us to

study possible sequence functions in a more efficient way than what can be done

using purely bio-molecular approaches. In addition, with identified homologous

sequences evolutionary processes at the region can be studied in more detail.

This thesis deals with two problems connected to similarity search in genomic

sequences. We focus on sequences which do not follow traditional sequence models

assuming random distribution of bases within a sequence. Instead, we expect that

the sequence at hand is internally structured, containing several almost identical

regions. We study possibility of using this information to improve methods for

solving the problems of our interest. First, we address the problem of estimating

statistical significance of similarity search for a database consisting of many similar

sequences. Second, we are given a genomic sequence, and our task is to uncover

it’s internal structure. In particular, we identify non-overlapping segments of the

sequence and to partition these segments into classes so that segments within each

class are similar to each other, and there are no significant similarities between

segments from different classes.

For the purpose of this thesis, we represent a DNA sequence as a finite string over the

four letter alphabet {A,T,C,G} and call the letters bases or nucleotides. In bioin-

formatics, sequence similarity search is typically formalized as search for high-scoring

sequence alignments. A sequence alignment is an arrangement of the sequences ob-

tained by adding spaces, which we call gaps, inbetween bases of any of the aligned
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sequences, so that we obtain a rectangular block consisting of bases and gaps, where

each row represents one sequence. Corresponding bases of the input sequences are

then aligned in the same column. A scoring function is usually defined, which as-

signs a score to each column and reflects similarity among the column bases. The

alignment score, which is the sum of the scores of all alignment columns, reflects the

length of the aligned sequences and their similarity. Among all possible alignments

of the considered sequences, the highest scoring alignments are typically of interest,

and can be computed for two sequences by dynamic programming as we review in

Section 1.3. We often wish to find high-scoring alignments between continuous sub-

sequence of a newly sequenced query DNA sequence and subsequences in a database

containing already known sequences.

However, many alignments found in this way are just random matches without bio-

logical meaning. To distinguish such random matches from the biologically relevant

similarities, statistical significance (P -value) of the alignment is estimated. The

matches with small enough P -value are then considered to be the relevant similari-

ties. In this context, P -value is the probability that an alignment with a given score

or higher would occur by chance in a comparison of a random query and a random

database. This P -value is a function of the database size, since a high-scoring simi-

larity is more likely to exist by chance in a larger database. Traditional techniques

used to evaluate the significance of search results (Karlin and Altschul, 1990) often

build upon theoretical models of databases which differ in important way from the

database at hand.

We concentrate on providing better estimates for databases containing many

almost identical sequences. Such databases are commonplace due to redundancy of

sequence data production and evolutionary relationship of the sequenced regions.

To compensate for differences between the real database and the model, we propose

to calculate effective database size (smaller than the real size) and use this effective

size instead the real size as a parameter in the traditional formulas for P -value

estimation. We will study a possibility of using a compressed size of a database to

estimate its effective size in context of DNA databases. An appropriate compression

algorithm will effectively store only one copy of each repeated string, resulting in

a file whose size roughly corresponds to the amount of unique sequences in the

database. We test this approach on both simulated and real data.
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The second problem which we will address in this thesis is sequence segmentation. In

comparative genomics, identification of homologous segments within the sequences

of interest is the first step for studying rearrangement and duplication histories (i.e.

Kováč et al., 2011; Holloway et al., 2012). The segments are typically constructed

from annotated genes in the sequences. However, the histories reconstructed from

segments determined according their already known functionality ignore relations

among segments of non-coding sequences. These reconstructions are also sensitive

to errors in annotation, and may even introduce artifacts due to incomplete gene

copies. Using segmentation, which is not based solely on protein coding genes, it

may be possible to study recent evolutionary events in more detail.

We provide formal definition of the segmentation problem, prove its NP-hardness,

and give two heuristic algorithm for the problem. We evaluated the algorithms on

real and simulated data. Segments found by our algorithm can be used as markers

in a wide range of evolutionary studies.

The thesis structure is following. In Chapter 1 we introduce the topic of sequence ho-

mology search, and review traditional approaches to sequence similarity search and

estimation of statistical significance. Chapter 2 deals with the approach to P -value

estimation based on database effective size (Višňovská et al., 2010). Chapter 3 is

devoted to the segmentation problem (Višňovská et al., 2013).



Chapter 1

Homology Search

In this chapter, we provide basic biological background related to the problems,

which we discuss in the following two chapters. We also discuss traditional bioinfor-

matic algorithms for homology search and customary methods to estimate statistical

significance of a particular search result.

1.1 Sequences of DNA and Their Evolution

Deoxyribonucleic acid (DNA) consists of two long DNA strands which run in oppo-

site directions (we say they are anti-parallel) and form a shape of double helix as can

be seen in Figure 1.1. We denote 5′ terminus the beginning of each DNA sequence

and 3′ terminus its end. A DNA sequence consists of adenine (A), cytosine (C), gua-

nine (G) and thymine (T). The two DNA strands are bonded so that A and T are

always paired together and C and G are always paired together. The main function

of DNA is to store genetic information. Segments of DNA which carry information

necessary for building RNA and proteins are called genes. For our purpose, we will

represent DNA sequences as strings over the four letter alphabet.

Since 1968 when first DNA was sequenced, scientists are improving techniques

of DNA sequencing, and the amount of sequenced DNA grows enormously. History

and review of sequencing techniques can be found in (Hutchison, 2007). Results

of DNA sequencing projects are typically made available to public through various

sequence databases. One of the frequently used nucleotide databases, GenBank

(Benson et al., 2008), contains nowadays more than 160 million sequences with total



1.1 Sequences of DNA and Their Evolution 7

Figure 1.1: A pair of complementary DNA strands from (Holmes and Jobling, 1996).

length almost 150 billion nucleotide base pairs1, and its growth is shown in Table

1.1.

Evolutionary changes of DNA sequences. Over time DNA sequence can undergo

some changes, which we call mutations. We consider the following types of muta-

tions:

• Single-base substitution. A base at a particular position of the DNA is ex-

changed for a different nucleotide.

• Deletion. A continuous portion of the DNA is deleted.

• Insertion. Adding a random sequence at a particular position of the DNA.

• Rearrangement. During this event, a continuous portion of DNA moves from

its position to some other position.

• Inversion. It is similar to rearrangement, except that the cutout piece of the

DNA is inserted at the same position as it was previously, but in a reverse

direction relative to the rest of the sequence.

• Duplication. In this event a copy of a continuous portion of DNA is inserted

at another position.

1GenBank Release 194, February 2013:
http://www.ncbi.nlm.nih.gov/genbank/statistics

http://www.ncbi.nlm.nih.gov/genbank/statistics
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Date Base Pairs Entries

Dec 1982 680 338 606
Nov 1984 3 689 752 4 393
Nov 1986 9 615 371 9 978
Dec 1988 24 690 876 21 248
Dec 1990 51 306 092 41 057
Dec 1992 120 242 234 97 084
Dec 1994 230 485 928 237 775
Dec 1996 730 552 938 1 114 581
Oct 1998 2 008 761 784 2 837 897
Dec 2000 11 101 066 288 10 106 023
Dec 2002 28 507 990 166 22 318 883
Dec 2004 44 575 745 176 40 604 319
Dec 2006 69 019 290 705 64 893 747
Dec 2008 99 116 431 942 98 868 465
Dec 2010 122 082 812 719 129 902 276
Dec 2012 148 390 863 904 161 140 325

Table 1.1: Size of GenBank sequence database since 1982 to 2012.

• Speciation. This event occurs when one species splits into two distinct species.

Usually, some environmental conditions cause that the population of one species

splits into two groups. Initially, their DNA is the same, but over time, each of

the subpopulations undergoes independent mutations, which in the end cause

a differentiation of the two species.

Some regions within a genome tend to mutate faster than the others. Mutations in

functional regions of DNA sequences often lead to a nonviable form of life or a form

that will be destroyed through natural selection. Therefore functional regions tend

to be more similar to their counterparts in other species than nearby non-functional

regions. For example, it was shown that the alignment of whole mouse and human

genomes covers 40% of human genome and an identity within the alignment is 70%.

In comparison, 98% of human exons2 are aligned to mouse and identity within

alignments is 85% (Waterston et al., 2002). Therefore we expect that functional

regions stay similar, and we can detect them on the basis of their similarity.

2Exon is a piece of a DNA sequence that translates to a protein or its part.
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Consider genomic sequences S and T belonging to two different contemporary

species and the genomic sequence U of their most recent common ancestor. Consider

also a particular region u in U and the corresponding sequences s and t in S and T ,

respectively, such that the regions s and t evolved from u. We then say that s, t, and

u are homologous to each other. More precisely, two regions are homologous if they

have a common ancestor. Homologous sequences often have have similar functions

but there are examples of homologous sequences with different functions as well as

functionally similar sequences which are not homologous.

In fact, we do not know how an evolution really progressed because we can

analyze only sequences of current species and we are usually interested in homology

among DNA sequences which are very distanced in time. We would be able to

confirm that two sequences S and T are homologous only if we could explore their

most recent common ancestor U and all sequences on the lineages between S and

U and between T and U . Since we do not know sequences of all extinct forms, this

confirmation is not possible, and we have to decide homology of S and T on the

basis of sequence similarity as it is an observable event and homology is not.

We have shown that sequence similarity is a tool for detecting sequence homology

and function similarity and now it is a legitimate question why this is useful. Wet

lab experiments are expensive in time and money and most of them are tuned to

answer a very specific question about the analyzed sequences. Even though it is

necessary to evaluate the results of computational methods by wet lab experiments,

sequence similarity detection can help to focus such experiments, because we can

estimate a function of an unknown sequence region on the basis of its similarity

with sequences which have known function. In a consequence, we can propose

an experiment which accepts or rejects our hypothesis. We can also use sequence

similarity among sequences to infer homology and use putative homology to create

phylogenetic trees. It is important to be careful in an interpretation of results we

get from such a comparison and strictly distinguish homology, functional similarity

and sequence similarity. Although the three concepts partially overlap, they also

differ significantly.
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s(S, T )

sequence S A T C
sequence T A T A

w(si, ti) +1 +1 −1 1

Figure 1.2: Similarity score of sequences S ="ATC" and T ="ATA". Under each
pair of bases is the pair score and the number in last column is sum of pair scores.

1.2 Sequence Alignments

In this section, we formalize biological intuition to the point that allows us to attack

sequence similarity search as a computational problem. In particular, we introduce a

concept of pairwise alignment, an arrangement of two genomic sequences that leads

to the highest similarity score for the two sequences.

For simplicity, we will first consider a simplified model of evolution which allows

only single-base substitution. Later we will add more mutation types, in particular

insertions and deletions. If only substitutions are allowed, all sequences have the

same size. To measure similarity between two DNA sequences, we define sequence

similarity score. Let S = s1s2 . . . sn and T = t1t2 . . . tn are sequences of length n.

We assign base pair similarity score w(si, ti) to every pair of corresponding bases si

and ti according to a scoring function and set similarity score s(S, T ) to a sum of

its base pair scores:

s(S, T ) =

n
∑

i=1

w(si, ti).

In the case of DNA sequences, scoring schemes are usually simple, for example

Altschul et al. (1990) use score +5 for match and score −4 for mismatch. More

complex schemes are needed for proteins which consist of amino acids of 20 different

types, which show different level of similarities to each other. We will use for illustra-

tion in our examples a simple scoring function that assigns score +1 for match and

score −1 for mismatch. Consider two DNA sequences S ="ATC" and T ="ATA".

Base pair scores are +1, +1, −1, respectively and similarity score s(S, T ) equals to

1 as shown in Figure 1.2.

Alignment with gaps. A situation is more complicated when the sequences differ in

length. This can happen when we allow other mutations: insertions and deletions.
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s(S, T )
seq. S G C T A T G T G

seq. T C T A G – – – –

w(si, ti) −1 −1 −1 −1 −1 −1 −1 −1 –8

s(S, T )
seq. S G C T A T G T G

seq. T – C T A – G – –

w(si, ti) −1 +1 +1 +1 −1 +1 −1 −1 0

s(S, T )
seq. S G C T A T G T G

seq. T – C T – – – A G

w(si, ti) −1 +1 +1 −1 −1 −1 −1 +1 -2

s(S, T )
seq. S G C T A T G T G

seq. T – C T A G – – –

w(si, ti) −1 +1 +1 +1 −1 −1 −1 −1 -2

Figure 1.3: Four alignments of sequences S ="GCTATGAGC" and T ="CTAG"
and their similarity scores. Gaps in sequence T are shown as "–". We assume that
insertions in sequence S or deletions in sequence T occurred. The score for a gap is
−1.

When we compare two sequences S and T , we capture an insertion which occurs

within sequence S (without loss of generality) by adding so-called gaps (empty posi-

tions) into sequence T . In the complementary situation when deletion occurs within

sequence T , we again add gaps into sequence T . For now, we do not consider dupli-

cations or rearrangements. If we would represent all potential mutations and create

a complex model, many nowadays known and used algorithms become infeasible.

In Figure 1.3 we can see four examples of alignments between two sequences with

different lengths (9 and 4 bases). As before the score of an alignment is the sum

of similarity scores for pairs of corresponding nucleotides. To score missing bases

(gaps in the alignment), we use a gap penalty; in our scoring system gap penalty

equals −1. We do not know which bases corresponds to each other and we want to

choose the best alternative. The goal of sequence alignment programs is to find the

highest-scoring alignment of two input sequences.

In practice we are interested in two types of alignments. First of them is a global

alignment. It is an alignment of whole sequences S and T (e.g., genomes of two

species or more typically two evolutionary related DNA sequences coding similar

proteins). This method can be useful if S and T are similar across their entire

length. An illustration of such an alignment is in Figure 1.4. Black parts are the

same in both sequences and we want to align them. Because of that we have to shift

subsequences of S and T which do not match and create gaps on some positions in

S or T .

A highest-scoring global alignment captures the minimum of mutation operations
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Figure 1.4: Illustration of global alignment.

seq. S A A C T A G T T T T T A C G T A T C C

seq. T C C A C C G T C T G G G C T A C T A A A

score
subsequence of S C T A – G T

subsequence of T C T A C – T

w(si, tj) +1 +1 +1 −1 −1 +1 2

score
subsequence of S A C – G T A T

subsequence of T A C C G T C T

w(si, tj) +1 +1 −1 +1 +1 −1 +1 3

Figure 1.5: Sequences S and T uppermost, local alignments between bold and italic
subsequences with the corresponding similarity scores below.

which are necessary to transform one sequence to the other. We suppose that this

is the most probable way of evolution, therefore we chose the highest-scoring global

alignment as the optimal one.

In this work we will concentrate more on the second type of alignments, a local

alignment. We showed on the example with the alignment of exon parts of the

mouse and human genomes that functional regions stay conserved. If we would

try to align whole genomes overall similarity score would be low because of parts

between exons (these parts are called introns) where the human and mouse genomes

are not similar. This happens despite of high similarity between exons. To find

these shorter similar subsequences, we have to compare subsequences of given long
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Species Size in Gb

Human 3.2
Chimpanzee 3.1
Mouse 2.5
Rice 0.42
Yeast 0.012

Table 1.2: Genome sizes of selected species.

sequences and search for high-scoring pairs. The alignment of such shorter pieces is

named the local alignment. When we study local alignments of two long genomic

sequences we are usually interested not only in one optimal (the highest-scoring)

local alignment but also in other high-scoring alignments which we can find in other

parts of compared sequences. We illustrate this situation by two sequences S and

T in Figure 1.5 which contain two high-scoring local alignments.

In many situations we need to search for local alignments between a query se-

quence and a database. For example we can try to explore a new DNA sequence

and estimate functionality of its parts. As sequence databases grow, it is getting

more difficult to efficiently find information we are looking for. Older methods let

down in efficiency and therefore new more efficient ones are researched.

In the case of short sequences like those in Figure 1.3 we can try all possibilities

and chose the optimal alignment (global or local), but real sequences can be several

Megabases long (e.g. see Table 1.2). It is infeasible to compare all possibilities and

chose the best one. Therefore, efficient algorithms for finding optimal global align-

ment were constructed. In following sections 1.3 and 1.4 we describe two standard

techniques of search for local alignments. Similar algorithms can be used for global

alignment.

1.3 Exact Similarity Search

In this section we describe the Smith–Waterman algorithm for finding the optimal

local alignment of two sequences (Smith and Waterman, 1981; Gotoh, 1982). We

also show how to extend this algorithm in order to find k best alignments. Finally,

we discuss why this algorithm is often infeasible in practice.

This algorithm uses the technique of dynamic programming (Cormen et al., 1989,
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ch.16). The goal of the algorithm is to compute the highest scoring alignment

between two sequences S = s1s2 . . . sn and T = t1t2 . . . tm. Let w(si, tj) be the score

of aligning base si of sequence S to base tj of sequence T and let g be the gap

penalty (see Section 1.2 for description of the scoring scheme).

Instead of directly computing the optimal local alignment, the dynamic program-

ming algorithm will compute optimal local alignments of all prefixes of sequences S

and T . More precisely, let c(i, j) be the similarity score of the highest scoring local

alignment between prefixes s1 . . . si and t1 . . . tj containing both bases si and tj (not

necessarily aligned to each other), or 0 if such an alignment would have a negative

score.

The alignment whose score is in the cell c(i, j) of the table should have in its last

column either nucleotide pair si, tj or nucleotide si and a gap in sequence T (because

tj was aligned before) or gap in sequence S and nucleotide tj . If we discard the last

column of the alignment, the rest of the alignment must be optimal for corresponding

prefixes of sequences S and T . Therefore we can calculate the highest similarity score

c(i, j) with a help of cells storing the highest scores for shorter sequences.

To calculate the value of c(i, j), the algorithm chooses the best from the following

possibilities:

• Nucleotides si and tj can be appended to the alignment which ends in c(i −

1, j − 1). Then the value of c(i, j) will be c(i − 1, j − 1) + w(si, tj), where

w(si, tj) may be positive or negative, depending on whether si and tj match

or not.

• Nucleotide si and a gap in sequence T can be appended to the alignment which

ends in c(i−1, j). Then the value of c(i, j) will be c(i−1, j)−g (gap penalty).

• Similarly, a gap in the sequence S and tj can be appended to the alignment

which ends in c(i, j − 1). Then a value of c(i, j) will be c(i, j − 1) − g (gap

penalty).

• Finally, we also consider an empty alignment with score 0. This may be a

start of a local alignment starting at this position.

Formally,
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T A G C T G C A
0 0 0 0 0 0 0 0 0

տ տ

A 0 0 1 0 0 0 0 0 1

տ տ

C 0 0 0 0 1 0 0 1 0
տ տ

T 0 1 0 0 0 2← 1 0 0

տ ↑ տ տ

A 0 0 2← 1 0 1 1 0 1
↑ տ տ տ

C 0 0 1 1 2← 1 0 2← 1

տ ↑ տ

T 0 1 0 0 1 3← 2 ← 1 0

Figure 1.6: Smith–Waterman algorithm table for sequences S ="ACTACT" and
T ="TAGCTGCA".

c(i, j) = max



















c(i− 1, j − 1) + w(si, tj),

c(i− 1, j)− g,

c(i, j − 1)− g,

0.

(1.1)

Using this equation, the algorithm fills a table in a row-wise order. As a special

case, values of c(i, 0) and c(0, j) are set to zero for all i and j. Figure 1.6 shows an ex-

ample of the table c(i, j) for the sequences S ="ACTACT" and T ="TAGCTGCA".

The example illustrates the Smith-Waterman algorithm for a simple scoring scheme

that assigns the score +1 to a match, −1 for mismatch and −1 for a gap.

The highest value of c(i, j) in the whole table marks the end of the optimal local

alignment between the sequences S and T . So that the algorithm can reconstruct

the optimal local alignment, we have to store not only the score for every cell c(i, j),

but also a pointer to the cell from which c(i, j) has been computed. In the example

in Figure 1.6, the highest number in the table is c(6, 5) = 3 (in bold). The optimal

local alignment can be reconstructed by following the pointers mentioned above and

stopping when score of zero is reached. In our example, this results in the local

alignment shown in Figure 1.7.

Additional local alignments with high scores can be found easily from the same
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seq. S T A – C T
seq. T T A G C T

Figure 1.7: Optimal local alignment of given sequences S and T .

table by locating the second, third, fourth, etc. highest score in the table. We are

not interested in shorter sub-alignments of already found alignments but only in

non-overlapping lower-score alignments. Details of the algorithm can be found in

(Waterman and Eggert, 1987).

Since the algorithm requires time proportional to the product of m and n (it has

to fill out whole table of this size), the algorithm is infeasible in task of sequence

database search. We remark that sequences several Megabases long are sequenced

nowadays (see Table 1.2). Therefore we are forced to give up on accuracy of search

results in exchange for feasible runtime. In the next section we introduce a well-

known heuristic algorithm for local alignment problem.

1.4 Heuristic Search for Similarities

In this section we introduce one of the well known heuristics algorithms called

BLAST (Altschul et al., 1990) and discuss its properties and drawbacks. We also

review different approaches that achieve better results.

As we said before, a class of biologically relevant questions about sequences

homology and function can be attacked with a help of huge sequence databases.

Therefore we explain BLAST algorithm in the context of search for similarity be-

tween a query sequence S and a target sequence T from a database. Search through

the database then contains comparisons of S and every T in the database.

Part One: Search for Seeds

In the first part of the algorithm we search for positions in S and T that may

correspond to each other within a high-scoring local alignment. These positions are

called seeds. It is faster to decide whether two sequences exactly match than compute

their similarity score. Since the speed is crucial in the task of local alignment search,

BLAST finds seeds of fixed length k (usually k = 11) and it requires complete match

between regions in sequences S and T on k consecutive positions. The algorithm
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AA → 4 19 20

AC → 11 14

AG → 8

AT → 5 21

CA → 10

CC

CG → 15

CT → 2 12

GA → 7

GC → 1 9

GG → 16

GT → 17

TA → 3 13 18

TC → 22

TG → 6

TT

index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

query S G C T A A T G A G C A C T A C G G T A A A T C

Figure 1.8: The lookup table created by BLAST to identify hits.

searches for seeds in two steps. First it builds a data structure for faster lookup in

the query sequence S and then goes through the target sequence T and searches for

seeds between sequences S and T .

The mentioned data structure created from query S is a lookup table where we

store all appearances of k bases long consecutive DNA subsequences of the query

S. The lookup table is composed of all k-letter words and every word points to

positions in query S where the word begins. For example, when k = 2 the lookup

table stores 42 words as shown in Figure 1.8. Occurrences of a word "TA" in query S

are shaded in the figure as well as the row in the lookup table where the occurrences

are stored.

We use the lookup table to search for hits (matching seeds) in the target sequence

T . We go through T and for each continuous k-letter word we use the lookup table

to find all its occurrences in S. Each occurrence will be a hit. This process continues

according to the algorithm of Wilbur and Lipman (1983). Output of BLAST first

part is a list of pairs (i, j) where hit starts on the positions si and tj in query S and

target sequence T , respectively.
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Figure 1.9: Drop-off parameter: The shaded positions are those where a score is
above a drop-off parameter and the white are below it. The black line represents a
seed.

Part Two: Hits Extension

From the first part of the algorithm we have a list of indexes on which hit (matching

seed) starts in S and T . The goal of the second part is to extend hits as much as it

gets and those that reach a high enough score will be declared as local alignments.

The algorithm uses a dynamic programming for hit extension from the position

(i, j) to both sides. Local alignments with long low-scoring regions are eliminated

by a heuristic approach.

The algorithm stops when the actual score decreases below the best score found

so far for alignments by a given value. This value is called drop-off parameter and

it influences an amount of values c(i, j) which we have to calculate during dynamic

programming. In Figure 1.9 we can see an illustration how the heuristic can saves

runtime of the algorithm. With this heuristic approach we can lose some alignments

because we stop extension of seed too early, but a probability of such a mistake is

low and time saving high (Altschul et al., 1990). BLAST uses additional techniques

to improve memory and CPU usage of the search.

Properties of BLAST

As we have seen, the BLAST algorithm uses several heuristic rules to increase effi-

ciency of local alignment search. As a result, there might be differences between the
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solution we want to find (all high-scoring local alignments) and the solution which

BLAST finds. On the one hand there are local alignments which BLAST never

finds because they do not contain a seed (short high-enough-scoring region). On

the other hand, some hits which BLAST finds are not contained in any high-scoring

local alignment. For reasoning about quality of BLAST we formalize these two facts.

We call false negatives those homologous alignments which do not contain any

hits. BLAST can not find these alignments. False positives are hits which we exam-

ine during the extension phase of BLAST but the score of the resulting alignment is

too low and the alignment is discarded. The number of different false negatives and

false positives influence performance of BLAST in different ways. If the number of

false negatives is relatively high compared to the number of found local alignments,

the algorithm is not sensitive enough because it lost a big portion of truly homol-

ogous alignments. To detect this situation we use a ratio of false negatives to all

homologous alignments. False positives do not influence the output but the runtime

of BLAST because the algorithm has to check all hits and try to extend them to

a high-scoring alignment if it is possible. Therefore we are interested in how often

such a spurious hit occurs by chance.

Both of these numbers are influenced by the parameter k, the size of searched

hits. On the one hand, if k is small, we find many homologous alignments but it

is also easier to find shorter hits simply by chance. It means that for small k the

probability of false positives increases. A problem is that runtime of the algorithm

is determined mostly by false positives and therefore excessively increases with a

growth of false positives count. On the other hand, when k is big the algorithm is

much faster, but it also misses more of homologous alignments.

Suppose that sequences S and T are random DNA sequences where every base

occurs with equal probability of 1/4. Then, any pair of nucleotides matches with

probability 1/4. A hit of length k occurs at each position with probability 4−k.

Therefore the expected number of false positives is O(mn4−k). Under this sim-

ple random model false negatives rate can also be estimated, although it is more

complicated (see Brown (2006)).
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Weaker seeding requirements

A problem of BLAST is a high ratio of false negative alignments. A way how

many approaches handle with this problem is by relaxing a criterion laying on seeds

because a high false negatives ratio means that big portion of homologous alignments

do not contain k matching consecutive nucleotides. We review this approaches in

following text.

The first of this approaches is introduced by algorithm BLAT in (Kent et al.,

2002) where mismatches within a seed are allowed. In addition to the parameter k

which defines a length of the seed there is a new parameter which specifies the max-

imal number of mismatches within a seed. If we permit some mismatches within the

seed of the same length as before, the probability of false positives grows. Therefore

we increase the length of seeds which we search for (usually the length of the seed

is set to 15 and 2 mismatches are allowed). The result of this approach is a more

sensitive algorithm (with a lower ratio of false negatives) but without an increase of

false positives probability.

A different seed requirement modification is defined in (Ma et al., 2002) and used

by program PatternHunter. This approach specifies positions within a seed at which

mismatches can occur. These seeds are named spaced seeds. We represent every

k-letter spaced seed by a string of length k which consists of zeros and ones. A

number one in a string at position i means that nucleotides at position i within a

hit must match and a number zero at the j-th position means that we do not care

whether nucleotides at the j-th position of hit match or mismatch. A spaced seed

which is represented by a string of length k which contains only 1’s is the same as

a seed used in BLAST. Therefore we can see spaced seeds as a generalization of

BLAST seeds but there is no a way how to represent BLAT seeds.

The last approach which we review is from Brejová et al. (2005) and provides a

general view on all formerly described seeds. These last seeds are called vector seeds

and their definition follows.

Let A is an ungapped local alignment of sequences S and T and its length is k.

Then a scoring vector V of the alignment A is k-tuple which consist of similarity

scores for aligned nucleotide pairs. A vector seed Q is a pair (v, t) where v is k-

tuple of ones and zeros which specifies meaningful positions of k-letter seed by ones

and unimportant positions by zero. A hit is detected when alignment A satisfies
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a condition V · v ≤ t. It means that dot product of vectors V and Q exceeds a

threshold t.

In the case of DNA sequences and scoring system with +1 for match and −1

for mismatch, the vector seed ((1, 1, 1, 1, 1), 3) requires four matches from five con-

secutive positions and therefore corresponds to BLAT seed of length 5 with one

mismatch. Seeds which are used in BLAST corresponds to vector v which consist of

k ones and threshold t equals k. Finally, vector seeds of form ((1, 1, 0, 1, 1), 4) cor-

responds to spaced seed of length 5 with possible mismatches on the third position.

These examples we show that it is easy to construct a corresponding vector seed to

any of the formerly described seeds.

The more general seeding requirement is used in a search algorithm, the better

are algorithms sensitivity and specificity. The formalization of vector seeds brought

an efficient algorithm that estimates sensitivity and specificity.

1.5 Statistical Significance

In the two previous sections we have shown how to search for highest-scoring local

alignment of query S and a target sequence from a database. When we have such

an alignment, the important task is to decide whether the reached similarity score

is statistically significant. If this is the case, we will say that the aligned sequences

are related. Otherwise, such a high score can appear often by chance and therefore

we say that the aligned sequences are unrelated.

The statistical significance of a similarity score is typically given in the form of

P -value. In this context, P -value is the probability that such or higher score appears

simply by chance between a random query and a random database. Alternatively

we can use E-value, which is the expected number of such or higher score occurs

in a random database only by chance. We assume that the lower is P -value or E-

value of a particular alignment score the higher is probability that the score detects

related sequences because occurrence of the score or higher in the random database

is highly improbable. To specify this probability, we need a probabilistic model of

DNA sequences and in the following text, we show two sequence models usually

considered in P -value estimations. We also provide the commonly used formulas for

calculations of P -value and E-value.
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Probabilistic Model of Biological Sequences

In a probabilistic model of sequences, sequence S = s1s2 . . . sn is an intersection of n

events of the following form: the character on the i-th position of S is exactly si for

i = 1, 2, . . . , n. Let Xi is a random variable for the character on the i-th position.

In general, the probability that character si occurs on i-th position can be affected

by letters on other positions. By multiple application of the multiplicative law of

probability (P (A,B) = P (B|A)P (A)) on the probability of sequence S which we

denote P (S), we get:

P (S) = P (Xn = sn, Xn−1 = sn−1, . . . , X1 = s1)

= P (Xn = sn|Xn−1 = sn−1, . . .X1 = s1)×

P (Xn−1 = sn−1|Xn−2 = sn−2, . . .X1 = s1)×

...

P (X2 = s2|X1 = s1)×

P (X1 = s1).

(1.2)

Most often considered models of probabilistic sequence are two simplifications of this

general approach; the first is a model with independent and identically distributed

(IID) bases, and the second is Markov chain. In the IID model, each nucleotide

of the considered sequence is supposed to be drawn from the same background

probabilistic distribution independently on any other position of the sequence. The

probability P (S) from (1.2) simplifies to
∏n

i=1 P (Xi = si). In the more complex

case of Markov chains, local dependence of variable Xi on several previous variables

is allowed. Chains where a variable Xi depends on m previous variables is called

Markov chain of order m and probability of sequence S generated by a Markov chain

of order m is:

P (S) = P (Xn = sn|Xn−1 = sn−1, . . . , Xn−m+1 = sn−m+1)× . . .

P (Xm = sm|Xm−1 = sm−1, . . . , X1 = s1)× . . .

P (X1 = s1).



1.5 Statistical Significance 23

Significance of Single-sequence Runs

The simplest scenario is a single-sequence case, in which a significance of high-scoring

segment is the asked question. For a single sequence T = t1t2 . . . tn and a scoring

function that assigns a score to each symbol of T , we are interested in high-scoring

regions within T . For example, one can use this approach to detect long runs of a

particular letter l using scoring function that assigns +1 to the letter l and −∞ to

any other letter.

This scenario for IID sequences is considered in two papers (Karlin et al., 1990;

Dembo and Karlin, 1991b). Assume that expected score for a letter is negative

and there is a chance obtaining a positive score. Let S(n) be a random variable

representing a score of the highest-scoring segment of T and let w be a threshold

for the scores we are interested in. In the first paper, the authors have shown, that

a probability of a segment with a score exceeding w is:

P

(

S(n)−
lnn

λ∗
> w

)

≈ 1− exp(K∗e−λ∗w), (1.3)

where λ∗ and K∗ are some particular computable constants dependent on the scoring

function and the IID sequence model assumption. From this follows, that the asymp-

totic distribution of the number of segments obtaining a score at least w + lnn/λ∗

is Poisson with parameter K∗e−λ∗w. In the second paper, strong limit theorems for

a length of the highest-scoring segment are provided. Similar results were shown

in (Karlin and Dembo, 1992; Dembo and Karlin, 1991a) for the case when Markov

chain is the underlying model of sequence T .

Significance of Local Alignment

Generalization of the previous scenario leaded to formalization of the P -value cal-

culations for an ungapped local alignment search. Consider a query sequence Q =

q1q2 . . . qn and a database sequence D = d1d2 . . . dm, both IID with nucleotide prob-

abilities pq = {pqA, p
q
T , p

q
C , p

q
G} and pd = {pdA, p

d
T , p

d
C , p

d
G}, respectively. Let w be a

score threshold, and we want to know a probability of Q having the best match with

score at least w in database D. The pair of nucleotides a in the query and b in the

database occur with probability pqap
d
b and we have a scoring scheme that assigns a

score sab to such a pair. Assume that the expected pair score
∑

pqap
d
bsab is negative
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and there is a chance obtaining a positive score.

Consider the two following restrictions: the probability distributions pq and pd

are relatively similar to each other, and sequence lengths m and n grow at roughly

equal rates. Then the random variable S(mn) (the maximal local alignment score)

has the following approximating distribution (Dembo et al., 1994):

P (S(mn)−
lnmn

λ∗
> w) ≈ 1− exp(K∗e−λ∗w), (1.4)

where λ∗ is the unique positive solution of the equation
∑

a,b p
q
ap

d
b exp(λsab) = 1 and

a parameter K∗ is some positive constant. If the restrictions are not fulfilled, the

formula 1.4 overestimates the probability of high-scoring local alignments and that

leads to conservative significance estimates. For large w, it holds that:

P

(

S(mn)−
lnmn

λ∗
> w

)

≤ K∗e−λ∗w.

Although an exact mathematical apparatus is not built for the case of gapped

alignments, in several papers it was empirically shown (e.g. Collins et al., 1988;

Waterman and Vingron, 1994) that highest scores of gapped alignments approxi-

mately follow Gumbel distribution. The parameters Kg and λg (where g stands for

gapped) have to be calculated empirically.

Estimating E-value

The formulated results about the maximal score S(n) distribution imply that the

asymptotic distribution of the number of non-overlapping segments with score at

least x = ln(n)/λ∗ + w is Poisson with parameter K∗neλ
∗x in the case of sin-

gle sequence of length n. In the case of two sequences the parameter of Poisson

distribution is K∗nme−λ∗x, for n and m being lengths of the two sequences and

x = ln(mn)/λ∗ +w. The parameters K∗ne−θ∗x and K∗nme−θ∗x of Poisson distribu-

tions are also expected values of these distributions. The expected value is called

E-value.

In the following chapter we discuss methods to improve estimates of statistical sig-

nificance, and propose our own approach to this task.



Chapter 2

Effective DNA Database Size

In this chapter, we study the problem of estimating statistical significance of a given

sequence alignment. In Section 1.5 we have reviewed the traditional model of statis-

tical significance. Recall that P -value of an alignment is is the probability that score

of a value such or a higher score appears simply by chance between a random query

and a random database. If the model used to obtain the estimate of P -value does

not capture important properties of the real database, we may obtain unnecessarily

pessimistic P -values and reject many meaningful alignments.

We explain drawbacks of the traditional model, and propose to use a lower

effective database size instead of its real size. The further text is organized in six

sections. Our motivation and work related to this topic are described in Section

2.1. In Section 2.2 we propose to estimate the effective size of a database by its

compressed size. In Section 2.3 we explain our assumptions about homology search

and about artificial databases, which we will use in the following experiments, and

explain details of an algorithm that we have implemented for the exact P -value

calculations. Each of the following two sections 2.4 and 2.5 deals with P -value

calculations for a particular type of artificial databases, and we combine the obtained

information about the artificial databases to estimate P -values for the real genomic

databases in Section 2.6.

2.1 Motivation and Related Work

Databases of biological sequences such as GenBank (Benson et al., 2008), contain

large amounts of internal redundancy. Exact duplicates are usually removed, but
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there is an evidence of many almost identical sequences. Nearly identical sequences

occur in the sequence databases due to redundancy of sequence data production or

evolutionary relationship. The redundancy which scientists bring to the databases

can be caused for instance by partial overlapping subsequences of the same long

sequence sequenced by different groups. Errors that appear during sequencing may

prevent detection of duplicates. However, the sequences can be very similar to each

other also due to their evolutionary relationship. For illustration, assume that short

aligned regions in genomes of human, chimpanzee, mouse, dog, frog and fish are as

follows:

human AATAC

chimpanzee AATAG

mouse AAAAG

dog AAAAA

frog ACCAC

fish ACCAG

We suppose relationship among species as is shown in the phylogenetic tree in

Figure 2.1. Using the known sequences of the current species we can estimate the

sequences that were present in the ancestral species in the same region of the genome.

As we can see, some nucleotides can stay unchanged in all species or at least in large

portions of the tree. Therefore, present-day DNA sequences are clustered around

the ancestral sequence.

Figure 2.1: Corresponding segments of DNA sequence from different species (leaves
of the tree) and estimated corresponding sequences of common ancestors (internal
nodes).
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Redundancy in the sequence database can be the cause of various biases in the

statistical analysis of the sequence data. If much more sequences similar to sequence

S occur in a database than sequences similar to some other sequence T , the sequences

similar to S are over-represented and given higher weight in a statistical analysis

that assume that the sequences are independent. Therefore, databases which contain

only a representative set of sequences are smaller, search in them is faster than search

in the origin databases and sequences fit better to the IID probability model which

is used as a background for P -value estimation.

These representative data sets are usually created in the following way. First,

sequences with similarity above the user specified threshold are grouped together.

Then, one representative sequence is chosen from each group and copied to the new

database. We now shortly explain two algorithms used for this purpose.

UniRef. The UniRef databases (Suzek et al., 2007) of representative protein

sequences are created from UniProtKB which is a repository of all known protein

sequences. The UniRef100 database combines identical sequences and sequence

fragments from the same organism and stores them in one database entry with

information about all merged sequences and links to UniProtKB.

Databases UniRef90 and UniRef50 are built from UniRef100 by clustering the

sequences at the 90% and 50% sequence identity levels. For building the UniRef90

and UniRef50 databases, sequences are sorted in order of decreasing lengths. The

first sequence is chosen as the representative sequence C1 of the first cluster. Ev-

ery other sequence S is compared to previously chosen representative sequences C1,

C2,. . . , Cn. If the similarity of S with one of the representatives Ci, is above the se-

quence identity level threshold, sequence S is added to the cluster represented by Ci.

Otherwise, sequence S becomes a new representative sequence, Cn+1. The algorithm

for building UniRef90 and UniRef50 is called Cd-hit (Li and Godzik, 2006).

UniqueProt. The UniqueProt (Mika and Rost, 2003) is a tool for selecting an

unbiased representative subset from a given set of sequences. First, all versus all

sequences are compared. Authors define their own similarity measure among aligned

proteins based on their alignment length and percentage of identical amino acids.

Sequences with similarity above a given threshold are clustered together. Finally, a

list of representative sequences is created in the following way. Sequences which are

alone in a cluster are added to the list and from each bigger cluster one representative
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sequence is chosen.

Related work. Consider calculation of E-value from Section 1.5. Usually, instead of

actual sequence lengths, shorter effective lengths are used for the following reason.

If a maximal scoring segment (in the case of single sequence) starts near the end of

sequence it can run out of the sequence before it reaches a score which defines this

segment as maximal scoring. Therefore an effective length n = no− l is used, where

no is the original length and l is the typical length of a maximal scoring. Similarly

in the case of local alignment, effective lengths of both aligned sequences are used.

To estimate length l, the following approaches were proposed: Altschul et al.

(1996) suggested estimation of l by ln(Kgnm)/H , where H is the relative entropy of

the used scoring system, m and n are sequence lengths, and Kg is a parameter cal-

culated for gapped alignments. Later, Altschul et al. (2001) showed approximately

linear dependence of length l on the score x of the alignment, l ≈ αx + β and

proposed how to estimate constants α and β from simulations.

E-value estimation is better if the underlying sequence random model match to

the real sequence database and worse if the model and the database do not match

well. One example when the two things do not match is a database containing

high fraction of low-complexity regions. A low-complexity region contains some

bases in very high frequencies and the other bases in very low frequencies, creating

a bias towards the first group. If we want to use the method from Section 1.5

we somehow want to transform each real sequence from the database so that the

resulting database is more similar to the random sequence model.

One of the commonly used tools for decreasing the bias towards some amino acids

is low-complexity filter. Using this tool a biological sequence is divided into short

regions. We say that a region is of a high complexity when approximately the same

number of different bases occur in the region. Otherwise, we say that the region

is of a low complexity. For each region a single value which measures complexity

of the region is calculated. The higher is the value, the higher complexity. If the

complexity measure decreases under the specified threshold, then we mask the letters

in the small part of sequence with a special symbol which means that any of the

bases could be on the position in the sequence. The low-complexity regions of DNA

sequences and proteins slightly differs, and therefore the algorithms for their filtering

(Morgulis et al., 2006; Wootton and Federhen, 1993) differ as well.
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Schäffer et al. (2001) proposed another method to improve accuracy of E-value

estimation. The method is based on scaling parameter λ∗ according to estimated

differences in base occurrence between the random model database and the real one

(which optionally can be filtered by the low-complexity filter).

These examples illustrate that even simple preprocessing of the input data, or

adjustment of the underlying sequence model parameters can improve quality of

significance estimates.

Problem visualization. Consider sequence database D, query Q, and an illustration

in Figure 2.2. Suppose that the best similarity score of Q and D is s. We can

visualize individual sequences in D as points in the sequence space and the neigh-

borhoods containing all sequences with sequence similarity score s or higher as the

shaded areas around the points. In this sequence space, the query Q is located at the

boundary of one of these neighborhoods. If the neighborhoods cover a large fraction

of the sequence space, the P -value is high, because a randomly generated query

will have a high probability of falling into one of the neighborhoods and having the

similarity score greater than s.

The illustration on the right shows a database with clusters of similar sequences

that have overlapping neighborhoods which cover a much smaller fraction of the

sequence space than the neighborhoods of a random database on the left. Hence,

the P -value estimate based on the assumption that database sequences are uniformly

distributed in the sequence space will necessarily overestimate the P -value. This can

potentially leads to a rejection of high scoring matches as the matches which likely

occurred by chance.

Effective database size. One of the main parameters in P -value computation is the

database size n. Instead of the real database size, we propose to use an effective

database size n′ smaller than n such that it will account for redundancies in the

database. For example, if we take a random database of size n and double its content

by adding second exact copy of each sequence, we expect the effective database size

still be n, even though its real size is 2n.

Usage of effective sizes instead of the real ones is not unusual in theoretical

modeling of biological phenomena; we have already seen one example of its usage

to compensate for possibly broken high-scoring alignments at the ends of database
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Figure 2.2: Illustration of database space. The points represent sequences in
database D and the shaded areas show their neighborhoods with scores at least as
good as the similarity score of query Q. Left: Database with randomly distributed
sequences. Right: Database with clustered sequences.

sequences. Other example are statistical models in population genetics, where pop-

ulation size is used as a parameter, but instead of the actual number of individuals,

effective population size is typically used. Its use compensates for various effects

that are not considered by the model, such as population size changing over time

(Hartl and Clark, 2006).

Several software tools providing P -value estimates for homology search results,

for example BLAST (Altschul et al., 1990), have an option for setting an arbitrary

value as the database size. This makes effective database size easily implementable

in the existing tools, if its usefulness would be proven.

2.2 Kolmogorov Complexity and Genomic Sequence

Compression

The effective database size should be an estimate of the amount of unique sequence

in the database D, taking into account substrings that may be present in D in many

exact or approximate copies. One way of describing the information content of a

database is its Kolmogorov complexity (Li and Vitányi, 2008).

Kolmogorov complexity K(D) of a sequence D is the bit length of the shortest

program P for a fixed universal Turing machine that outputs sequence D. Kol-

mogorov complexity can be understood as a lower bound (up to a constant addi-
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tive term) of compression achievable by any general-purpose algorithm. A string

of length n sampled uniformly at random from a fixed alphabet is on average al-

most incompressible (Li and Vitányi, 2008, Section 2.8.1). In particular, a string

over a four-letter alphabet requires on average approximately 2n bits (with up to

an O(logn) additive term). Thus if we believe that databases with the same Kol-

mogorov complexity will behave similarly, we should use n′ = K(D)/2 as an estimate

of the effective database size of database D.

In this context, Kolmogorov complexity seems to be an ideal estimator to use.

It accounts for possible major differences between the real database and a randomly

generated one. In particular, using Kolmogorov complexity would compensate for:

1) differences in frequencies of individual nucleotides (database containing only a

long stretch of As should not have a large effective size), and 2) redundant sequence

content (sequences that have only few differences can be described very efficiently

in small space). Moreover, the concept of Kolmogorov complexity has been suc-

cessfully used in similar contexts before, for example to compute distance between

genomes (Li et al., 2001) (see also Giancarlo et al. (2009); Nalbantoglu et al. (2010)

for overview).

The exact Kolmogorov complexity of database D is not computable. Yet in

practice, we can use various compression algorithms instead of computing the Kol-

mogorov complexity. For a fixed compression algorithm, the compressed size c(D)

of database D is an upper bound on the Kolmogorov complexity K(D) (up to a

constant term related to the size of the decompression algorithm). We can use value

n′ = c(D)/2 as an estimate of the effective database size. The upper bounds on P -

values, usually called conservative estimates, are generally desirable in cases where

exact P -values cannot be computed. Since the P -values increase monotonically with

the database size, using an upper bound on the effective database size should not

by itself lead to non-conservative bounds.

As the number of available genomic sequences grows very fast, techniques for

DNA sequence compression are vividly studied, and several algorithms for this

task are available nowadays (e.g. Chen et al., 1999, 2002; Korodi and Tabus, 2005;

Behzadi and Le Fessant, 2005; Wang and Zhang, 2011; Deorowicz and Grabowski,

2011; Pinho et al., 2012). The file compression algorithms usually identify symbols

or small groups of symbols that occur in the file more frequently and encode them
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Figure 2.3: Generic schema using existing tools.

by shorter codewords. Therefore, the size of the compressed database depends on

the entropy of the source that generated the database. In addition to this, some

of the compression algorithms identify the exact or the approximate repeats, store

only one occurrence of the repeat, and encode the approximate repeats as sequences

of differences from the stored repeat.

In our experiments, we try to separate these two features of the real genomic

databases creating two different types of the artificially generated databases. The

first types are databases consisting of many almost perfect copies of a random se-

quence to mimic the issue with the repeated segments. We discuss these experiments

in Section 2.4. Second, in Section 2.5, we generate databases of various entropy lev-

els. For this type of databases we also provide formulas for approximate calculation

of P -values. Finally, we will also consider real DNA sequences, where both entropy

and repeats play a role. For all database types, we compare P -value estimates based

on the effective database size and the estimates which consider the real database

size.

Motivated by the discussion in the previous text, we explore the use of compres-



2.3 Exact P -value Computation in a Simple Scenario 33

sion software for estimating the effective database size. The methodology is very

simple. First, we compress the database and measure the size of the resulting file in

bytes. Then, we multiply this size by four to account for the fact that in a uniformly

random database, we need two bits to encode each nucleotide. In this way, we ob-

tain an estimate of the effective database size which can be used in any formula or

algorithm for estimating P -values on uniformly distributed databases. In a scheme

in Figure 2.3 the traditional way of P -value estimation is represented by the left

path through a diagram, and the new approach follows the right path.

Unfortunately, Kolmogorov complexity and its compression estimates do not

necessarily lead to conservative bounds in all instances. As an extreme case, base-

4 expansion of many fundamental constants, such as π, can be generated by a

constant-size program. First n bits generated by such a program can be used as a

sequence database of size n, replacing digits 0, . . . , 3 with nucleotides. Kolmogorov

complexity of a such database is O(logn) (we need a constant number of bits to

represent the program, and log n bits to represent the real size of the database),

yet for all practical purposes, this database behaves as a random database of size n

(Bailey and Crandall, 2002).

Thus using Kolmogorov complexity and compression-based estimates of effective

database size may lead to non-conservative estimates of P -values in homology search.

However, we will show that in practical applications this problem can be addressed

by a simple adjustment.

2.3 Exact P -value Computation in a Simple Sce-

nario

In order to evaluate our compression-based estimates, we will consider a simplified

homology scenario, where P -value can be computed exactly and then compared

with our estimate. This scenario is motivated by a real application. With the next

generation sequencing technologies available, a sequencing machine generates many

short sequences called reads. If we have the reference genome of a particular species

at hand, the classical approach is to map the obtained reads to the reference. Most

of the reads map to the reference sequence exactly, but sometimes we can see a

few mismatches. These mismatches may be caused either by sequencing errors, or
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(more interestingly) by differences between the reference and the currently sequenced

individual. Assigning a P -value to each match of a read within database D, we can

filter out the reads of low quality and analyze only matches, which according to

their P -value are not likely to occur by chance.

Motivated by this scenario, we create a simplified model, where database D

is a single string of length n, the query Q is a string of length m. We mimic

the homology search by a search for a substring of D with length m, which has

the smallest Hamming distance from Q. In contrast to the full homology search

problem, insertions and deletions are forbidden in D or Q and we search for the best

match of the whole query Q, as each read has to map completely to the reference.

We will say that the minimum Hamming distance between Q and some substring

of D with length m is the distance of Q and D. Then for a particular Hamming

distance h, we calculate the P -value as the number of all possible m-tuples with

distance at most h from D divided by 4m (the number of all possible m-tuples).

For the P -value calculation, we keep the database fixed, and the query is chosen

randomly from a uniform distribution of all m-tuples over the nucleotide alphabet.

In contrast, most of the classical approaches consider both query and database as

random.

The main advantage of this model is that we can compute P -values exactly in a

reasonable time, compare them to the P -value estimates and this way evaluate the

accuracy of our concept.

Database models for separation of two phenomena effecting compression. The file

compression algorithms usually identify symbols or small groups of symbols that

occur in the file more frequently and encode them by shorter codewords. Therefore,

the size of the compressed database depends on the entropy of the source that

generated the database. In addition to this, some of the compression algorithms

identify the exact or the approximate repeats, store only one occurrence of the

repeat, and encode the approximate repeats as sequences of differences from the

stored repeat.

In our experiments, we try to separate these two features of the real genomic

databases creating two different types of the artificially generated databases. The

first type are databases generated with various entropy levels, we discuss them in

Section 2.5. For this type of databases we also provide formulas for approximate
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calculation of P -values. Second, in Section 2.4, we generate databases consisting

of many almost perfect copies of a random sequence to mimic the issue with the

repeated segments. Finally, we will also consider real DNA sequences, where both

entropy and repeats play a role. For all database types, we compare P -value esti-

mates based on the effective database size and the estimates which consider the real

database size.

Algorithm to Compute Exact P -values

We have implemented an algorithm that for a given query length m and database

D computes simultaneously P -values of all prefixes of D and for all distances h =

0, 1, . . . , hmax. In experiments we use m = 15 and hmax = 3.

The algorithm maintains two arrays M and H while sequentially processing

each base of the database D. Array M of size 4m stores the distance to the already

processed prefix of D for each possible m-tuple. If the distance is more than hmax,

the algorithm uses a special∞ value for the m-tuple, as we do not need to distinguish

among the distances bigger than hmax. The second array H stores for each distance

h ≤ hmax the number of m-tuples, for which their distance from the already processed

prefix of D equal to h.

While processing a new nucleotide of D, the last m-tuple of the current prefix

of D is the only one which should be taken into account in updating arrays M and

H . Let us denote new m-tuple as T . We enumerate all m-tuples at a distance of at

most hmax from T and for each such m-tuple S, the arrays M and H are updated as

follows; Suppose that Hamming distance between T and S is k. If an actual value

of M [S] is greater than k, we assign M [S] = k. We also increase value H [k] by 1.

Consider now query Q which has distance h from database D. From the values

stored in array H , we can easily calculate P -value of Q as a sum
∑h

k=0H [k] divided

by 4m, the number of all distinct m-tuples. This algorithm is feasible only for small

values of m, as it requires θ(4m) memory.

We will use this algorithm for P -value calculation in three different ways:

• First, we calculate exact P -value for an available database D, which contains

either the simulated data or the real genomic sequences. Having this real
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P -value at hand, we are able to compare quality of estimates made by different

approaches.

• Second, we estimate the effective size of database D from its compressed size.

We then use the algorithm on a random database of a size equal to the effective

size of D. This way we obtain the P -value predicted by the proposed approach

based on the effective database size.

• Finally, we use the algorithm to calculate P -value of a random database with

the same size as D. This simple P -value corresponds to the commonly used

estimate of P -value, when the real size of D is considered by the estimation.

The random database in the second and third approach contains independent

uniformly generated bases. In real applications, predicted P -values would be com-

puted by estimates based on extreme value theory or other fast methods rather than

the exact algorithm.

2.4 Redundant Databases

We consider generated databases that are concatenation of many mutually similar

sequences of the same length k. In the experiments, we use k = 104. As the first

step while creating such a database D, we sample a sequence S = s1s2 . . . sk from

uniform nucleotide frequencies, independently at each position. This sequence will

be the center of a cluster of similar sequences stored in D. We obtain each sequence

concatenated in D from S by randomly mutating nucleotides on several positions

of S such that the nucleotide on position j is the same as sj with the probability of

90%, and with the probability of 10% it mutates to a nucleotide randomly selected

from the other three. This way, we get a clustered database of sequences that differ

on average on 10% positions from the center of the cluster.

We have tested the P -value estimations on clustered databases of various sizes

and results in Table 2.4 are averaged over 5 different databases. For each clustered

database D we compute the real P -value, the simple estimation of the P -value,

which uses the effective size equal to the real size of D, and two estimates based on

two different lossless compression programs GenCompress (Chen et al., 1999) and

bzip2.
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h=0 h=2

Database size 104 105 106 107 104 105 106 107

Real 9.3 · 10−6 8.1 · 10−5 6.5 · 10−4 4.3 · 10−3 9.2 · 10−3 6.8 · 10−2 3.4 · 10−1 8.8 · 10−1

GenCompress 9.3 · 10−6 7.7 · 10−5 6.8 · 10−4 6.5 · 10−3 9.2 · 10−3 7.3 · 10−2 4.9 · 10−1 1.0

bzip2 1.0 · 10−5 9.2 · 10−5 8.1 · 10−4 8.0 · 10−3 1.0 · 10−2 8.7 · 10−2 5.5 · 10−1 1.0

Simple 9.3 · 10−6 9.3 · 10−5 9.3 · 10−4 9.3 · 10−3 9.2 · 10−3 8.8 · 10−2 6.0 · 10−1 1.0

Table 2.1: P -values for the artificial clustered database.

Bzip2 is based on Burrows-Wheeler transform (Burrows and Wheeler, 1994) de-

signed for textual data. If the compressed text contains several exact repeats of a

particular substring, the transformation reorganizes letters of the text so that the

corresponding letters of the repeated sequences are moved together, creating blocks

of the same letter. This transformed text can be encoded by other compression

techniques, such as run-length encoding.

GenCompress (Chen et al., 1999) is an algorithm developed specifically for com-

pressing DNA sequences. It passes through the sequence only once, simultaneously

identifying approximate repeats and encoding them by a sequence of edit opera-

tions. As GenCompress proceeds along the database, it seeks for the best prefix of

the non-processed part, which can be encoded as an approximate repeat of some

subsequence from the previously processed part of the database.

In this experiment, the estimates based on data compression are mostly con-

servative and better than the estimates obtained by the simple method. We can

also see that the GenCompress estimates usually outperform the estimates made by

bzip2.

2.5 Databases of Various Entropy Levels

The four nucleotides do not occur in genomes with the same frequencies. A com-

monly used measure of DNA composition is GC-content: the percentage of Cs and

Gs in the given sequence. As GC-content varies in different genomes and also among

segments of the same genome, we explore the influence of GC-content of a given

database on the P -value prediction. Note that for a discrete random variable X

with n outcomes x1, x2, . . . , xn, the Shannon entropy H(X) is defined as
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H(X) = −
n

∑

i=1

p(xi) lg p(xi)

where p(xi) is a probability of xi. Therefore a random database with GC-content g

and independently generated bases has entropy −g lg(g/2)− (1 − g) lg((1 − g)/2),

which we denote by H(g). Therefore the database can be encoded by approximately

H(g)n bits, for example by arithmetic encoding (Rissanen and Langdon, 1979). Fol-

lowing our general approach, we will use the uniform nucleotide frequencies and

effective database size E(n, g) = H(g)n/2 to estimate the P -values for the actual

database of size n and GC-content g. We evaluate this approach on simulated data

but also analytically by deriving formulas for P -value approximation.

2.5.1 Approximation of P -values

Consider random database D of length n and GC-content g. We will derive formulas

for computing P -value of obtaining Hamming distance at most h for a random query

of length m. Note that here both query and database are random. While database

is generated from a given GC-content g, query is chosen uniformly from all 4m

possibilities.

Let S be a continuous subsequence of database D having length m, and Q be

a random query. Suppose that there is base G or C on some position of S. The

probability of the base being aligned to the same base in query Q is g/2 and a

probability that the aligned bases differ is 1− g/2. For the position of S containing

base A or T, the probability that the base aligns to the same base in Q is (1− g)/2

and a probability that the bases differ is (1 + g)/2. Let Q be a query containing

z Gs and Cs. Let X be the event that query Q has an occurrence with distance

exactly k at a particular position in D. Then we can express probability of X (over

random database D with GC-content g) as:

P (X |k,Q, g) =

k
∑

i=0

(

z

i

)

(

1−
g

2

)i(g

2

)z−i
(

m− z

k − i

)(

1 + g

2

)k−i (

1− g

2

)m−z−(k−i)

(2.1)

=

(

1− g

2

)m (

1 + g

1− g

)k (

g

1− g

)z k
∑

i=0

(

z

i

)(

m− z

k − i

)[

(2− g)(1− g)

g(1 + g)

]i

· (2.2)

In each of the products in expression 2.1, we distinguish between i mismatches on

G/C positions represented by the first three factors and mismatches on k − i A/T
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positions in Q represented by the second three factors. For g = 0.5, this probability

expectably simplifies to

P (X|k,Q, g = 0.5) =

(

m

k

)(

3

4

)k (
1

4

)m−k

using Vandermonde’s convolution (Graham et al., 1989).

Let Y be the event that query Q has an occurrence with distance at most h at

the particular position in D. The probability P (Y |h,Q, g) as well as the expected

value E(Y |h,Q, g) equals to a sum of probabilities P (X|k,Q, g) for k ∈ 0, 1, . . . , h

as Y ∼ Bernoulli(P (Y |h,Q, g)). If event Y happens at the particular position of

D, we say that the position is h-close to Q.

Let Z be the number of h-close positions in D for Q. The expected value of Z

can be computed by linearity of expectation (for simplicity we ignore the edge effect

at positions n−m+ 2, . . . , n, which is negligible for large n):

E(Z|h,Q, g, n) =
n

∑

i=1

E(Y |h,Q, g) = nP (Y |h,Q, g). (2.3)

We will approximate the distribution of variable Z by the Poisson distribution

with mean λ = E(Z|h,Q, g, n). This approximation disregards dependencies be-

tween occurrences at adjacent positions and also assumes that n is large and λ

relatively small. If Z is from the Poisson distribution, the probability of at least one

occurrence of a given query Q is P (Z > 0|h,Q, g, n) = 1− e−λ. To obtain the final

P -value, we have to consider P (Z > 0|h,Q, g) for different groups of queries with

the same number Gs and Cs, of which Qz is one representative:

P (Z > 0|h, g, n) = 2−m

m
∑

z=0

(

m

z

)

P (Z > 0|h,Qz, g, n) (2.4)

We compute two different P -values calculated according to the expression 2.4: The

first of them is Preal(h, g, n) calculates P -value for the GC-content g and the real

database size n. The second one is Pest(h, g, n), the compression estimate which

uses GC-content 50% and effective database size E(n, g) instead of n. Formally,

Pest(h, g, n) = Preal(h, 0.5, E(n, g)).
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Approximating function 1− e−λ by λ, which is reasonable for small values of λ con-

sidering the Taylor series (Brannan, 2006), we obtain approximations P ′
real(h, g, n)

and P ′
est(h, g, n) of the P -values:

P ′

real(h, g, n) = n2−m

m
∑

z=0

(

m

z

)

P (Y |h,Qz, g)

= P ′

real
(h− 1, g, n) + n2−m

m
∑

z=0

(

m

z

)

P (X |h,Qz, g) (2.5)

P ′

real(0, g, n) = n2−m

m
∑

z=0

(

m

z

)

(g

2

)z
(

1− g

2

)m−z

= n2−2m (2.6)

P ′

est(h, g, n) = P ′

est(h− 1, g, n) +
nH(g)

2
2−m
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)
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P ′

est(0, g, n) = n2−2m ·
H(g)

2
(2.9)

Comparing expressions 2.6 and 2.9 we can see that the estimate P ′
est(0, g, n) is

lower than P ′
real(0, g, n) by a factor H(g)/2. However, this estimate is valid only for

low P -values.

Now we look at the exact formulas for the P -values Preal and Pest, not using the

Taylor series approximation:

Preal(h, g, n) = P (Z > 0|h, g) = 1− 2−m

m
∑

z=0

(

m

z

)

exp (−nP (Y |h,Qz, g)) ,

Pest(h, g, n) = P (Z > 0|h, g = 0.5) = 1− 2−m

m
∑

z=0

(

m

z

)

exp

(

−
nH(g)

2
P (Y |h,Qz, g = 0.5)

)

.

For h = 0 we obtain expressions:
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Preal(0, g, n) = 1−
m
∑

z=0

2−m exp
(

−n2−mgz(1− g)m−z
)

, (2.10)

Pest(0, g, n) = 1−

m
∑

z=0

2−m exp

(

−n2−2mH(g)

2

)

=

= 1− (m+ 1)2−m exp

(

−n2−2mH(g)

2

)

· (2.11)

For sufficiently large n, the estimates Pest(0, g, n) become consistently greater than

Preal(0, g, n) and therefore conservative. Let us assume that

n >
m2−m ln(2)

H(g)2−m−1 − (1− g)m
=

1.386

H(g)
m4m + o(m4m). (2.12)

This implies that the whole sum over z in the expression 2.11 is less than the first

element of the sum in the expression 2.10 and therefore Preal(0, g, n) ≤ Pest(0, g, n)

for any GC-content g. Note, that for n fulfilling inequality 2.12, the approximations

2.6 and 2.9 are not appropriate. In addition, for such big values of n, P -value of the

considered query is very close to one and the query becomes uninteresting from the

biological point of view. Nonetheless, we have shown that there is a lower bound for

database size ensuring that Pest(0, g, n) is the conservative estimate of Preal(0, g, n).

Perhaps a tighter bound on n can be obtained by considering additional elements

of the sum in 2.10 or a higher value h.

2.5.2 Simulations

In this section, we test our general idea of using effective database size instead of

the real size for P -values estimation, on simulated databases of various sizes and

GC-content levels using the algorithm from Section 2.3.

Data shown in Table 2.2 are averages over values for five different randomly gen-

erated databases. The P -values in different rows are obtained by distinct methods

for two different GC-content values 75% and 90%. For each GC-content, in the first

line is the real P -value calculated on database D. In the second line is the estimate

of P -value predicted by our compression method using effective database size of D

computed as E(n, g) = H(g)n/2 and then applying the algorithm on a database

generated uniformly. The next two lines contain P ′
real and P ′

est calculated according

to formulas 2.5 and 2.7, respectively.
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h=0 h=2

Database size 104 105 106 107 104 105 106 107

Real (GC 75%) 9.3 · 10−6 9.3 · 10−5 9.2 · 10−4 8.4 · 10−3 8.8 · 10−3 7.0 · 10−2 3.2 · 10−1 7.2 · 10−1

Predicted (GC 75%) 8.4 · 10−6 8.5 · 10−5 8.4 · 10−4 8.4 · 10−3 8.3 · 10−3 8.1 · 10−2 5.7 · 10−1 1.0

P ′

real
(GC 75%) 9.3 · 10−6 9.3 · 10−5 9.3 · 10−4 9.3 · 10−3 4.0 · 10−2 4.0 · 10−1 1.0 1.0

P ′

est (GC 75%) 8.4 · 10−6 8.4 · 10−5 8.4 · 10−4 8.4 · 10−3 8.3 · 10−3 8.3 · 10−2 8.3 · 10−1 1.0

Real (GC 90%) 9.2 · 10−6 8.7 · 10−5 6.7 · 10−4 3.9 · 10−3 6.5 · 10−3 3.3 · 10−2 1.1 · 10−1 2.6 · 10−1

Predicted (GC 90%) 6.5 · 10−6 6.8 · 10−5 6.8 · 10−4 6.8 · 10−3 6.4 · 10−3 6.5 · 10−2 4.9 · 10−1 1.0

P ′

real
(GC 90%) 9.3 · 10−6 9.3 · 10−5 9.3 · 10−4 9.3 · 10−3 1.1 · 10−1 1.0 1.0 1.0

P ′

est (GC 90%) 6.8 · 10−6 6.8 · 10−5 6.8 · 10−4 6.8 · 10−3 6.8 · 10−3 6.8 · 10−2 6.8 · 10−1 1.0

Simple 9.3 · 10−6 9.3 · 10−5 9.3 · 10−4 9.3 · 10−3 9.2 · 10−3 8.8 · 10−2 6.0 · 10−1 1.0

P ′

simple
9.3 · 10−6 9.3 · 10−5 9.3 · 10−4 9.3 · 10−3 1.2 · 10−2 1.2 · 10−1 1.0 1.0

Table 2.2: P -values for random databases of various lengths n, GC content 75% or
90%, query length m = 15, and the query distance h = 0 or h = 2.

The predictions in the last two lines of the table do not depend on GC-content.

The first of them shows the simple P -value estimate that we obtain by calculating

P -value for a database with the uniform nucleotide frequencies and with the same

size as D. In the last line of the table is the P -value estimate P ′
simple obtained by

formula 2.5 using g = 0.5 and the real size of D. The different columns represent

various database sizes for two different h values, the distance between database D

and the considered query for which P -value is predicted.

For small P -values the real and simple estimates are quite similar, which is

expected since in a short database very few m-tuples occur multiple times, even if

the composition of the database is skewed. As a result, the compression method gives

non-conservative estimates, because it uses a much smaller database size. For small

P -values also P ′
real and P ′

est approximate the P -values obtained by our algorithm.

For larger P -values, the compression estimates become conservative, and are

closer to the true P -value than the simple estimates. In Table 2.2 we can see that

compression estimates are better than the simple for databases larger than 107 and

105 nucleotides for h = 0 and h = 2, respectively. This is because a database with

high GC-content is less likely to contain m-tuples with low GC-content, and thus a

larger database size is required to achieve the same P -value. For larger P -values, a

difference between approximations P ′
real and P ′

est and the P -values obtained by the

algorithm gets bigger as the approximations are less accurate.
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In this experiment we can see that for databases with skewed GC-content, we

can get non-conservative estimates using either simulated databases or the derived

formulas. We will return to this topic later, while discussing the real data.

2.6 Real Data

In this section we test our compression method on the real genomic data from

human, chimpanzee, and rhesus macaque. We use a piece of genomic sequence on

human chromosome 22 and the corresponding sequences from the other two species.

We have excluded larger blocks that did not have their counterparts neither in

chimpanzee, nor in macaque. The genomic sequences and genome alignments which

identifies the corresponding parts of the sequences among the primate sequences

were obtained from UCSC genome browser (Kent et al., 2002).

We created a database from the genomic data such that a short block of the hu-

man sequence is followed by the corresponding blocks from the other genomes, then

another human block follows, etc. This organization of sequences in the database

causes that similar sequence blocks occur close to each other, which improves com-

pression by algorithms such as bzip2, which always consider only a block of the

whole file.

The real P -values as well as their estimates obtained by the previously described

methods are shown in Table 2.6 for databases of various sizes. As we can see, Gen-

Compress often underestimates the real P -value, while performance of bzip2 esti-

mates is only slightly better than the simple estimates. In section 2.5, we have shown

that skewed GC-content should not automatically imply lower effective database

size since this would lead to underestimation of small P -values. However, compres-

sion algorithms use both sequence redundancy and lower sequence entropy in case

of locally high or low GC-contents to obtain good compression. This can be the

reason, why the P -value estimates based on the size of GenCompress results are

non-conservative.

We have attempted to further correct for the underestimation caused by entropy

in the following way: We have computed database entropy H ′ and the effective

database size estimated by GenCompress was then multiplied by the correction

factor of 2/H ′ that corresponds to ratio P ′
real(0, g, n)/P

′
est(0, g, n). By the correction
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h=0 h=2

Database size 1.6 · 104 2.1 · 105 1.5 · 106 1.1 · 107 1.6 · 104 2.1 · 105 1.5 · 106 1.1 · 107

Real 1.1 · 10−5 1.4 · 10−4 9.4 · 10−4 6.0 · 10−3 1.0 · 10−2 1.1 · 10−1 4.6 · 10−1 9.1 · 10−1

GenCompress 9.3 · 10−6 1.2 · 10−4 8.5 · 10−4 6.0 · 10−3 9.2 · 10−3 1.1 · 10−1 5.7 · 10−1 1.0

GC corrected 1.1 · 10−5 1.4 · 10−4 9.6 · 10−4 6.8 · 10−3 1.1 · 10−2 1.3 · 10−1 6.1 · 10−1 1.0

bzip2 1.5 · 10−5 1.9 · 10−4 1.3 · 10−3 9.4 · 10−3 1.5 · 10−2 1.7 · 10−1 7.2 · 10−1 1.0

Simple 1.5 · 10−5 1.9 · 10−4 1.4 · 10−3 1.1 · 10−2 1.5 · 10−2 1.8 · 10−1 7.4 · 10−1 1.0

Table 2.3: P -values for genomic data from human, chimpanzee, and rhesus.

we eliminate the fact that skewed entropy of a database leads to underestimation

by effective size of the database.

To estimate the value H ′ for this experiment, we have computed entropy sepa-

rately for non-overlapping windows of size 1000 bases to capture different properties

of individual genomic regions. We have estimated a Markov chain of second order

from each window of the sequence and computed an entropy of this Markov chain,

that is, entropy where the probability of each nucleotide is conditioned on the two

previous nucleotides to capture local dependencies in DNA sequences. The average

entropy H ′ of the whole database was then computed as an average of entropy values

from all windows.

The correction leads to surprisingly good P -value estimates. The estimates were

conservative in our experiments (Table 2.6, line GC corrected) what indicates rele-

vance of this approach.



Chapter 3

Segmentation of DNA Sequences

In this chapter, we study the problem of sequence segmentation. We assume that

large-scale evolutionary events such as duplications and rearrangements have an in-

fluence on genomic sequences as well as small-scale substitutions, insertions, and

deletions. We are given a genomic sequence, and our task is to identify non-

overlapping segments of the sequence and to partition these segments into classes

so that segments within each class are similar to each other, and there are no sig-

nificant similarities between segments from different classes. Initially, we search

for significant local alignments within the sequence. A pair of regions aligned to

each other share high level of similarity. It is possible that one of the aligned re-

gions have been created by a duplication event from the other region. Boundaries

of an alignment indicate decline in similarity towards ends of the aligned regions.

This happens, for example, nearby the position where a copy of some duplicated

region have been inserted. Therefore, we will use alignment boundaries to identify

boundaries of segments.

Segments found by our algorithm can be used as markers in a wide range of

evolutionary studies. This way, one can abstract from particular bases in the

markers, and consider only the order of the markers. This idea was introduced

by Nadeau and Taylor (1984) to study rearrangements between genomic sequences

of mouse and human, and at that time the segments at hand consisted of several mil-

lions base pairs. Smaller events occurring within these long segments were ignored

in the analysis.

Nowadays, methods for segmentation of shorter and complexly structured ge-

nomic regions are also needed. For example, study of genomic regions where mas-
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X: ABCDEFG

Y : ABCDEB′C ′D′FG

Z: ABCDEB′D′FC ′G

Figure 3.1: Sequence Z underwent two segmental events, first duplication of seg-
ment BCD and later rearrangement of C ′ during its evolution from sequence X.
Considering X as the reference ancestral sequence, X consists of one true atom
ABCDEFG, Y consists of true atoms A, BCD, B′C ′D′, E, and FG, with BCD
and B′C ′D′ belonging to the same class. In sequence Z each symbol is a sepa-
rate true atom with atoms denoted by the same letter (either normal or primed)
belonging to the same class.

sive duplication processes have taken place (Zhang, 2003) possibly identifies the

evolutionary events which happened in the regions and explains functionality of the

segments in the contemporary species. These complex regions usually contain rela-

tively short homologous segments (hundreds to thousands of base pairs), which we

call atoms in the following text.

If we would know the exact history of evolutionary events which happened in a

region, we would be able to identify true atoms and separate them into classes such

that each class originate from one segment of the shared ancestral sequence. For

example, consider contemporary sequence Z and its ancestors X and Y in Figure

3.1. During evolution, two segmental events happened: First, segment BCD of X

have been duplicated and its copy B′C ′D′ have been inserted between E and F to

create sequence Y . Later, segment C ′ have been rearranged and moved inbetween

segments F and G in sequence Z. In this situation, considering X as the reference

ancestral sequence sequence, Z consists of ten true atoms with atoms denoted by

the same letter (either normal or primed) belonging to the same class. The true

atomization is not known for real sequences but we assume its existence. Here we

want to use the information about sequence similarity to formulate the optimization

problem, which solution allows us to predict the true atomization.

Problem description. The input for our problem is a group of evolutionary related

DNA sequences and a collection of high-scoring local alignments among homologous

regions of the sequences and also between parts of the same sequence.

We want to tile the input sequences by segments of two different kinds: atoms and

waste regions. Each atom has length at least L (where L is a given minimal length
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parameter); a waste region may be of any size. Each base of the input sequences

belong to exactly one atom or waste region. Atoms are the segments, which can be

used as markers for subsequent analysis. Waste regions are the segments, which we

cannot reliably include in any atom due to imperfections in the input alignments.

Therefore we want to have high coverage of the input sequence by atoms and low

number of atoms to avoid unnecessary segmentation. In addition, we divide atoms

into classes so that every two atoms in the same atomic class share high sequence

similarity across their entire length, and two atoms of different classes do not appear

to be similar at the chosen sequence similarity threshold.

Related work. In comparative genomics, identification of homologous segments within

the sequences of interest is the first step for studying rearrangement (Blanchette et al.,

1999; Bourque et al., 2004; Kováč et al., 2011) and duplication (Jaitly et al., 2002;

Zhang et al., 2003; Vinar et al., 2010; Holloway et al., 2012) histories. The segments

are typically constructed from annotated genes in the sequences, and we can either

use individual genes directly or combine them to longer regions called synteny blocks

(Choi et al., 2007; Hachiya et al., 2009). Lengths of such blocks usually exceed 105

base pairs. Occasionally, synteny blocks are build without gene annotation, only

according to sequence similarity (Pevzner and Tesler, 2003). Synteny blocks may

contain short segmental rearrangements and duplications within them. Our atoms

can be seen as shorter sized synteny blocks, and more detailed segmentation allows

us to study smaller-scaled evolutionary events that happened in a given region.

With the availability of the next generation sequencing methods, the number of

the accessible genomes increases quickly (almost 2500 species genomes are finished

and published1). Therefore, sequences of closely related species can be analyzed.

In such genomes, it is often possible to detect homology not only in genes which

translate to proteins, but also in many non-coding sequences. Using segmentation,

which is not based solely on protein coding genes, it may be possible to study recent

evolutionary events in more detail.

An example of highly structured genomic regions, which are interesting also

from the biological point of view, are gene clusters. Gene cluster is a region where

one gene or some portion of a gene was copied repeatedly to the position nearby.

Not all the duplicated segments are translated to proteins, and the cause of cre-
1http://www.genomesonline.org

http://www.genomesonline.org
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ation such gene clusters as well as potential regulation functions of the duplicated

segments are not yet fully understood. One particular example is UGT1A (UDP-

glucuronosyltransferase) gene cluster consisting of at least 13 duplicated copies of

one short exon or its parts (Bellemare et al., 2010). We will see performance of our

algorithms on this cluster at the end of this chapter.

There is some similarity between finding an atomization and finding multiple

sequence alignment of the input sequences. In multiple sequence alignment, the

goal is to identify columns of homologous positions, usually one position or a gap

from each input sequence in each column. Most of the software tools for multiple

sequence alignment require input sequences without duplications (Blanchette et al.,

2004), or both duplications and rearrangements (Ogurtsov et al., 2002; Höhl et al.,

2002; Brudno et al., 2003a; Bray and Pachter, 2004; Blanchette et al., 2004), and

therefore are not appropriate for solving the atomization problem. There are several

extensions of the previous tools, which deal also with rearrangement within the

input sequences: SLAGAN, Mulan, and progressiveMauve by Brudno et al. (2003b),

Ovcharenko et al. (2005), Darling et al. (2010), respectively. Algorithm SLAGAN

also identifies occurrence of the segmental duplications.

The goal of these algorithms is to identify synteny blocks within the compared

sequences and create multiple alignments of the corresponding blocks. Therefore,

the algorithms deal with segmental insertions and deletions2 (and also duplications

in the case of Mulan and progressiveMauve) in a different way than we consider

to be fruitful for further analyses of duplication histories. In particular, segmental

indels are often inside bigger synteny blocks. Hence, we prefer to split such synteny

blocks into several consecutive atoms with the possible insertions separated from the

other parts of the synteny block. Another issue is, that Mulan and progressiveMauve

create a phylogenetic tree of the input data according to the gene content of the input

sequences. The algorithms use the tree during heuristic construction of synteny

blocks and potential errors in gene annotations influence output of both algorithms.

In this chapter, we follow on work by Brejová et al. (2011) who informally introduce

the atomization problem and give an iterative algorithm. However, they do not

provide any formal definition of the problem and the resulting segmentation is not

guaranteed to satisfy any clear conditions other than that each atom has length at
2called indels together
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least W . In this work, we provide a formal definition of the problem. This allows

us to study the problem more systematically from both theoretical and practical

aspects. In particular, in Section 3.1, we formally define sequence segmentation as an

optimization problem, and in Section 3.2, we show that under certain circumstances,

the optimal and the true atomizations are identical. We prove that the optimization

problem is NP-hard in Section 3.3. Two heuristic algorithms, which address the

segmentation problem, are introduced in Section 3.4. These algorithms, similarly

to the algorithm by Brejová et al. (2011), start with an initial set of atoms and

iteratively remap the segments, change atomic boundaries, and split the atoms, until

the final atomization is obtained. The most significant difference between our new

algorithms from Section 3.4 and the previous approach is that we introduce waste

regions of non-zero lengths at the locations where ends of local alignments occur at

several nearby positions. In contrast, the algorithm by Brejová et al. (2011) uses

only breakpoints of length zero separating adjacent atoms. In difficult regions this

leads to atoms that are artifacts of the process, whereas our approach can mark those

regions as waste. In Section 3.5 we compare the accuracy of our two algorithms with

the previous algorithm on both simulated and real sequences.

3.1 Problem Definition

The goal of this section is to define the sequence segmentation problem as a for-

mal computational problem that can be further analyzed and studied by traditional

methods of computer science. We first define notation used in this work and in-

troduce the concept of atomization as formalized sequence segmentation. Then we

formulate the search for the true segmentation as the search for the optimal atom-

ization given a well-chosen cost function.

3.1.1 Notation

As an input data for atomization we have DNA sequence S = s1s2 . . . sn and a set α

containing significant local alignments between pairs of homologous regions within

the sequence. When we have more than one sequence as an input, we concatenate

the input sequences S1, . . . , Sm and create one long sequence S = S1 ·S2 . . . Sm. The

alignments will be changed accordingly, so that they refer to the correct coordinates
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T1 T2

sequence S: A T C G C A G G A

base numbering: 1 2 3 4 5 6 7 8 9

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

space numbering: 0 1 2 3 4 5 6 7 8 9

Figure 3.2: Sequence S and its subsequences T1 and T2 from Example.

sequence T1: A T C - - G C A G G A

sequence T2: A T C A A G T A G - A

Figure 3.3: An alignment of T1 and T2.

within sequence S.

A subsequence of S is a continuous block of bases sksk+1 . . . sk+l. As we will later

need to refer to subsequences of length 0 (empty subsequences at specific positions

within a genomic sequence), we define subsequences in a way that will allow this.

Definition 1. We label the space between two consecutive bases si and si+1 of se-

quence S by number i. The space to the left of base s1 gets label zero and the space to

the right of base sn gets label n. Then sub(i, j) is the subsequence of S which starts

in the space labeled by i and ends in the space labeled by j, where 0 ≤ i ≤ j ≤ n.

Example 1. Let us consider sequence S ="ATCGCAGGA". The numbering of bases

of sequence S and the numbering of spaces between the bases is shown in Figure 3.2.

Now we can refer to different subsequences of S, for example T1 = sub(3, 6) ="GCA"

and T2 = sub(7, 7) ="". Subsequence T2 is a space between two consecutive "G"s of

sequence S.

Let us recall that a pairwise sequence alignment is a way of arranging two biological

sequences by adding some spaces (indels) between bases of one or the other sequence

(e.g., Figure 3.3). To build an atomization of input data, we use information about

corresponding base pairs in aligned subsequences of S, but we do not need knowledge

about particular bases. With this in mind, we formulate a more abstract alignment

definition for the purpose of this chapter. We store an alignment as a relation

between positions of two sequences.
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Definition 2. Let sub(i, i + k) and sub(j, j + l) be subsequences of S, which are

aligned by pairwise sequence alignment a. Let r ⊆ {i+1, . . . , i+k}×{j+1, . . . , j+l}

be a binary relation that capture pairs of base indices for bases aligned to each other

in a: pair of indices (p, q) is in relation r, if and only if base sp is aligned to base sq

in pairwise sequence alignment a. Then we denote the correspondence between the

base indices by align(i, i+ k, j, j + l, r) and call it an alignment.

We often refer to an alignment align(i, i+k, j, j+ l, r) to emphasize a relationship of

the parts of sequence S instead of discussing exact definition of relation r. In that

case, we simplify notation by omitting r and use align(i, i+ k, j, j + l) instead.

Definition 3. Let T1 = sub(i, i + k) and T2 = sub(j, j + l) be subsequences of S.

Suppose that T1 starts earlier than T2 or at the same position (i ≤ j). If i+k > j, we

say that T1 and T2 overlap and their overlap is sub(j,min(i+k, j+l)). If i+k ≥ j+l,

we say that T1 covers T2.

Let U1 = sub(i, i+ k), U2 = sub(j, j + l), and U3 be subsequences of S. Suppose

that alignment align(i, i+ k, j, j + l) between U1 and U2 exists. If U1 or U2 overlaps

U3, we say that the alignment overlaps U3. If U1 or U2 covers U3, we say that the

alignment covers U3.

Definition 4. Let align(i, i + k, j, j + l, r) be an alignment. Let p and q are base

indices such that i < p ≤ i + k, j < q ≤ j + l. We say that sp maps to base sq

through alignment align(i, i+ k, j, j + l, r) if a pair (p, q) belongs to relation r.

Definition 5. Let T1 = sub(i, i+ k), T2 = sub(j, j + l) and t be an alignment of T1

and T2. Suppose U = sub(p, p+m), such that T1 covers U . Mapping of sequence U

through alignment t is the shortest subsequence of T2 that contains mapping of every

base from U (for which such mapping exists). We denote the mapping by map(t, U).

3.1.2 Optimal Atomization

In this section, we introduce a formal definition of an atomization, the central con-

cept of the work. Atomization describes segmentation of biological sequences as

a computational problem that we will analyze further in this chapter. We define

atoms as building blocks of any atomization, and afterwards we put restrictions on

a set of atoms, which form an atomization.
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Definition 6. We say that A = sub(i, i+k) is an atom, if both following conditions

hold:

1) The length of A is at least L (where L is a given minimal length parameter).

2) Each alignment that overlaps with A also covers A.

Suppose that sequence S contains several homologous copies of a region d. In an

atomization, we want to identify every occurrence of d either as a separate atom or

as a part of a bigger atom, which consists of several homologous segments ordered in

the same way around every occurrence of d. However, we wish to avoid the situation

when one copy of d forms an atom by itself, and another copy is only a small part

of a longer atom. We avoid this problem by the following definition.

Definition 7. We say that a set of atoms A is an atomization of input sequence

S, if both following conditions hold:

1) No two atoms from set A overlap.

2) Each alignment from α that covers some atom A ∈ A, maps the atom A
to a region of S that overlaps with exactly one another atom.

Definition 6 implies that no atom contains boundaries of any alignment. According

to Definition 7, an atom A of some atomization A can be either aligned to a smaller

part within another atom, or to a region r, which contains not only an atom B,

but also some surrounding bases. The second case is possible if the bases in r

surrounding B are not covered by any other atom of A. We call waste regions the

parts of sequence S that are not covered by atoms.

Definition 8. Let A1, A2, . . . , Ap be the atoms of an atomization A ordered by their

position in S. The waste region between atoms Ak and Ak+1 is the subsequence

sub(i, j), where i is the space to the right from the last base of atom Ak and j is the

space to the left from the first base of atom Ak+1. We also call a waste region the

subsequence sub(0, i), where i is the space to the left from the first base of atom A1

and the subsequence sub(i, length(S)), where i is the space to the right from the last

base of atom Ap.

Waste regions allows us to specify an atomization in an alternative way. Depending

on a situation, we refer to an atomization either by its atoms, or by the waste regions

between the atoms. Alignments, which cover the same region of S usually do not

have boundaries at identical positions, but the boundaries are often spread around
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the boundary of the true atom. The reason is a difficult detection of homology

boundaries in local alignment search. As the true boundary has an uncertain posi-

tion, we have chosen the conservative approach and consider the region containing

several alignment boundaries close to each other to be a waste region.

To partition atoms to classes, we will represent alignments in the form of a

graph. The alignment graph of atomization A is the graph in which each vertex

corresponds to an atom of A and two vertices A1 and A2 are connected by an edge

if some alignment maps A1 to a region overlapping A2 and vice versa. Then each

atomic class of A is represented by a connected component of the alignment graph.

There are many valid atomizations of sequence S. To choose the best atomiza-

tion, we introduce a cost function that scores the various atomizations such that the

lower score means the better atomization. As we prefer to have a high coverage of

input sequence S by atoms, we expect a cost function to penalize an atomization for

bases that are located in waste regions. We also prefer an atomization with lower

number of atoms to avoid unnecessary fragmentation; therefore we expect the cost

function to penalize an atomization for the number of atoms. For simplicity, our

cost function does not take atom distribution to classes into account.

Definition 9. Let A be an atomization of sequence S. Let

u = length(S)−
∑

A∈A

length(A)

be the number of bases in waste regions. We define the cost of atomization A as:

c(a,w)(A) = |A| · a + u · w,

where a, w > 0 are parameters determining the cost of each atom and the cost of

each base in a waste region, respectively.

We can now approach the segmentation problem as an optimization problem of

searching for the minimum cost atomization of S according to some cost function

c(a,w)(·).

3.1.3 Influence of Cost Function

In the following text, we address influence of the chosen cost function on the optimal

atomization. We also set the parameters of the cost function, which we will use in
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the final formulation of the atomization problem.

We will illustrate the influence of cost function on the following example. Let

L be the minimum length of any atom. Let sequence S be a concatenation of

n + 2 shorter sequences S1, S2, . . . , Sn+2, where length(S1) = 2L, length(S2) = L,

and length(S3) = length(S4) = · · · = length(Sn+2) = 3L. Suppose that sequences

S3, S4, . . . Sn+2 are identical to each other, sequence S1 is identical to the last 2L

bases of the long sequences, and sequence S2 is identical to the first L bases of the

long sequences. Suppose that there is an alignment between S1 and the last 2L bases

of sequence S3, an alignment between sequence S2 and the first L bases of sequence

S3 and also an alignment for each pair of sequences Si, Sj, where 3 ≤ i < j ≤ n+2,

that maps a base on position p in sequence Si to the base on position p in sequence

Sj .

Sequence set {S1, S2, . . . , Sn+2} is not an atomization of S. In particular, S3

overlaps but is not covered by alignments between S1 and S3 and between S2 and

S3. Let us consider two atomizations of S (Figure 3.4):

1) Sequences S1 and S2 remain as atoms. Every other sequence Si, where 3 ≤
i ≤ n+ 2, splits into two atoms, the first containing bases from 1 to L and the
second consisting of bases from L+ 1 to 2L. We call this atomization A.

2) Two waste regions are created, the first one containing whole sequence S2

and the second one bases from 1 to L of sequence S3. Every sequence from
{S1, S4, S5, . . . , Sn+2} becomes an atom, and the last 2L bases of S3 also form
an atom. We call this atomization B.

Intuitively, atomization A better corresponds to homology between atoms, although

the input is unusual in the sense that it does not contain alignments between S1 or

S2 and Si for i > 3. Nonetheless, we are interested in cost functions c(a,w) that prefer

atomization A to atomization B. We set w = 1 and look for values of parameter a,

for which c(a,1)(A) < c(a,1)(B).

As an extreme case, we could consider value a = 0. Any atomization that con-

tains only waste regions of zero length then costs zero, and in particular c(0,1)(A) = 0.

However, other less desirable atomizations have the same cost. Consider for example

atomization C of sequence S, that splits every sequence Si, where 3 ≤ i ≤ n + 2 to

three atoms of length L, splits sequence S1 to two atoms of length L, and sequence

S2 becomes an atom of length L bases. We want the cost of atomization C to be

higher than the cost of atomization A, as C contains unnecessarily many atoms, but
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sequence S atomization A atomization B

Figure 3.4: Sequence S and its two possible atomizations. a) Sequence S =
S1.S2 . . . Sn+2 split to the short sequences, alignments between the sequences and
their parts shown by gray arrows. b) In atomization A, every sequence Si, where
3 ≤ i ≤ n+ 2, is split to two atoms and one waste region of length zero. The waste
regions between atoms are shown by dashed lines. c) Atomization B, waste regions
W1 and W2 are created and every sequence Si, except S2 contains one atom.

cost function c(0,1)(·) prices both atomizations equally. Therefore, the parameter

choice a = 0, w = 1 is not appropriate.

In general, we have that c(a,1)(A) = 2a·(n+1) and c(a,1)(B) = a·(n+1)+2L, and

therefore atomization A costs less than B when a < 2L/(n + 1). Ideally, we would

choose the value of a, which is positive, but sufficiently small regardless of values of

n and L. This requirement is fulfilled, for example, by value a = 1/length(S). In

our example, this means, a = 1/[(n+1) · 3L]. More generally, this value guarantees

lower cost for atomizations that similarly to A distribute information about shorter

atoms to longer sequences which partially align to the shorter atoms.

From now on, we therefore use cost function c(ǫ,1), where ǫ = 1/length(S), to

measure the quality of an atomization. Thus we arrive at the final optimization

version of the atomization problem:

Atomization problem, optimization version:

Instance: Sequence S, set of alignments α among subsequences of S,
minimum atom length L.

Cost function: c(ǫ,1), where ǫ = 1/length(S).

Problem: Determine atomization O such that cost c(ǫ,1)(O) is mini-
mal among costs of all feasible atomizations of the instance.
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3.2 Correctness of the Optimal Atomization

In this section we prove that under certain circumstances the optimal atomization

is identical to the true atomization. This is in general difficult, because the true

atomization is defined only with respect to a particular evolutionary history, and

a given sequence can arise by various histories. Here, we define a simple model of

atomization without wasted bases which consist of a sequence, set of alignments

and an atomization satisfying several constraints. Given these constraints, it is

reasonable to assume that the atomization T is the true atomization.

We say that an atomization A is an atomization without wasted bases if the following

conditions are fulfilled for each waste region W (o1 ) and each atomic class β (cl1 –

cl3 ) of atomization A:

o1 : Waste region W has zero length.

cl1 : Each alignment a from α which covers atom B ∈ β aligns atom B only with

another atom of class β. Ends of the two atoms are properly aligned to each

other – gaps are not allowed at the first and the last position of any aligned

atom.

cl2 : Atomic class β contains at least one atom B which has an alignment boundary

at its left end. We call such atoms starting atoms. The alignment could be

an alignment covering B and starting at its first base or it could be covering

atom left of B and ending just before start of B. Similarly, atomic class β

contains at least one atom which has an alignment boundary at its right end.

We call these atoms ending atoms.

cl3 : Atoms of β form a connected component in the alignment graph of A and no

other atom from a different class belongs to the component.

We expect that the realistic true atomization fulfill also other requirements,

for example, that only a pair of sequences which are similar to each other along

their whole lengths can be aligned by any alignment. However, in the proof of the

following theorem, the conditions defined for atomization without wasted bases are

sufficient.
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Figure 3.5: Localization of atoms B,C, and waste region W belonging to T and
atom X of O on the same region of the input sequence S.

Theorem 3.2.1. Let (S, α) be input atomization data, and T be the true atomization

of the input data satisfying the conditions of an atomization without wasted bases.

Then T and the optimal atomization O for input (S, α) are identical at the level of

atoms and also at the level of atomic classes.

Proof. The atomization T contains no bases within its waste regions. According to

the cost function c(ǫ,1)(·), every atomization with some bases in waste regions costs

more than T . Therefore O contains no bases in its waste regions.

We organize this proof into two parts: We show first, that every waste region of

T has its counterpart (a waste region at the same position) in O. This implies that

c(ǫ,1)(T ) = c(ǫ,1)(O), and T and O are equal at the atomic level. In the second part

we discuss atomic classes and prove that classes of O are identical to classes of T .

1st part: We prove by contradiction that each waste region of T has its counterpart

in O. This implies that atoms of the two atomizations are identical.

Assume to the contrary that T contains waste region W which does not have a

counterpart waste region in O. Waste region W separates two consecutive atoms B

and C of T . We denote b to be the last base of B and c to be the first base of C. As

W is not a waste region in O, bases b and c are consecutive bases of the same atom

X in this atomization. The situation can be seen in Figure 3.5. Atom B belongs to

a class in T which we denote β. This class fulfills assumptions cl1 to cl3, as T is

the atomization without waste bases.

No input alignment has its left or right boundary between b and c, because

otherwise each atomization of S would contain a waste region covering the space

between bases b and c. Therefore, B is not an ending atom of class β according to

the assumption cl3. However, β contains at least one ending atom, we arbitrarily
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Figure 3.6: Alignment sequence a1, a2, . . . , an mapping the last bases of atoms from
β. Atoms X0, X1, . . . , Xn of O at these regions are also drawn.

choose one of them and denote it by B0. We also denote the last base of B0 by b0.

Each atom of β can be mapped by a sequence of input alignments to any other atom

of the class (cl3), and each of the alignments maps the first and the last base of one

atom to the first and the last base of another atom in β (cl1). Therefore, there is

the sequence of alignments a1, a2,. . . ,an from α, which maps base b0 to base b. As

b0 is the last base of B0, which is an ending atom of β, at least one alignment exists,

which ends or starts right after b0. Therefore, atomization O also contains a waste

region W ′ of length zero located right after b0.

Hence, base b0 is the last base of an atom X0 ∈ O. As sequence of alignments

a1, a2,. . . ,an maps base b0 to base b, it also has to align optimal atoms X0 and X to

each other through a sequence of atoms X1,. . . ,Xn−1 on the way. Alignment ai maps

atoms Xi−1 and Xi to each other, given that Xn = X. We denote bi = map(ai, bi−1),

where bn = b. Each pair of bases bi, bi+1 maps to each other. The situation can be

seen in Figure 3.6. The alignment sequence a1,. . . ,an aligns two atoms X0 and Xn to

each other so that the last base of X0 aligns to an internal base of Xn. Hence, there

has to be an alignment ai in the alignment sequence, which aligns two consecutive

atoms Xi−1 and Xi so that the last base of Xi−1 (bi−1) aligns to an internal base of

Xi (bi).

The alignment ai has to contain at least one aligned base pair following the pair
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bi−1, bi, as ai covers Xi and each alignment should end with a pair of properly aligned

bases (cl1). As the true atomization T contains only zero length waste regions (o1)

and the first and the last base of each atom in T should align properly (cl1), the

bases to the right from bi and bi−1 (let us call them ci and ci−1, respectively) have

to align to each other in alignment ai. Note that atomization O also contains only

zero length waste regions. Therefore some atom of O has to start on base ci−1. We

denote the atom by Y . Consider now mapping of atom Xi through alignment ai. It

will overlap both Y and Xi−1, which contradicts Definition 7. This leads us to the

conclusion that for each waste region W from T a waste region W ′ should exist in

O covering the same location as W . As the cost of O does not exceed cost of T , O

does not contain any additional waste regions not included in T .

2nd part: We have shown that waste regions of T and O are identical. This implies

that atoms of the two atomizations are also identical. Here we prove that atomic

classes of the two atomizations are identical as well. Note that atomic classes of

T can be any partition of atoms of T to classes satisfying conditions of atomiza-

tion without wasted bases. In contrast, classes of O are constructed as connected

components of the alignment graph (see Section 3.1.2).

We distinguish two cases: singleton classes and classes containing more than one

atom. In the first case, no alignment exists that would cover an atom of a singleton

class. For that reason, an atom belonging to a singleton class of T lasts in the

singleton classes also in O. In the second case, consider an arbitrary atomic class β

from the true atomization with more than one atom. We choose an atom B of class

β and denote βopt the atomic class of O containing B.

Now we prove that if β and βopt contains the same atom B then the classes are

identical. First, βopt cannot contain an atom that does not belong to β. According

to cl1 no the input alignment can align an atom from β to an atom that does not

belong to β. For this reason, optimal class βopt may contain only atoms of β and no

atoms from a different class of T . Second, each atom from β also belongs also to

βopt. According to cl3 for each atom C ∈ β, C 6= B a sequence of alignments exists

that maps C to B possibly through several intermediate atoms. Hence, C has to

belong to the same class of O as B. We have shown that each atom of β belongs to

βopt and also that no one other atom can belong to this class from O.

Therefore, the optimal and the original atomization are identical at the level of
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atoms and also at the level of atomic classes.

3.3 Computational Complexity of the Atomization

Problem

In this section, we will prove NP-hardness of the atomization problem. We will

consider a decision version of the atomization problem (APD), in which we are

given a threshold B, and we ask if there is an atomization with cost at most B. It is

easy to see that APD is in NP. For an instance of APD, we can nondeterministically

guess a set of atoms and calculate its cost as well as verify the requirements of

Definition 7 in polynomial time. We will prove NP-hardness of this problem by a

reduction from the classical one-in-three 3SAT problem (Garey and Johnson, 1979):

Atomization problem, decision version (APD):

Instance: Sequence S, set of alignments α among subsequences of S,
minimum atom length L, and threshold B.

Problem: Is there atomization A with c(ǫ,1)(A) ≤ B?

One-in-three 3SAT problem:

Instance: Set U of variables, collection C of clauses over U such that
each clause c ∈ C has |c| = 3.

Problem: Is there a truth assignment for U such that each clause
from C contains exactly one true literal?

First, we show a method for constructing an instance of APD for any instance of

one-in-three 3SAT problem and then we prove that the atomization of cost at most

B exists for the APD instance if, and only if, the corresponding instance of one-in-

three 3SAT is satisfiable.

3.3.1 Construction of APD Instance for One-in-three 3SAT

Formula

We start the proof by showing a method for constructing an instance of APD for

any instance of one-in-three 3SAT problem. Consider a one-in-three 3SAT instance
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(U,C); the goal is to create the corresponding APD instance (S, α,B). During

construction of the APD instance, we create many short sequences and alignments

between these sequences or their parts. To get APD instance sequence, we concate-

nate all the short sequences to obtain one input sequence S and adapt the alignments

so that they refer to the subsequences of the concatenated sequence that correspond

to the short sequences, which were aligned to each other. The adapted alignments

form alignment set α. Length threshold L can be an arbitrary constant greater than

two.

Gadget description. The basic building block of the constructed APD instance

is a gadget consisting of k + 3 sequences S0, S1, . . . , Sk+2, all of the same length

m. We call sequence S0 the interface, as it is the sole part of the gadget, which

will be aligned to sequences outside this gadget; sequences S1, . . . , Sk+2 align only

with other sequences within the gadget. In particular, for every i and j such that

0 ≤ i < j ≤ k + 2, we create alignment ai,j. This alignment maps the first and the

last base of Si to the first and the last base of Sj , respectively. It also maps the r-th

base of sequence Si to the (r + 1)-st base of sequence Sj , for 2 ≤ r ≤ m − 2. The

second base of sequence Si and the (m− 1)-st base of sequence Sj remain unaligned

in this alignment.

The goal of such a gadget is to ensure that the interface sequence S0 contains

exactly one atom; otherwise the cost of the segmentation will be higher than B.

This follows from the following lemma if we set k = ⌈B⌉+ 1 (the value of B will be

determined later).

Lemma 3.3.1. If the number of atoms in sequence S0 is different from one, the

gadget S0, S1, . . . , Sk+2 contains at least k bases in waste regions.

Proof. If sequence S0 would not contain any atom, then all sequences of the gadget

would have to be covered only by waste regions as well, which rises the number of

wasted bases above k.

Let us assume now that S0 contains at least two different atoms, but the number

of bases in waste regions is at most k−1. This implies that at least three sequences

Si, Sj , and Sl for 1 ≤ i < j < l ≤ k + 2 do not contain any wasted bases. However,

each of these sequences aligns to S0, and since S0 contains at least two atoms, each

of these sequences needs to be split into at least two atoms due to Definition 7. As
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the sequences Si, Sj, and Sl do not contain any wasted bases, their atoms have to

be separated by waste regions of length zero. We denote such a waste region of Si

by Wi. Let us assume that Wi splits sequence Si between bases x and x+1 into two

atoms. Bases at positions x+1 and x+2 in Sj align to the bases adjacent to waste

Wi through alignment ai,j , and thus they cannot occur in the same atom in Sj . This

means that there has to be a waste region between bases x+ 1 and x+ 2 in Sj , we

denote it Wj . By the same reasoning, sequence Sl has to contain waste region Wl

between bases x + 1 and x + 2 due to alignment ai,l and waste region W ′
l between

bases x + 2 and x + 3 due to alignment aj,l. In this way, we get two waste regions

Wl and W ′
l within distance 1. The region between Wl and W ′

l cannot be an atom,

as each atom needs to have a length at least L > 2. However, if the base x+2 of Sl

belongs to a waste region, we get a contradiction. Therefore, the set S1, S2, . . . , Sk+2

contains at least k sequences containing at least one wasted base each, and the total

number of wasted bases in the gadget is at least k.

APD instance construction. For each variable y ∈ U we create two sequences Xy

and X¬y, each of length L. We also create a gadget Uy for each variable y, with each

sequence of the gadget having length 2L. Finally, for each clause ci ∈ C we create

a gadget Ci containing sequences of length 3L. In addition to the alignments within

gadgets, we add also alignments between sequences Xy and parts of interfaces of

gadgets Uy and Ci. We say that an alignment a is gapless, if it aligns regions T1

and T2 of the same length and maps the r-th base of T1 to the r-th base of T2. In

particular, we will align sequence Xy by a gapless alignment to the first half of the

interface sequence of Uy and we will align sequence X¬y to the second half of this

interface. For a clause ci = l1 ∨ l2 ∨ l3 we align Xl1 to the first third of the interface

for Ci and similarly align Xl2 to the second third and Xl3 to the last third of the

interface. Finally, we set B = 2L(|U |+ |C|) + 1/2.

Clearly the construction of the APD instance for a given instance (U,C) of one-

in-three 3SAT problem is polynomial in terms of |U |+ |C|.

Example 2. Consider boolean formula (a ∨ ¬b ∨ c) ∧ (a ∨ ¬c ∨ d). An instance

of atomization problem consists of 6(k + 3) + 8 sequences, where k = ⌈B⌉ + 1 and

B = 12L + 1/2. Eight of the sequences have length L and each of them represents

particular literal. Another 2(k + 3) sequences have length 3L and they are grouped



3.3 Computational Complexity of the Atomization Problem 63

Figure 3.7: The instance of APD for 3SAT boolean formula (a∨¬b∨c)∧(a∨¬c∨d).

to two gadgets of k+3 sequences, each representing one clause of the formula. This

atomization instance also contains k + 3 sequences of length 2L for each of the

variables in the formula. The instance of atomization problem is shown in Figure

3.7.

3.3.2 NP-hardness of Atomization Problem

Theorem 3.3.2. One-in-three 3SAT instance (U,C) is satisfiable if and only if the

corresponding instance of the segmentation problem has a solution with cost at most

B.

Proof. We will prove the two implications of the stated theorem separately.

⇒: Let us first assume that instance (U,C) is satisfied by a truth assignment t :

U → {T,F}. We will create a corresponding atomization A with cost c(ǫ,1)(A) ≤ B.

Consider variable y and the sequences Xy and X¬y representing its positive and

negative literals. Atomization A will contain one of these sequences as an atom and

the other one as a waste region. One of the sequences Xy and X¬y corresponds to

the literal satisfied in the truth alignment t. We add this sequence as an atom to A

and the other sequence will be completely covered by a waste region.
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Each sequence in each gadget Uy and Ci will contain one atom. Each non-interface

sequence will be completely covered by an atom. Interface sequences will contain

one atom of length L in the region, which aligns to the sequence Xl for the satisfied

literal l and waste region elsewhere. Note that there is always exactly one satisfied

literal l for each variable y and each clause ci.

It is easy to see that the cost of A is at most B. The total number of wasted

bases is 2L(|U |+|C|) = B−1/2. Since each atom has length at least L > 2, the total

number of atoms is less than n/2, where n is the total length of the concatenated

sequence of the APD instance. Therefore the contribution of the atom number to

the total cost of A is less than ǫ · n/2 = 1/2 and the total cost c(ǫ,1)(A) is at most

B.

⇐: Now assume that we have an atomization A with cost at most B. We will prove

that then the corresponding instance (U,C) of one-in-three 3SAT is satisfiable.

The interface sequence of each gadget has alignment endpoint every L symbols,

and thus each atom in the interface can have length of at most L. However, by

Lemma 3.3.1, each gadget contains exactly one atom in its interface to fulfill the

requirement that atomization A costs at most B. The remaining regions within

interface will be therefore waste.

We will construct truth assignment t for instance (U,C) so that literals corre-

sponding to the atoms of A will be satisfied and the literals corresponding to waste

regions will not be satisfied. In particular, let Ay be the atom within the interface

of gadget Uy. Atom Ay aligns to sequence Xl, where l is either y or ¬y. We will

assign truth value t(y) so that literal l is satisfied. Since atom Ay aligns to Xl and

Xl has length L, it has to be an atom as well. Similarly, X¬l aligns to a waste region

in the interface of Uy, and thus X¬l is also completely covered by a waste region.

Therefore, t(l) is true for some literal l if sequence Xl is an atom and t(l) is false if

Xl is a waste region.

The interface of gadget Ci contains exactly one atom Bi and either two waste

regions of length L or one waste region of length 2L due to Lemma 3.3.1. The

alignment for the atom must map to another atom, and an alignment for a waste

region must map to a waste region for A being an atomization. Suppose that clause

ci is l1 ∨ l2 ∨ l3. We denote by l the literal of ci, for which the sequence Xl is an

atom. The truth value for l have been already set to true in the previous paragraph,
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because Xl is an atom, and the truth value of the other two literals of ci have been

already set to false as their corresponding sequences are waste regions. We have thus

proven that the assignment t satisfies the corresponding one-in-three 3SAT instance

(U,C).

Since one-in-three 3SAT is NP-complete, decision version of atomization problem

is also NP-complete, and therefore optimization version of atomization problem is

NP-hard.

3.4 Heuristic Approach to Atomization Problem

Since the atomization problem is NP-hard, we have designed two heuristic algorithms

for practical use. These algorithms create an atomization satisfying Definition 7, but

possibly not the optimal one.

Input preprocessing. Our algorithms get as their input a set of evolutionary related

sequences or a sequence which contains segmental duplications. We use the LASTZ

program (Harris, 2007) to align every sequence to every other and also to itself. This

way, we obtain significant local alignments scoring higher than the chosen threshold

in some similarity measure of alignments. We later use these highly significant local

alignments to delimit potential atoms.

Before running our algorithms, we make minor changes to the set of alignments.

First, we split each alignment, which contains an indel longer than a given threshold

max_indel, at the position of every long indel. Second, alignments that are shorter

than a given threshold min_alignment after splitting are discarded. This way, we

avoid low-quality short atoms and atomic classes that contain very dissimilar atoms.

Now we create initial waste regions of zero length at both ends of each alignment,

as our problem definition requires that there are no alignment boundaries inside

atoms. Thereafter, we join each pair of consecutive waste regions that are closer

than L bases to each other and create a larger waste region. The reason is that if

the distance between the smaller waste regions is smaller than L, no atom can be

located between them.

After joining nearby waste regions along input sequence, we obtain atoms be-

tween each pair of consecutive waste regions. This set of atoms does not necessarily

have to be an atomization as one atom possibly maps to a region overlapping two or
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a) b)

Figure 3.8: Iterative separation of atoms: a) Initial set of proto-atoms, where a
waste region between atoms A2 and B2 aligns inside a proto-atom A1 +B1. b) The
situation is solved by creating an additional waste region that splits proto-atom
A1 +B1 to atoms A1 and B1.

more other atoms of the set. Our algorithms iteratively split the atoms and change

their borders to get an atomization. We call proto-atomization the set of atoms at

hand before each iteration and we call proto-atoms the atoms of proto-atomization.

Iterative mapping. The general idea of both algorithms is iterative mapping of

waste regions. This approach is similar to iterative homology mapping introduced

in Brejová et al. (2011), except that here we map whole waste regions instead of

mapping each breakpoint independently. After each mapping iteration we gain a

new set of proto-atoms that are separated from each other by newly expanded or

newly created waste regions. If the number of proto-atoms and their lengths do not

change in two consecutive iterations, the whole process ends and a set of proto-atoms

from the last iteration becomes the final atomization of the input data.

An example of a situation resolved by this iterative approach is shown in Figure

3.8. Two atoms A1 and B1 are initially placed to the same proto-atom, because

neither of them is covered by a short alignment that would separate them. But

if one of the regions aligned to proto-atom A1 + B1 contains a waste region, we

can map this waste region and thus separate atoms A1 and B1. Creation of new

atoms A1 and B1, can have influence on some other atoms; therefore we repeat the

re-mapping process while any changes of proto-atomization occur.

Situations similar to the previous example can be caused by the choice of simi-

larity threshold, which we use to distinguish between significant and non-significant

alignments. If alignment scores between pairs of atoms in some class are close to
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the similarity threshold, some of the alignments within the class pass the threshold,

whereas others do not.

3.4.1 Waste Region Mapping Algorithm

The main focus of the first algorithm is to avoid mapping alignment ends into

any atom. As this condition is not fulfilled for the initial set of proto-atoms, the

algorithm iteratively creates new waste regions until the condition holds.

The algorithm stores for each waste region a tag indicating, whether the region

has to be processed. During the first iteration, all the initial waste regions are

tagged for processing. In each iteration, the algorithm handles each waste region W

that has to be processed. For each alignment a that overlaps the first or the last

position of region W , the algorithm identifies region R = map(a,W ) that aligns to

W through alignment a. We do not require covering of whole waste region W by

alignment a, as many alignments start and end in waste regions.

If region R is covered by a proto-atom, the proto-atom is split according to

position of R into up to two smaller proto-atoms and a new waste region WR identical

to R. If any of the new proto-atoms is shorter than L, it is joined with WR and with

the waste region at the other end of the short proto-atom. The new waste region

WR is tagged for processing in the following iteration. On the other hand, if region

R overlaps with an already existing waste region W ′, the algorithm distinguishes

between the following two cases:

1. Waste region W ′ covers region R: nothing has to be done.

2. Otherwise: waste region W ′ is replaced by the union of W ′ and R. If any of

the proto-atoms neighboring to the new waste region is shorter than L, the

new waste region is extended so that it covers the short proto-atom and also

the waste region at the other end of the short proto-atom. The new waste

region is tagged for processing in the next iteration of the algorithm.

In this manner, the algorithm expands the set of waste regions until no waste regions

remain to be processed. After that, we set atomization to be a set of sequences

between each pair of consecutive waste regions.

This algorithm produces atomization fulfilling Definition 7, as each atom of the

atomization is either fully covered by an alignment or the atom and the alignment



3.4 Heuristic Approach to Atomization Problem 68

do not overlap. In addition, each waste region of the atomization maps through an

alignment overlapping the waste region inside another waste region. However, the

created atomization is not necessarily the optimal one according to cost function

c(ǫ,1)(·). The obtained atomization cannot contain any pair of atoms A and B

mapping to each other such that the ends of A maps to the waste regions neighboring

with B. The algorithm in this case shortens A and extends waste regions neighboring

with A even in the cases when it increases cost of the output atomization. From

this point of view the algorithm is more conservative than the atomization definition

itself. If atoms A and B obtained by the algorithm map to each other through some

alignment a, the first base of A maps first base of B and the last base of A maps to

the last base of B.

3.4.2 Inverse Mapping to Proto-atom

This algorithm iteratively splits proto-atoms or extends existing waste regions until

we get a proper atomization. In a situation depicted in Figure 3.8, where a single

proto-atom A1 +B1 maps to two proto-atoms A2 and B2, we typically want to split

the proto-atom A1 +B1 into two. However, if atoms A2 and B2 are separated by a

longer waste region, there could be several possible places, where A1 +B1 could be

split. One option would be to choose arbitrarily one of those places. However, this

choice might lead to higher cost once we consider additional alignments. Instead,

we collect such splitting requirements from all alignments covering the currently

studied proto-atom, and choose the optimal set of new waste regions to satisfy all of

them. Instead of splitting the proto-atom into two, we may also expand the waste

region at one of its ends.

The algorithm iteratively processes every proto-atom P of the current proto-

atomization and searches for a set Wnew of new waste regions within the range of P .

This set Wnew satisfies requirements specified in Definition 10. A set of proto-atoms

for the next iteration will be formed from the sets of the new waste regions. The

process repeats until new waste regions do not form within any proto-atom and the

proto-atomization from the last iteration becomes the final atomization.

Definition 10. A set of new waste regions Wnew within a range of proto-atom P

satisfies the following requirements:
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1. Each waste region that aligns with a part of proto-atom P overlaps with some

waste region from Wnew.

2. No region between two successive waste regions from Wnew is completely covered

by a waste region aligning to P .

3. Every region between two successive waste regions from Wnew has length at

least L bases.

4. The new set Wnew has the lowest cost with respect to the cost function that

penalizes each base within a waste region by 1 and each waste region by ǫ =

1/length(S).

Search for the optimal set of waste regions. Now we describe in detail how to

construct the optimal set Wnew satisfying requirements of the previous definition.

Let us consider a proto-atom P = p1p2 . . . pm and a set of alignments a1, a2, . . . , ar

that cover P . Note that in the rest of this section we refer to a subsequence of

proto-atom P by the numbered spaces in P in accordance with Definition 1. We

denote a subsequence of P from i to k by P (i, k) for 0 ≤ i ≤ k ≤ m. Our method of

initial proto-atom construction guarantees that each alignment that overlaps with P

by at least one base has to cover whole P . We denote as R1, R2, . . . , Rr the regions

that align to P through the alignments: Ri = map(ai, P ), 1 ≤ i ≤ r. Let Wi be

the set of waste regions that overlap with Ri. We want to map Wi to proto-atom P

but possibly some of the waste regions in Wi could have length zero, which is not

considered in mapping Definition 5. Therefore, we extend the mapping definition in

the following way:

Definition 11. Let P = p1p2 . . . pm be a proto-atom and R = r1r2 . . . rz be a region

that aligns with P through alignment a. Let X = R(i, i) be a subsequence of R with

length zero, on position i. Mapping of zero length region X to P through alignment

a is the maximal region P (j, k) such that each base ry mappable through alignment

a for y < i maps to a base prior to pj, and for y ≥ i maps to a base following pk.

We denote the mapping by map(a,X).

Let W ′
i be the set of regions obtained by mapping each region of Wi into proto-atom

P . We denote the union of all waste regions mapped to P by W : W = ∪ni=1W
′
i .
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We will use set W as an input for the algorithm computing set Wnew of new waste

regions inside proto-atom P .

We approach the task of computing Wnew by dynamic programming: We sequen-

tially process positions of proto-atom P and for each position i we compute the cost

of the optimal waste region set for prefix P (0, i) with i being part of the last waste

region. This waste region set needs to overlap only those regions from W that start

before i. We say that region X = P (j, k) from W is the preceding processed region

of position i if k < i and for any other region Z = P (r, s) from W either s < k, or

i ≤ s.

Simple dynamic programming. We will first describe details of dynamic program-

ming for a simpler case when the set W does not contain any pair of mapped waste

regions such that one of them covers the other. The algorithm processes only those

positions in P that are covered by at least one region from W . Let i be covered by

a region from W and let region X = P (j, k) be the preceding processed region of i.

Note that since we assume that no region from W covers another, there is only one

preceding region. We denote the cost of the prefix P (0, i) as cost(i) and calculate it

as

cost(i) = min
j≤l≤k

c(i, l).

Each of the values c(i, l) corresponds to the optimal set of new waste regions for

prefix P (0, i) given that both l and i are waste positions in the set. We calculate

these values in the following way:

c(i, l) =































cost(l) + (i− l) if i− l ≤ L,

cost(l) + (i− l) if i− l > L and some region w ∈ W contains

both i and l,

cost(l) + ǫ if i− l > L and none of the regions in W

contains both i and l.

In the first two cases, the waste regions, which contain i and l are joined together.

Otherwise, we would create a new proto-atom which would be too short or align to

a waste region. In the third case, distance between i and l is more than L bases,

which allows us to create a new proto-atom between them. As this possibility costs

less than putting l and i into the same waste region, it is preferred.
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For each i we also store a pointer to the position l in P which is to the left of

i and have been used for computing the cost of the optimal waste region set on

position i. After processing the last position m, we get the cost of the optimal set of

waste regions for the whole proto-atom P . By tracing backward through the stored

pointers, we identify the start and end positions of the regions of Wnew. Since we

process each region of W while constructing Wnew, and we pick one position from

each processed region to calculate the optimal cost of the succeeding region, for each

region Y ∈ W there is a region Z ∈ Wnew, such that Y and Z overlaps.

Time complexity of processing P . Straightforward implementation of this algorithm

runs in O(|P |2). Consider region X = P (j, k) ∈ W and all positions such that X

is preceding processed region for each of the positions. We denote these positions

by Y = P (a, b). In the following text, we describe how some additional values for

each position of X can be precalculated so that calculation of cost(i) lasts constant

time for each i such that a ≤ i ≤ b. Then, the calculation of the optimal cost

of proto-atom P runs in time O(|P |+ |W |) but due to our simplifying assumption

that no region in W is covered by another |W | ≤ |P |. We sort all regions from W

according to their first position. For each position i we store the first region of the

sorted list, which covers i. We denote the region by Fi. This preprocessing can be

done in O(|P |) time.

For a fixed i ∈ Y we can split X to two regions V1 and V2. Region V1 is the first

part of X such that for each l ∈ V1 holds c(i, l) = cost(l) + ǫ. Conversely, for each

position l ∈ V2 the value c(i, l) is computed as cost(l) + (i − l). With increasing i,

the boundary between V1 and V2 moves towards k. Suppose now that l is a position

in V2 and i is a fixed position of Y . We can write the term c(i, l) as a sum of two

values cost(l)− l and i, so that the first value does not depend on i and the second

on l. We compute values cost(l) − l for each position l ∈ X such that i − l ≤ L

or Fi covers l. For each such l we store minimum m[l] of the computed values over

positions of P (l, k), suffix of X starting on position l. We also store the position

p[l] for which the attained value is m[l]. Further, we compute values cost(t) for each

position t ∈ X and for each l store n[l] being the minimum of values cost(t) over

positions of P (j, l − 1), prefix of X which ends one position before l. We also store

the position q[l] for which the attained value is n[l].

While searching the optimal cost(i), we check values m[l] and n[l] for a particular
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position l and choose value min(m[l] + i, n[l]) to become cost(i). The position l is

minimum from i− L and the first position of Fi.

Extension to arbitrary set W . The situation becomes more complicated, when set

W is allowed to contain pairs of regions, such that one of them covers the other.

To handle such inputs, we split the set W into two parts. Set of covering regions C

consists of the regions from W , which cover some other region of W . We denote by

W ′ the set W \ C. If requirement 1 of Definition 10 is satisfied for every region of

W ′, the requirement will be satisfied also for every region of C and therefore for all

regions of W . But to satisfy requirement 2 of the definition, we have to consider all

regions of W . Therefore, we will run the dynamic programming on regions from the

set W ′, but values of function c(·, ·) will be calculated with respect to all regions of

W :

c(i, l) =































cost(l) + (i− l) if i− l ≤ L,

cost(l) + (i− l) if i− l > L and some region w ∈ W contains

both i and l,

cost(l) + ǫ if i− l > L and none of the regions in W

contains both i and l.

Atom Classification

As atom classes, we use connected components of the alignment graph. Sometimes

the result contains a pair of classes A and B such that each atom of class A neighbors

with an atom of class B from the left side and each atom of class B neighbors with

an atom of class A from the right side. In that case, we join each pair of these atoms

to a larger atom, and create one class of the joined atoms instead the two classes A

and B.

Time Complexity of the Algorithms

The number of iterations of both algorithms is polynomial, since in each iteration we

either detect that no further changes were made for any atom, or we increase either

the number of atoms or the number of wasted bases at least by one. In reality, the

number of iterations is relatively low for both algorithms. On the simulated data,
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the iterative mapping to proto-atom (IMP) performs 1 − 4 iterations, the waste

region mapping (WRM) performs 2 − 22 iterations. On the real data described in

the following section, the algorithms perform 3 and 42 iterations, respectively.

The difference between the iteration counts of the two algorithms is caused by the

fact, that IMP processes for each proto-atom boundaries of all alignable proto-atoms

at once, while WRM processes them sequentially in several iterations. Another

distinction is that WRM has stricter requirements on atoms, which may take longer

to establish. Consider proto-atom A, its neighboring waste regions wL and wR,

proto-atom B and its neighboring waste regions vL and vR, and several different

alignments mapping the region containing wL,A, and wR to the region containing

vL, B, and vR. Suppose that some alignment maps bases located close to the ends

of proto-atom A to bases in vL and vR, while some other alignment maps the same

bases of A to the bases within B. Similarly, some alignment maps bases of B into

A and another one maps the same bases to the surrounding regions wL and wR. In

this situation, WRM will iteratively shorten A and B and extend the waste regions

until boundary bases of A and B are found such that alignments map them to each

other. As IMP allows mapping bases from an atom to the bases belonging to a waste

region, this algorithm does not perform additional iterations in such a situation.

3.5 Experiments

In this section, we present comparison of the proposed algorithms both on the sim-

ulated and also on the real sequences. Advantage of the simulated data is that we

already know the true atomization and can evaluate performance of the algorithms.

It is not so easy to evaluate performance on the real sequences, but it is important

to keep in mind that even when performance of the algorithms on the simulated

data are often similar for the algorithms, this is not the case when the complex

evolutionary processes take place.

3.5.1 Measures of the Predicted Atomization Quality

For generated data, we have the true atomizations available, and therefore we can

evaluate quality of the predicted atomization directly by comparison with the true

atomization. We will use two sets of measures. The first one, based on recipro-
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cal best matches, was defined for the segmentation quality comparison previously

in Brejová et al. (2011). We propose the second set of measures for more precise

differentiation of the results.

To compare two atomizations, we first compute reciprocal best matches (BRM)

and boundary fitting matches (BFM) for their atoms. Suppose that atom A belongs

to the true and atom B to the predicted atomization. Atoms A and B are BRM to

each other, if they overlap and no other atom overlaps with any of them by a larger

amount than A and B overlap each other. Atoms A and B are BFM to each other,

if starts of the atoms are close to each other, as well as their ends. We consider the

boundaries of A and B to be close enough, if their distance is less than some fraction

of the minimal atom length L; in the experiments we used ⌈L/4⌉ for simulated data

sets and ⌈L/2⌉ for real data.

We use BRM and BFM to define quality measures for predicted atoms and also

for atom classes. Let b be the number of BRM pairs between two atomizations, c

be the number of BFM, p be the number of predicted atoms, and t be the number

of true atoms. We use the following quality measures for atoms:

Measure Value

BRM specificity b/p

BRM sensitivity b/t

Measure Value

BFM specificity c/p

BFM sensitivity c/t

The BRM specificity decreases for example when several predicted atoms overlap

one true atom. The true atom creates a BRM pair with only one of the predicted

atoms, while all the predicted atoms are included in p. In this situation, a BFM

pair does not have to exist for the true atom, which decreases the BFM specificity

further. Conversely, if a predicted atom covers several true atoms, only one of the

true atoms creates a BRM pair with the predicted atom, but all the true atoms

are summed in t. This decreases a BRM sensitivity of the predicted atomization.

Again, this effect can be even more significant for the BFM sensitivity, as BFM pair

does not have to exist.

Now we describe four measures, which evaluate correctness of the grouping of

the predicted atoms into classes. Let A be a class of true atoms and B be a class of

predicted atoms. We consider B to be the correct prediction of A, if each atom of

B has its BRM/BFM pair in A and each atom of A has its BRM/BFM pair in B.

Let d be a number of correctly predicted classes according to BRM, e be a number
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Sequence Segmentation

Data set length (kb) No. atoms No.classes

Slow 253 153 55
Fast 444 385 113

No indels 210 611 78

Table 3.1: Overview of simulated data sets. Each group contains ten data sets. The
table shows mean number of atoms and atomic classes over these data sets, and a
mean length of a simulated sequence for one species.

of correctly predicted classes according to BFM, p be a number of predicted classes,

and t be a number of true classes. Then sensitivity and specificity of the predicted

classes will be:

Measure Value

BRM class specificity d/p

BRM class sensitivity d/t

Measure Value

BFM class specificity e/p

BFM class sensitivity e/t

3.5.2 Simulated Data

Data sets. We have evaluated performance of the algorithms on 30 simulated data

sets, taken from Brejová et al. (2011). These data sets are divided into three groups

according to different parameter settings of the used generators. Each data set

contains three sequences that follow known features of human, chimp, and macaque

genomic sequences as well as their evolutionary relationship. The Fast and Slow

data sets were produced by simulation of sequence evolution, allowing substitutions

according to the HKY model (Hasegawa et al., 1985), short insertions and deletions,

as well as large-scale deletions and duplications. The data sets differ in the rate of

large-scale events per site, where the Fast data sets use the rate 1.5 faster than the

Slow data sets. The No Indels data sets were taken form Vinar et al. (2010) and

they were produced by a simpler generator. Short insertions and deletions were not

simulated and the rate of large-scale duplication and deletion did not depend on the

sequence length. Table 3.1 gives us a brief overview of the simulated data structure.

Parameter settings. We have compared performance of our two new algorithms

waste region mapping (WRM) and iterative mapping to proto-atoms (IMP) with

the algorithm iterative homology mapping (IHM) presented in Brejová et al. (2011).
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The IHM algorithm solves the atomization problem by iterative mapping individual

breakpoints (waste regions of length zero) given that at most one breakpoint can be

located within a window of size W . The process repeats until no new breakpoints

are identified. An atom forms between every pair of consecutive breakpoints. These

atoms are further divided into classes by a integer linear program.

IHM does not create any waste regions of non-zero length and in problematic

regions it tends to create atoms of length W . To make the IHM comparable with

the other two algorithms, we have used a relatively small parameter W and then

discarded classes containing atoms shorter than minimal required length L. We

use the short atom filtering as a substitute for identification of the regions where

alignment boundaries (or their mappings) occur frequently.

We have tested performance of the three algorithms (WRM, IMP, IHM) with

four different minimal atom lengths L ∈ {50, 100, 250, 500}. Parameters max_indel

and min_alignment of WRM and IMP have been set to M = ⌈L/4⌉, and window

size parameter W has been set to the same value as M .

For comparison, we also evaluate the true atomization from which the atoms

shorter than L have been discarded. This shows us the best possible performance of

an algorithm which does not overestimate lengths of atoms. This data are displayed

in the Tables 3.2 and 3.3 in the columns TRUE.

No Indels data sets (Table 3.2): All three algorithms have similar accuracy under the

BRM measures. However, there are significant differences in the BFM measures. At

the level of atoms, IHM consistently outperforms IMP, which is always better than

WRM. For each of the programs, the BFM sensitivity is higher for L ∈ {100, 250}

than for L ∈ {50, 500}.

Let us now look at the data for L = 50. The BFM sensitivity of WRM is low, but

the BRM measures are as high as for any other program and on average almost whole

input sequence is covered by the predicted atomization. The WRM atomization

usually contains atoms approximately at the correct positions, but the boundaries

of the predicted atoms are not close enough to the boundaries of the true atoms.

Most of the times, the predicted atom is shorter. If several alignments which cover

the same true atom, WRM and IMP create the predicted atom at the region which

is an intersection of these alignments. Detection of the correct homology boundaries

is difficult for the alignment tool; therefore some of the alignments may be shorter
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Figure 3.9: Atomizations of short region from the set obtained by algorithms at
L = 100. Atoms are shown as numbered rectangles, where the number is the ID
of the predicted or true class. The BRM pairs shown as light arrows and the BFM
pairs as dark ones. The IHM predicts many short atoms, leading to low specificity.
The BRM specificity is higher than the BFM specificity for IHM, as the BRM pairs
exist but the BFM pairs do not. The BRM and the BFM specificities equals for
WRM and IMP atomizations.

than the true atom. This is the reason, why WRM and IMP predict shorter atoms

and have lower values of BFM measures compared to IHM. The WRM, unlike the

IMP, then propagates distribute the boundaries of the short atom to all atoms of the

same class, which causes the difference between performance of the two algorithms.

Fast and Slow data sets (Table 3.3): Similarly to No Indels data sets, the BRM

sensitivities for all three algorithms are at the level of atoms and also at the class

level similar to each other and very close to the BRM sensitivity of TRUE data sets.

The exception is the BRM specificity of IHM, which is significantly lower than the

BRM specificity of WRM and IMP particularly at low values of L. This is caused

by IHM predicting many small atoms which do not have their BRM pairs in the

true atomization (see Figure 3.9). For bigger L the specificity difference get smaller

and for L = 500 the BRM specificity of IHM approaches 100%. Figure 3.9 also

illustrates the difference between BFM and BRM specificities.

The BFM/BRM class specificities are usually lower for IMP than for WRM

atomizations, even when the BFM/BRM specificities for atoms are the same or

even better. This is typically caused by several atoms predicted by IMP, which are

not found by WRM. These atoms usually belong to the classes which are missed

by WRM. The problem is that not every atom from the class is identified by IMP.

Therefore the number of the predicted classes is higher for IMP than for WRM, but

the number of the correctly predicted classes stays the same for both algorithms,

leading to lower class specificity.
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In Fast and Slow data sets simulation, short indels were taken into account. This

is the biggest difference between these data sets and the No indels data, and it

makes these two data sets more realistic than the No indel ones. For Fast and

Slow data sets, our algorithms IMP and WRM outperform previous IHM algorithm,

particularly for the short atomic lengths.
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dataset: No indels

L = 50,W = M = 13 L = 100,W = M = 25 L = 250,W = M = 63 L = 500,W = M = 125

measure WRM IMP IHM TRUE WRM IMP IHM TRUE WRM IMP IHM TRUE WRM IMP IHM TRUE

coverage 98 % 99 % 100 % 100 % 98 % 99 % 99 % 100 % 95 % 96 % 97 % 97 % 89 % 90 % 90 % 90 %

B
R

M

sp 94 % 93 % 99 % 100 % 100 % 99 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

sn 94 % 94 % 94 % 95 % 89 % 90 % 91 % 91 % 70 % 71 % 74 % 73 % 53 % 54 % 56 % 56 %

class sp 97 % 92 % 98 % 100 % 100 % 94 % 100 % 100 % 100 % 97 % 100 % 100 % 100 % 97 % 100 % 100 %

class sn 94 % 92 % 94 % 96 % 89 % 88 % 91 % 92 % 74 % 74 % 78 % 77 % 58 % 58 % 61 % 62 %

B
F
M

sp 57 % 70 % 87 % 100 % 78 % 89 % 96 % 100 % 93 % 96 % 98 % 100 % 98 % 98 % 100 % 100 %

sn 57 % 71 % 82 % 95 % 70 % 81 % 87 % 91 % 65 % 68 % 72 % 73 % 52 % 53 % 55 % 56 %

class sp 61 % 57 % 84 % 100 % 80 % 76 % 95 % 100 % 94 % 92 % 98 % 100 % 97 % 94 % 99 % 100 %

class sn 59 % 57 % 81 % 96 % 71 % 71 % 87 % 92 % 69 % 70 % 76 % 77 % 57 % 56 % 61 % 62 %

Table 3.2: Performance of the WRM, IMP, and IHM algorithms on the No Indels generated data sets.
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dataset: Slow

L = 50,W = M = 13 L = 100,W = M = 25 L = 250,W = M = 63 L = 500,W = M = 125

measure WRM IMP IHM TRUE WRM IMP IHM TRUE WRM IMP IHM TRUE WRM IMP IHM TRUE

coverage 100 % 100 % 100 % 100 % 100 % 100 % 99 % 100 % 100 % 100 % 100 % 100 % 99 % 99 % 99 % 99 %

B
R

M

sp 63 % 62 % 34 % 100 % 100 % 99 % 53 % 100 % 100 % 100 % 86 % 100 % 100 % 100 % 100 % 100 %

sn 97 % 98 % 98 % 99 % 96 % 96 % 96 % 97 % 93 % 93 % 94 % 95 % 84 % 84 % 86 % 86 %

class sp 63 % 61 % 36 % 100 % 100 % 97 % 59 % 100 % 100 % 100 % 88 % 100 % 100 % 100 % 100 % 100 %

class sn 98 % 98 % 98 % 99 % 97 % 97 % 97 % 98 % 94 % 94 % 95 % 96 % 86 % 87 % 89 % 89 %

B
F
M

sp 31 % 33 % 11 % 100 % 81 % 83 % 25 % 100 % 91 % 93 % 69 % 100 % 98 % 97 % 99 % 100 %

sn 47 % 52 % 32 % 99 % 78 % 81 % 45 % 97 % 85 % 87 % 76 % 95 % 82 % 82 % 85 % 86 %

class sp 33 % 31 % 14 % 100 % 82 % 78 % 32 % 100 % 93 % 92 % 73 % 100 % 97 % 96 % 99 % 100 %

class sn 52 % 49 % 39 % 99 % 79 % 78 % 53 % 98 % 87 % 87 % 79 % 96 % 84 % 84 % 87 % 89 %

dataset: Fast

L = 50,W = M = 13 L = 100,W = M = 25 L = 250,W = M = 63 L = 500,W = M = 125

measure WRM IMP IHM TRUE WRM IMP IHM TRUE WRM IMP IHM TRUE WRM IMP IHM TRUE

coverage 100 % 100 % 100 % 100 % 99 % 100 % 99 % 100 % 99 % 99 % 99 % 100 % 98 % 98 % 99 % 99 %

B
R

M

sp 77 % 75 % 46 % 100 % 100 % 98 % 67 % 100 % 100 % 100 % 90 % 100 % 100 % 100 % 100 % 100 %

sn 96 % 96 % 97 % 97 % 93 % 94 % 95 % 95 % 87 % 88 % 89 % 90 % 76 % 77 % 79 % 80 %

class sp 74 % 72 % 47 % 100 % 100 % 98 % 71 % 100 % 100 % 99 % 92 % 100 % 100 % 99 % 100 % 100 %

class sn 97 % 97 % 97 % 98 % 95 % 95 % 96 % 97 % 90 % 90 % 92 % 93 % 82 % 83 % 85 % 86 %

B
F
M

sp 44 % 47 % 19 % 100 % 80 % 83 % 42 % 100 % 93 % 93 % 77 % 100 % 97 % 98 % 99 % 100 %

sn 55 % 61 % 40 % 97 % 75 % 79 % 59 % 95 % 80 % 82 % 76 % 90 % 74 % 75 % 78 % 80 %

class sp 45 % 42 % 22 % 100 % 81 % 79 % 46 % 100 % 93 % 92 % 79 % 100 % 97 % 96 % 99 % 100 %

class sn 59 % 57 % 45 % 98 % 77 % 77 % 63 % 97 % 84 % 84 % 80 % 93 % 80 % 80 % 83 % 86 %

Table 3.3: Performance of the WRM, IMP, and IHM algorithms on the Fast and Slow generated data sets.
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atoms classes coverage

WRM 87 17 67%

IMP 126 24 77%

IHM 134 22 88%

Table 3.4: Summary information about performance of the algorithms on cluster
UGT1A.

3.5.3 Real Data

We have applied the three algorithms also to sequences of the primate gene clus-

ter UGT1A (UDP-glucuronosyltransferase) of human, chimpanzee, and orangutan.

This gene cluster, consists in the human genome of at least 13 duplicated copies

of one short exon or its parts (Bellemare et al., 2010). Before running alignments

and atomization algorithms, we discarded sequence repeats from the UGT1A se-

quences by RepeatMasker (Harris, 2007). After this, the human sequence has

length 89 971 base pairs, sequences of chimpanzee and orangutan are 87 239, and

108 475 base pairs long, respectively.

We have run the WRM, IMP and IHM algorithms on the data with parameters

L = 500,W = M = 250. Several statistics of the resulting atomizations can be

seen in Table 3.4. We also compare the results of our two algorithms to the results

of IHM by computing BRM and BFM measures under the assumption that IHM is

the true atomization. The results in Table 3.5 indicate that differences between the

algorithms pronounced in real data than for simulated data sets. As we can see,

WRM is more specific and IMP has higher sensitivity, when compared to IHM.

Consider now only human sequence and its atomizations, as sequence of the con-

sidered protein (UDP-glucuronosyltransferase) is best characterized for this species

of the three. Now we discuss a number of the duplicated copies contained in atoms

of WRM, IMP, and IHM atomizations and also a number of classes into which

these atoms are assigned. We have downloaded a protein sequence of the duplicated

exon from UCSC genome browser (Kuhn et al., 2012). We have also used BLASTX

alignment program (Gish and States, 1993) to search for similarities between ge-

nomic sequence of UGT1A gene cluster and the exon sequence; 13 regions of the

genomic sequence were identified as significantly similar to the protein sequence. We

will call these regions putative exons. Length of a putative exon is on average 820
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BRM BFM

sp sn class sp class sn sp sn class sp class sn

WRM 100% 65% 94% 70% 32% 21% 41% 30%

IMP 90% 84% 67% 70% 31% 30% 33% 35%

Table 3.5: Comparison of WRM and IMP atomizations to IHM atomization.

bases and pairwise sequence similarity among these putative exons on the nucleotide

level is on average 71% according to their multiple sequence alignment obtained by

ClustalW2 (Goujon et al., 2010). As the average pairwise similarity is relatively low

we can expect that some of the putative exons will belong to a different class than

other exons.

We say that an atom fits a putative exon, if an overlap of the atom and the

putative exon contains at least 50% bases of each. If an overlap between an atom

and a putative exon contains more than 50% bases of the putative exon but less

than 50% of the atom, we say that the atom coincide with the putative exon. We

ignore overlaps of an atom and a putative exon containing less than 10% of the

putative exon. If an atomic class contains only atoms which fit putative exons, we

call it class of fitting atoms and a class consisting of only coinciding atoms is class

of coinciding atoms.

In Table 3.6, we can see distribution of putative exons in atomizations produced

by WRM, IMP, and IHM. Fitting atoms of IMP have been divided to two classes;

one containing 6 atoms and the other 2. Of the correctly predicted atoms by IMP

and IHM, 5 are common for both, 2 are unique for IHM and 3 for IMP. One of the

three atoms unique for IMP belongs to the same class as the five atoms common for

IHM and IMP, the other two atoms create isolated class. On average, IMP fitting

atoms are shorter by 120 bases than the corresponding IHM fitting atoms; average

length of IHM fitting atoms is 845 bases. When we increase minimal alignment

length parameter M to 500, IMP detects also the two correct atoms, which are

unique to IHM for M = 250, we show data for this atomization in column IMP’ of

Table 3.6. We expect, that the number of fitting IMP’ atoms increased thank to

elimination of the input alignments of lengths between 250 and 500 base pairs.

In this section we have seen, that WRM cannot correctly predict the putative

exons of UGT1A gene cluster even when performance on the simulated data sets
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WRM IMP IMP’ IHM

Fitting atoms 0 8 11 7
Classes of fitting atoms 0 2 2 1
Coinciding atoms 2 1 0 6
Classes of coinciding atoms 2 1 0 3
Putative exons in waste regions 11 4 2 0

Table 3.6: Distribution of UGT1A exons in atomizations obtained by the three
algorithms.

were comparable to the other two algorithms. This is caused by alignment ends

scattered over a putative exon what leads WRM algorithm to put the whole area

into a waste region. As we can see in Table 3.4, in addition to the sequences coding

the protein, many non-coding regions also occur in several copies of any of the three

atomizations. This is in accordance with our previous knowledge that the considered

genomic sequence is highly structured.



Conclusion

This thesis deals with two problems connected to similarity search in genomic

databases. In particular, we consider sequences which do not follow the traditional

sequence models assuming random distribution of bases within a sequence. Instead,

we expect that the sequence at hand is internally structured, containing several al-

most identical regions. We study possibility of using this information to improve

methods for solving two computational problems.

First, we address the problem of estimating statistical significance to database search

for a database consisting of many similar sequences. We have considered methods

for more accurate estimation of P -values in the context of sequence homology search.

In particular, we propose to adjust the size of the database to compensate for the

structure present in the database due to the fact that individual sequences are related

by evolution.

We have explored the idea of using compression to estimate the effective database

size. We evaluate this approach in a simple scenario where we can compare our result

with exactly computed P -values. We have demonstrated by experiments that the use

of the compression algorithms leads to non-conservative P -value estimates for small

P -values. This is at least partially caused by the fact that besides identifying longer

repeated substrings, the compression algorithms also take advantage of sequences

with low entropy. We have suggested a simple way to disentangle the portion of the

compression coming from locally low entropy and shown that the correction leads

to better estimates of P -value.

The compression is a simple and efficient way of estimating the effective database

size. Our scheme consist of several existing modules (compression, homology search,

P -value estimation) which can be easily substituted with other alternatives. With

sequences of many related species becoming available, our method could be a prac-



Conclusion 85

tical alternative for P -value estimation.

Finally, there is a space for testing and adjusting our approach in more complex

scenarios of homology search, including longer query sequences, insertions, deletions,

more complex scoring schemes, and local alignment results. It would be also useful

to address further theoretical problems, for example, analytical P -value estimates

for redundant databases.

Second, we have studied a sequence segmentation problem arising in comparative

analysis of related DNA sequences. We are given a genomic sequence, and our task is

to identify non-overlapping segments of the sequence and to partition these segments

into classes so that segments within each class are similar to each other, and there are

no significant similarities between segments from different classes. We have defined

the problem formally, proved its NP hardness and provided two practical heuristic

algorithms, the simpler one using only iterative remapping of waste regions, and the

other using dynamic programming to select an optimal combination of several local

changes. We have implemented and evaluated the algorithms on simulated data

to show that our problem definition and algorithmic approach lead to reasonable

results with respect to a simple model of evolution generating our data. We have

also run the two algorithms on genomic sequences of a real gene cluster and mention

weak points of the heuristics.

This area offers both practical and theoretical questions for further study. From

a theoretical point of view, it would be interesting to study approximation or fixed-

parameter algorithms for our problem, or to study its variants. From the practical

point of view, improvement of the IMP algorithm leading to better identification of

the real segments would be useful.
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