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Abstrakt

Zaoberáme sa dvomi dôležitými bioinformatickými problémami: anotáciou sekvencií a za-

rovnávaním sekvencií. V práci sa sústredíme na využitie skrytých Markovových modelov

(HMM), dobre známych generatívnych pravdepodobnostných modelov.

V prvej časti študujeme anotáciu sekvencií, konkrétne dvojstupňové dekódovacie al-

goritmy a výpočtové problémy, ktoré s nimi súvisia. Ukážeme, že dvojstupňové algoritmy

môžu zlepšiť presnosť dekódovania a dokážeme, že tri problémy vhodné pre prvý stupeň

výpočtu sú NP-ťažké: problém najpravdepodobnejšej množiny, problém najpravdepodob-

nejšej reštrikcie a problém najpravdepodobnejšej stopy.

Druhá časť sa zaoberá zarovnávaním sekvencií, ktoré obsahujú tandemové opakovania.

Tandemové opakovania sú opakujúce sa časti genomických sekvencií, ktoré často spôso-

bujú chyby v zarovnaniach. Aby sme vyriešili tento problém, vyvinuli sme nový HMM,

ktorý modeluje zarovnania obsahujúce tandemové opakovania a skombinovali sme ho s

existujúcimi ako aj novými dekódovacími algoritmami. Náš prístup sme vyhodnotili expe-

rimentálne.

V oboch problémoch sme používali dekódovacie algoritmy na zlepšenie presnosti pre-

dikcií HMM. Dekódovacie algoritmy sú často podceňované a väčšina vývoja ide do vytvá-

rania topológie HMM. Avšak správnym výberom dekódovacej metódy môžeme dosiahnuť

významné zlepšenie predikcií.

Kľúčové slová: skryté Markovove modely, dekódovanie, anotácia, zarovnanie
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Abstract

We study two important problems in computational biology: sequence annotation and

sequence alignment. In the thesis we concentrate on the use of hidden Markov models

(HMMs), well established generative probabilistic models.

In the first part, we study the sequence annotation problem, specifically the two-stage

HMM decoding algorithms and the computational complexity of related problems. In

particular, we demonstrate that two-stage algorithms can be used to increase the accuracy

of decoding, and we prove the NP-hardness for three problems appropriate for the first

stage: the most probable set problem, the most probable restriction problem and the most

probable footprint problem.

The second part of the thesis focuses on alignment of sequences that contain tandem

repeats. Tandem repeats are highly repetitive elements withing genomic sequences that

cause biases in alignments. To address this issue, we introduce a new HMM that mod-

els alignments containing tandem repeats, combine it with existing and new decoding

algorithms, and evaluate our approach experimentally.

In both problems, we use the decoding algorithms to improve the accuracy of HMM

predictions. Decoding algorithms are often neglected, and most of the development is

focused on the structure of an HMM. However, a proper selection of a decoding method

can lead to significant improvements in the predictions.

Keywords: hidden Markov models, decoding, annotation, alignment
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Chapter 1

Introduction

New sequencing technologies are producing more and more biological data, including ge-

nomic sequences of many species. Therefore it is important to develop tools for automated

analysis of such data. In this thesis we focus on computational methods for sequence an-

notation and sequence alignment. In the sequence annotation problem, we want to label

parts of the sequences according to their function, or meaning. We call such a labeling

an annotation. For example, we can label each symbol of a genomic sequence base on

whether it is part of a gene or not as in the following example (g is a label representing

genes and n is a label for non-gene parts).

Sequence: ACGGTGCGTTAGCTGCTCTGATGTCTTCGATCTAGCTAGT

Annotation: nnnnnnnngggggggggggggggggggnnnnnnnnnnngg

The sequence alignment is a data structure that characterizes similarity or shared origin

of two or more sequences. We insert gap symbols (dashes) so that corresponding parts of

the sequence are in the same column as in the following example.

Sequence X: CTGCTAGCTACGT--GTGT

Sequence Y: ---------ACGTGGAT--

Both annotation and alignment are fundamental bioinformatics problems. The first stages

of analysis of newly sequences genomes typically include aligning it with the genomes of

related species (that is already sequenced), and searching for known structures (like genes)

inside new genomes. Many subsequent methods for analysing genomes rely on sequence

annotation and alignment. To avoid artefacts in the results of these downstream methods,

there is need to develop algorithms for producing sequence annotation and alignment with

as low error rate as possible. Tools for both sequence annotation and alignment are often

1



CHAPTER 1. INTRODUCTION 2

based on hidden Markov models (HMMs) [22, 47, 15, 36, 43, 54, 56, 58, 49, 65, 42, 61, 48,

16, 50]. In this thesis we propose new techniques for use of HMMs in these domains and

also give proofs of NP-hardness for several related problems.

We work with generative probabilistic models, hidden Markov Models (HMM) and their

variants. In general, an HMM is a state machine that generates a sequence (string) along

with a sequence of states (called state path). Since an HMM is a probabilistic model, it also

defines the probability of sequences and state paths. The state path contains information

about the structure of the generated sequence. In practice we are often given the generated

sequence and the state path is hidden. The goal of the decoding algorithm is to reverse

the generation process and obtain the original state path or at least its approximation.

When using HMMs for annotation of biological sequences, we construct the HMM so

that the structure of the states corresponds to the biological features we are interested in.

Each feature can be encoded in one or several states. Then we assume that the genomic

sequence of interest was generated by our model and use a decoding algorithm to obtain

a state path which is as close as possible to the true state path. The Viterbi algorithm

[22] is traditionally used for decoding, but other optimization criteria can be used to

obtain more accurate results [16, 31, 58, 67]. Note that accuracy measures may depend

on the application domain. In Chapter 3 we study a special type of decoding algorithms:

two-stage algorithms. In the first stage, the algorithm infers important aspects of the

annotation and in the second stage it fills remaining details in a way consistent with

the first-stage results. We show that two-stage algorithms can improve the accuracy of

decoding (as far we know, such algorithms were previously used only for reducing the

running time). We also study the computational complexity of several decoding criteria

appropriate for the first stage and we show NP-hardness results for obtaining the optimal

annotations using these criteria. Namely we study the most probable footprint problem,

the most probable set problem and the most probable restriction problem.

In sequence alignment, the goal is to search for corresponding parts of the sequences

and arrange them into same position in the alignment. To choose the biologically correct

alignment, we usually optimize some scoring scheme. We will consider scoring schemes

which are defined using pair hidden Markov models (pHMM). A pHMM generates pairs

of sequences along with their alignment (an alignment is defined by the state path). This

model is an extension of HMM.

In the fourth chapter we propose a tractable method for aligning sequences with tandem

repeats. A tandem repeat consists of consecutive copies (not exact) of a certain motif
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(short genomic sequence). Tandem repeats cause problems with sequence alignments

because it is hard to distinguish between individual copies of the motif. We extend a

traditional pHMM model for sequence alignment by additional states modeling tandem

repeats. We also propose new decoding algorithms tailored to this model. We show on

simulated data that our new model and decoding methods decrease the error rate, and

with a particular increase of accuracy near the border of tandem repeats.

1.1 Biological Background

In this section we review several biological terms that will be needed. More information

about DNA, proteins, and genes can be found in [12, 71]. Practically every cell of living

organisms contains one or several DNA molecules. DNA is a double stranded molecule

consisting of two long sequences (strands) of nucleotides (nucleotides are also referred to

as bases or residues). There are four types of nucleotides in DNA: adenosine, cytosine,

guanine, and thymine represented by letters A,C,G and T respectively. In RNA nucleotide

T is replaced with uracil, denoted by U . The nucleotides at the same position in the two

strands are connected by hydrogen bonds and are complementary: A is always connected

with T and C is always connected with G. Therefore we can represent DNA molecule

by a sequence over alphabet {A,C,G, T}, since the complementary strand can be easily

computed.

Some parts of DNA encode proteins . Proteins play an important role in cell biology

since they regulate many processes in the cell and are catalysts to many chemical reactions.

Proteins are sequences of amino acid molecules. There are 20 amino acids that can be

encoded in DNA. Parts of DNA that encode proteins are called genes (gene is “substring”

of DNA that will be translated into one protein). We refer to the DNA sequences of an

organism as to its genome.

The rational behind sequence alignment is to represent the evolution of two sequences.

According to the evolution theory, currently living organisms evolved from a single com-

mon ancestor through small changes in their genomes. There are many types of changes.

Substitutions change a nucleotide at some position to another nucleotide. Insertions and

deletions add or remove parts of the genomic sequence. Other changes includes duplica-

tions (a region of a sequence is copied into a different part of the genome), inversions (a

region of the sequence is inverted), and even large genome rearrangements (large regions

change their position within the genome).
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The speciation is an event, when a new species is created. This happens mostly due

to physical separation of populations of the same species. Subsequently, each population

evolves differently to a point, that they form different species. We can represent the

evolution of a set of species using a binary tree. Each leaf represents a current species,

each internal vertex represents a speciation event, and the root represents the common

ancestor of all species in the tree. The branch lengths usually correspond to the amount

of changes in the genome or to the time.

We say that two parts of biological sequences X and Y are homologous , if they originate

from the same sequence in some common ancestor of X and Y . Due to their common

origin, homologous sequences are often similar. However high evolutionary distance may

cause the sequences to diverge so much that the sequence similarity is as low as for two

random sequences.

As we mentioned in the previous section, an alignment is a data structure that rep-

resents sequences and their relation through some evolutionary changes (substitutions,

insertions and deletions). It is obtained by adding gap symbols (−) into the sequences so

that they have the same length and form a 2-dimensional array or a matrix, where each

sequence is in its own row. When aligning two homologous sequences, we want to place

homologous parts of the sequences into the same columns.

Additionally, we distinguish between two types of homologs: orthologs and paralogs.

The orthologs are two different sequences that originated from the common ancestor se-

quence by a speciation event. The paralogs are two different sequences that evolved by

duplication event within the same organism. The distinction is important when aligning

repetitive regions; we want to align orthologous copies of the motif, but the paralogous

copies are very similar, and it is very hard to distinguish between paralogous and orthol-

ogous copies.

1.2 Notation

In this section we summarize notation used in the following chapters.

All sequences, members of sets, vectors, and rows and columns of matrices will be

indexed from 0. We will use mostly right-open intervals: I = [a, b) means that a ∈ I, but

b /∈ I.

The element at the k-th position (zero based) of string (or sequence) s will be written

as s[k]. The substring s[i]s[i + 1] . . . s[j − 1] is denoted s[i : j]. If n is the length of the
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string s then s[: i] is equivalent to s[0 : i] and s[i :] is equivalent to s[i : n]. We will use

the terms sequence and string interchangeably.

Let M be a matrix. Then M [i, j] is the element from the i-th row and j-th column of

M (indices are zero based). Similarly as for strings, submatrix M [i : j, k : l] is a matrix

consisting from the intersection of rows i, i+ 1, . . . , j − 1 with columns k, k + 1, . . . , l− 1.

If M is of size n ×m then M [: i, j :] is equivalent to M [0 : i, j : m]. The term M [i, :] is

equivalent to M [i, 0 : m] which is the i-th row of M .



Chapter 2

Hidden Markov Models and Their

Decoding

This chapter contains a survey of the relevant literature and overview of methods and

models that we will use in this thesis. We describe generative probabilistic models called

hidden Markov models (HMMs), their variants, and algorithms that are used with these

models. We describe the problem of sequence alignment and several applications of hid-

den Markov models to sequence alignment and sequence annotation. In this thesis, we

study hidden Markov models from two aspects: computational complexity of some HMM

problems, and application of HMMs to sequence alignment.

2.1 Hidden Markov Models

Hidden Markov models (HMM) are graphical probabilistic models commonly used in bioin-

formatics for sequence annotation or sequence alignment. An HMM is a probabilistic finite

state machine that in every state emits one symbol. Later we will discuss variants of HMMs

that emit more than one symbol, or that emit symbols on multiple tapes. This section

describes basic definitions and algorithms that are used with HMMs.

2.1.1 Definitions

HMMs are generative probabilistic models. The generative process of an HMM starts in

a random state q sampled according to the initial distribution I. When an HMM is in

some state q it emits one symbol from alphabet Σ according distribution eq and moves to

another state according to transition distribution aq. Note that emission and transition

6



CHAPTER 2. HIDDEN MARKOV MODELS AND THEIR DECODING 7

distributions can be different for every state. This process produces two sequences: se-

quence of states π = π0π1π2 . . . called state path and output sequence X = X0X1X2 . . .

over alphabet Σ. In this work, we will use only discrete versions of HMMs with finite state

space and alphabet.

Definition 1. Any square matrix M of size n×n is stochastic if it satisfies the following

properties.

1. ∀0 ≤ i < n, 0 ≤ j < m, 0 ≤M [i, j] ≤ 1

2. ∀0 ≤ i < n,
∑m−1

i=0 M [i, j] = 1

Note. Stochastic matrix consists from n probability distributions over a set of size n.

Definition 2. A Hidden Markov Model (HMM) is a tuple H = (Σ, V, I, e, a) where Σ =

{σ0, . . . σm−1} is a finite alphabet of size m, V = {v0, . . . , vk−1} is a finite set of state of

size k, I is a distribution over V , e is k ×m matrix where each row contains distribution

over Σ and a is stochastic matrix of size m×m.

We will index elements of e and a by subscripts; therefore eu,v is the element in u-th

row and v-th column of e.

Example 1. Consider the HMM H = (Σ, V, I, e, a) from Figure 2.1. Alphabet is Σ =

{A,C,G, T} and set of states is V = {R, 0, 1}. Transition and emission distributions

are described in the figure. We can define initial distribution to IR = 0.5, I1 = 0.3 and

I0 = 0.2.

Definition 3. Let H = (Σ, V, I, e, a) be an HMM. We say that there is transition from

state u to state v if au,v > 0. We will write transition from u to v as u → v and

T = {u→ v | au,v > 0} is the set of all transitions of H.

State path π = π0π1 . . . πn−1 is a sequence of states. We say that a state path π is

admissible if Iπ0 > 0 and πi−1 → πi ∈ T for all 1 ≤ i < n. Otherwise π is inadmissible.

Example 2. Consider the HMM from figure 2.1. Set of transitions is T = {R→ R,R→
In,R → E, In → In, In → E,E → E,E → In,E → R}. State path π1 = RRRRInER

is an admissible state path and π2 = RRRInREER is an inadmissible state path, because

it contains a transition with zero probability (In→ R).

Hidden Markov models are generative probabilistic models, meaning that they describe

a simple process that can generate a pair of state path and sequence. In following definition

we will define probability distribution of pairs (state path, sequence) and probability

distribution of sequences generated by an HMM.
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R

(0.25, 0.25, 0.25, 0.25)

1

(0.1, 0.2, 0.3, 0.4)

0

(0.5, 0.2, 0.25, 0.05)

0.005

0.010.005

0.07

0.05

0.99

0.920.95

Figure 2.1: An HMM with 3 states that emits symbols from alphabet of size 4. Circles

represents states; an arc from state u to v indicates that au,v > 0. The missing arc from

state In to R means that aIn,R = 0. Every four tuple represents the emission distribution

of the associated state.

Definition 4. Let H = (Σ, V, I, e, a) be an HMM and X = X0X1 . . . Xn−1 be a sequence

over alphabet Σ of length n. Let π be a state path of length n. Then the probability that

state path π generated sequence X is

Pr (X, π | H) = Iπ0eπ0,X0

|X|−1∏
i=1

aπi−1,πieπi,Xi

The probability that X was generated by the model H (using any state path) is

Pr (X | H) =
∑
π∈V n

Pr (X, π | H)

Example 3. Consider the HMM H from the example 1. Let state path be π = RRInInE

and generated sequence be X = ACGTT . Then the probability that H generates π and X

is Pr (X, π | H) = 0.5 ·0.35 ·0.99 ·0.25 ·0.005 ·0.25 ·0.95 ·0.05 ·0.05 ·0.4 = 0.5143359375 ·10−7

Note. In our definition of an HMM, the sum of the probabilities of all sequences of

length n is 1. Later we will discuss concept of final states. With final states, the sum of

the probabilities of all sequences (of all lengths) is one.

We will be interested in the three basic problems in HMMs:
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1. Given sequence X and model H. What is the probability that X was generated by

model H?

2. Given sequence X, model H and assumption that X was generated by the model H,

what is the best explanation of X? By explanation is usually meant state path that

generated X. We call the process of computing explanation of sequence X decoding .

3. Given training data D (usually sequences with “explanations”) and topology of the

model (set of states and transitions), what are the best parameters (initial, transition

and emission distributions) that explains training data D? This problem is also

called training

In following sections we will discuss several algorithms for the problems describes above.

We will mostly focus on the decoding problem.

2.1.2 The Forward Algorithm

The Forward algorithm computes probability Pr (X | H), probability that a given sequence

X of length n was generated by the model (it solves the first problem of HMMs) [22]. The

algorithm is based on the dynamic programming. It fills matrix F of size n×m where m

is the number of states of H, F [i, v] is the probability that H generated X[: i + 1] with

state path that ends in state v. Values F [i, v] are called forward variables . F [i, v] can be

computed by the following equations (also called the forward equations).

F [0, v] = Ivev,X0 , v ∈ V (2.1)

F [i, v] =
∑
u∈V

F [i− 1, u] · au,v · ev,Xi
, v ∈ V, 0 < i < n (2.2)

The probability that H generated X is

Pr (X | H) =
∑
v∈V

F [n− 1, v]

Using the recurrence equations above, we can compute the probability of X in O(nm2)

time and O(m) memory. If the transition matrix is sparse, then this algorithm can be

implemented in O(n(m+ t)) time where t is the number of transitions. Forward variables

are also used in other algorithms.
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2.1.3 The Viterbi Algorithm

The Viterbi algorithm is probably the most frequently used decoding algorithm for hidden

Markov models [22]. The Viterbi algorithm answers a straightforward question: given

the sequence X = X0X1 . . . Xn−1, what is the most-likely state path π that generates X?

Formally, Viterbi algorithm finds a state path maximizing Pr (π | X,H). Since

Pr (π | X,H) =
Pr (π,X, | H)

Pr (X | H)

and quantity Pr (X | H) is fixed, therefore the most probable state path π also maximizes

Pr (X, π | H).

The Viterbi algorithm is very similar to the Forward algorithm. It starts with comput-

ing Viterbi variables V [i, v]. Variable V [i, v] stores the probability of the most probable

state path that generated X[: i + 1] and ends in state v. The algorithm also computes

back-links B[i, v] that contain the previous state in the most probable state path that

generated X[: i + 1] and ends in state v. We can compute these values by the following

equations (called the Viterbi equations):

V [0, v] = Ivev,X0 , v ∈ V (2.3)

V [i, v] = max
u∈V

V [i− 1, u]au,vev,Xi
, v ∈ V, 0 < i < n (2.4)

B[i, v] = arg max
u∈V

V [i− 1, u]au,vev,Xi
, v ∈ V, 0 < i < n (2.5)

Note. Values B[0, v], v ∈ V are not needed in the algorithm.

Note the similarity of the Viterbi algorithm and the Forward algorithm. We can

obtain the Viterbi equations from the Forward equations by replacing summation with

maximization.

Variable V [n − 1, v] contains the probability of the most probable state path that

generated X and ends in state v. Therefore the state vmax = arg maxv∈V V [n− 1, v] is the

last state of the most probable state path. Variable B[n − 1, vmax] contains the previous

state of the most probable state path. By traversing back through back-links B we can

reconstruct the most probable state path in O(n) time.

Time complexity of the Viterbi algorithm is O(nm2) or O(n(m+t)) for sparse transition

matrices (m is the number of states and t is the number of transitions).
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2.1.4 The Forward-Backward Algorithm and the Posterior De-

coding

The Posterior decoding is another commonly used decoding method [38, 22]. In contrast to

the Viterbi algorithm, the Posterior decoding assigns a label individually to every symbol

of an input sequence and does not care about the overall structure of the reconstructed

state path.

Given sequence X, posterior decoding finds state path π with the following property:

∀0 ≤ i < n, πi = arg max
v∈V

Pr (πi = v | X,H)

where

Pr (πi = v | X,H) =
∑

π∈V n,πi=v

Pr (π | X,H)

Values Pr (πi = v | X,H) for every combination of position i and state v can be com-

puted using the Forward-Backward algorithm. In particular,

Pr (πi = v,X | H) = F [i, v]B[i, v] (2.6)

In this formula, value B[i, v] is defined as

B[i, v] =
∑

π∈V n−i,π0=v

n−i−1∏
j=1

eπj ,Xi+j
aπj−1,πj (2.7)

Note that the B[i, v] is the backward version of the Forward equations. We can compute

these values using the Backward algorithm, which is very similar to the Forward algorithm.

B[i, v] =

1 if i = n− 1∑
u∈V eπj ,Xi+1

av,uB[i+ 1, u] otherwise
(2.8)

The cell B[i, v] depends on the next positions in sequence X, while F [i, v] depends

on the previous positions in sequence X. Another difference is that B[i, v] does include

emission of X[i] while F [i, v] does.

We can compute values of F [i, v] and B[i, v] and find the state path in O(n(m + t))

time and O(nm) memory. Advantage of the posterior decoding is that it uses information

from many slightly suboptimal state paths as opposed to the Viterbi decoding, which uses

only one state path. One drawback is that it can reconstruct inadmissible state path.

Example is given below.
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w1

w2

v

e

1

Figure 2.2: Example of an HMM on which the Posterior decoding reconstructs inadmissible

state path. All unlabeled transitions are even (0.5). States w1, w2, and v emits 0 with

probability 1 and state e emits 1 with probability 1. Initial distribution is set to Iw1 =

Iw2 = 0.3, Iv = 0.4, Ie = 0.

State/Position X0 X1 X2

w1 0.3 0 0

w2 0.3 0.6 0

v 0.4 0.4 0

e 0 0 1

Table 2.1: Posterior probabilities for the sequence X and the HMM H from the figure 2.2.

Example 4. Consider an HMM from figure 2.2. Let X = 001. There are three state paths

that have non-zero probability: π1 = w1w2e, π2 = w2w1e, and π3 = vve. Their probabilities

are Pr (π1 | X,H) = Pr (π2 | X,H) = 0.3, and Pr (π3 | X,H) = 0.4 respectively. Posterior

probabilities are in table 2.1. As we can see, the maximal posterior probability for the first

position has state v. For the second position it is state w2 and for the third it is state e.

Therefore PD will reconstruct state path vw2e. However, this state path is inadmissible

since v → w2 is not a transition (it has zero probability).

2.1.5 Sequence Annotation

HMMs can be used for sequence annotation. By sequence annotation we mean assigning

“labels” to parts of the input sequence according to their meaning. So far we have described

two algorithms that can be used for sequence annotation: the Viterbi algorithm and
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the Posterior decoding. In both algorithms, the sequence annotation is the output from

the algorithm: the decoded state path. Now we give several examples of bioinformatics

problems where HMMs were previously used.

Gene finding: Parts of DNA sequences that are in cells translated into proteins are

called genes. In gene finding, we want to assign to every symbol of the input sequence a

gene label if it is inside a gene or a different label if it is not part of a gene [9, 15, 17, 47].

Additionally, we want to label sequence according to the internal structure of a gene: gene

starts with promoter followed by transcription start site and ends with transcription stop

site. Between transcription sites are alternating exons and introns [9, 15, 17, 47] (exons

encodes proteins, introns are cut out before translation of the exons to protein).

Transmembrane proteins: Some proteins in cells pass through a membrane from one

side to the another (usually they pass through the membrane several times). In trans-

membrane protein prediction, we want to assign labels to the symbols of the input protein

sequence to distinguish the parts of the sequence, that are on one side of the membrane

from the parts that are on the other side of membrane or inside the membrane [16].

Recombination prediction: Some organisms, for example HIV virus, evolve rapidly

and have been classified into several subtypes. Moreover, some viruses are mosaic combi-

nation of viruses from different subtypes. For example, beginning and end of the sequence

of a virus can be from one subtype and the middle of the sequence is from a different

subtype. In recombination prediction, we want to annotate the sequence to distinguish

between parts that originate in different subtypes [58, 67].

In general, we have a finite set of labels C = {c0, c1, . . . , cl−1} and we want to assign one

label to every symbol of the input sequence. We do it by assigning one label to every state

of an HMM. To predict the annotation of the input sequence X, we can find the most

probable state path that could generate X and annotate each symbol of the sequence X

according to the label assigned to the state, that generated that symbol. We can formalize

it in the following definition.

Definition 5. Let H = (Σ, V, I, e, a) be HMM and C = {c0, c1, . . . , cl−1} be the finite sets

of labels (or colors). Then the coloring function λ : V ∗ → C∗ is function that satisfies

following properties:
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1. λ(v) ∈ C for all v ∈ V .

2. λ(xy) = λ(x)λ(y) for all x, y ∈ V ∗.

Let X be a sequence generated by state path π. Then annotation Λ of sequence X is

Λ = λ(π).

In the sequence annotation problem, we do not know the state path π that generated

a given sequence. Our goal is to reconstruct the state path π or at least to give a good

approximation of the correct annotation Λ(π). Note that in general, several state paths

can have the same label.

Definition 6. Let H be an HMM , X be a sequence of length n, Λ be an annotation of

sequence X. The probability of annotation Λ given sequence X is

Pr (Λ | X,H) =
∑

π∈V n,λ(π)=Λ

Pr (π | X,H) (2.9)

Note that Pr (π | X,H) = Pr(π,X|H)
Pr(X|H)

.

Example 5. Let H be the HMM from the example 1. Let C = {I,G} and λ(R) = I and

λ(0) = λ(1) = G. Consider sequence X = AACT , which was generated by the state path

π = R011. The correct annotation of X is therefore λ(R011) = IGGG.

We can imagine H as very simple (and not very realistic) gene predictor. R represents

intergenic regions, state In represents introns and E represents exons. Label I represents

intergenic regions and label G represents regions that are genes.

Using this interpretation, the sequence AACT contains gene ACT . There are several

state paths consistent with this annotation: if AACT was generated by state path REEE

then substring EEE is exon; if it was generated by state path REIE then sequence contain

two exons and one intron in the middle. There are 23 different state paths π with λ(π) =

IGGG. All of those state path support “fact” that IGGG is the correct annotation of X.

Given a sequence X, the natural question is what is the best annotation of X. One

measure of quality of an annotation is its probability. The more probable is annotation,

the more likely X was generated with some state path with such annotation. We can

formulate this in following problem.

Definition 7. Given HMM H and sequence X, the most probable annotation problem

(MPA) is the problem of finding an annotation Λ of X that maximizes the probability

Pr (Λ | X,H)
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w1

0.25

w2

0.25

0.25 0.25

b

p

e

1
0.5

0.5

(1− p)

Figure 2.3: Example of an HMM with multiple path problem. States w1, w2, b emit symbol

0 with probability 1 and state e emits symbol 1 with probability 1. Initial distribution is

set to Iw1 = Iw2 = 1
4
, Ib = 0.5 and Ie = 0. Annotations of the states are represented by

the colors of the states (λ(w1) = λ(w2) and λ(b) = λ(e)).

Theorem 1. Most probable annotation problem is NP-hard.

This theorem was proved in 2002 by Lyngsø et al. and proof can be found in [51].

Their proof was done by a reduction from the maximum clique problem. For input graph

with n vertices they construct an HMM H with O(n2) states and sequence X of the length

n. The most probable annotation of X could be converted into maximum clique of input

graph. Their result was later strengthened by Brejová et al. in a sense that the problem

is hard even for some constant-sized HMMs [14].

Theorem 2. There exists an HMM such that it is NP-hard to find the most probable

annotation to a given input sequence X.

Same paper also contain polynomial Viterbi-like algorithm (Extended Viterbi Algo-

rithm) that finds most probable annotation for special classes of HMMs.

Traditional way to find sequence annotation is to use Viterbi algorithm: given sequence

X, we find the most probable state path π, and then compute λ(π). If the coloring function

λ is the identity function, this will find the most probable annotation. In general, the

Viterbi algorithm is not even a good approximation of the most probable annotation as

shown in the following example.

Example 6. Consider the HMM from Figure 2.3. Take sequence X = 0n1. Since state e

is the only state that can emit 1, every state path with non-zero probability ends in state

e. If a state path starts in state b then state path has form bne. Annotation of such a
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state path is Λ1 = λ(b)n+1 and probability of the annotation Λ1 (and also the state path

bne) is pn(1 − p). If a state path starts in the one of the white states, then a state path

has form w′0w
′
1 . . . w

′
n−1e where w′i is either w1 or w2. There are 2n such state paths and

each of them has probability 0.5 · 0.25n and annotation Λ2 = λ(w1)nλ(e). Probability of

annotation Λ2 is therefore 0.5n+1. If n is sufficiently high and 1
4
< p < 1

2
then the most

probable state path is bne which corresponds to the annotation Λ1. However, the most

probable annotation is Λ2 and its probability is exponentially higher then the probability of

Λ1. Therefore the Viterbi algorithm it not even a good approximation of the most probable

annotation problem.

We say that an HMM has the multiple path problem if it has an annotation that

corresponds to more than one state path.

Note that from the probabilistic nature of the HMMs, the most probable annotation

does not have to be the best approximation of the correct annotation. We will discuss

alternative decoding criteria in section 2.2.1. .

2.1.6 Training

Training is the process of estimating parameters of the probabilistic models. In this section

we briefly describe several approaches for estimating transition and emission distributions

of hidden Markov models.

We use the maximum likelihood approach. Let Hθ be an HMM where θ contains

emission and transition probabilities and let D be training data (the set of pairs (X, π)

where X is sequence and π is a state path). We want to find θ that maximizes the

likelihood of the data:

L(Hθ | D) = Pr (D | Hθ) =
∏

(X,π)∈D
Pr (X, π | Hθ)

Under this scenario, we can use the frequencies of occurred events as the parameters

of the model [22]. Let Au,v be the number of transitions from u to v in D. Let Eu,x be

the number times when state u emitted x in training data D. Then

au,v =
Au,v∑
w∈V Au,w

eu,x =
Eu,x∑
y∈Σ Ey,x

for all u, v ∈ V, x ∈ Σ. Parameters θ = (e, a) maximize the likelihood [22]. If case of

insufficient data, some events that have nonzero probability may not occur in the data

and therefore their probability will be estimated to zero. To avoid this behavior, we can
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use pseudo-counts [22]: we artificially add a constant kx to the counts of all events x that

we expect to have non-zero probability.

Training with Missing Data

In case that parts of the data are missing (for example a part of the state path or part of

the sequence) we treat the missing data as a random variables. We can use the following

algorithm.

1. Set the initial parameters θ0. Let i = 0

2. Using model Hθi , compute the expected number of occurrences of all events (the

values Au,v, Eu,x, u, v ∈ V, x ∈ Σ). Compute the new parameter set θi+1 from the

expected counts (using the method described above). Set i = i+ 1.

3. If stopping criterion was not reached, go to step two. Otherwise set the Hθi as the

final model.

This algorithm is called the Baum-Welch algorithm and it is an instance of the more general

Expectation maximization algorithm [22]. Sequence {L(Hθi | D)}i≥0 is non-decreasing

and converges to a local minimum [22]. As a stopping criterion, we can use the number of

iterations or the change in the likelihood. The expectations of the number of events can

be computed by a variant of the Forward-Backward algorithm.

In step 2 we can replace the Forward-Backward algorithm with the Viterbi algorithm.

In such case the Viterbi algorithm computes the most probable values for the missing

data and new model is estimated from this data. This approach is called the Viterbi

training. While the Viterbi training does not have to converge to local maxima, it is faster

in practice [22]. In practice we can use the Viterbi training for the estimation of good

starting parameters for the Baum-Welsch training [36].

2.1.7 Variants of Hidden Markov Models

In this section we describe several variants of hidden Markov models. Some of these

extensions have more expressive power but mostly they are introduced for simplifying

models. We will use all the described variants later in the thesis.

Silent states

One common variant of HMMs are HMMs with silent states. A silent state is a state that

does not emit any symbol. In the presence of silent states a state path can be longer than
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Figure 2.4: Upper model without silent states, lower model has silent states D1, . . . , D5

to simplify transitions between states Mi, 1 ≤ i ≤ 6.

the emitted sequence. However, the number of non-silent states in the state path has to

be equal to the sequence length. Silent states do not add any expressive power to HMMs,

but in some cases they allow to reduce the number of transitions by a factor m. This can

be used to decrease the number of parameters and speed up algorithms.

Example 7. Example of an HMM with silent states that reduces the number of transitions

by factor of Θ(m).

Consider following HMM H = (Σ, V, I, e, a) with m states M1, . . . ,Mm there is transi-

tions from Mi to Mj if and only if i < j. Example of such HMM is in Figure 2.4 and it

has in general (m−1)(m−2)
2

transitions.

To reduce number of transitions, we can create HMM H ′ = (Σ, V ′, I ′, e′, a′) by removing

all transitions and adding chain of delete states D1, . . . , Dm−1 with following transitions:

Mi →Mi+1,Mi → Di, Di]→Mi+1 for all 1 ≤ i < m and Di → Di+1 for all 1 ≤ i < m−1.

Structure of H ′ is in lower part of Figure 2.4. We have changed the number of transitions

to 4m − 5 at expense of additional m − 1 states. In case of sufficiently large m (at least

12), H ′ is smaller.

Problem is that for certain transition matrices a, it is not possible to find transition

matrix a′ such that the distributions of sequences of HMM H will be the same as the

distribution of sequences of HMM H ′. However, this type of reduction is used in often in

practice, for example in profile HMM [22] which are later explained in section 3.2.2.

The Viterbi algorithm, the Forward algorithm or Posterior decoding can be implemented
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for H ′ in O(nm) time while these algorithm will have time complexity O(nm2) for H.

There should not be the cycle from transitions between silent states, because it causes

problems with the order of computations of the Viterbi algorithm, the Forward algorithm

and others. For example if we have silent cycle out of states u and v, the recurrency for

computing the Forward algorithm contain a cycle: value F [i, v] depends on value F [i, u],

and value F [i, u] depends on value F [i, v]. Such cycles can be removed from an HMM

without affecting of the distribution of the sequence, and for every HMM with silent

states there is an HMM without silent states that defines same distribution of sequences

[60].

Start and Final state

Sometimes it is useful to have a special start state and a special final state. Start states

can be used instead of the initial distribution. State s is a start state, if Iv = 1. Conversely,

we can model arbitrary initial distribution by a silent start state s with as,v = Iv for all v.

In contrast, final states affect distribution of the model. An HMM defined in section

2.1.1 defines a distribution over the sequences of the same length. An HMM with final

states defines distribution over sequences of all lengths. We denote the set of final states

F ⊆ V . Transitions from final states are not defined (or set to zero). Emission distribution

might be defined (if not, final states are silent). Every state path has to end with a final

state, and final state can be only at the end of a state path.

With final states, HMM stops generating a sequence once it reaches some final state.

Therefore the sum of the probabilities of all sequences is 1.

Final states slightly affect algorithms. For example in the Forward algorithm we do

not have to change recurrences, only the final summation: probability of the sequence is∑
q∈F F [n − 1, q]. Similarly, in the Viterbi algorithm we have to find maxq∈F V [n − 1, q]

not maxq∈V V [n− 1, q]. The Backward algorithm is changed by setting B[n− 1, q] to zero

for all q /∈ F .

Advantage of start and final states is, that it is trivial to compose model together. For

example to chain two model, we just merge start state of one model with final states of

other model. For the purpose of model composition, it is a good practice if all models

have single start state and single final state.
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High Order HMMs

Sequence X and a state path π generated by an HMM can by considered as sequences

of random variables X0, X1, . . . , Xn−1 and π0, π1, . . . , πn−1. Random variables associated

with the state path have the Markov property [46], which means that πi depends only on

πi−1 or more precisely Pr (πi | π0, . . . , πi−1) = Pr (πi | πi−1). Similarly, Xi depends only on

πi, that is Pr (Xi | π0, . . . , πi, X0, . . . , Xi−1) = Pr (Xi | πi). However, sometimes the ability

to look back more than just one state or symbol is useful. We can extend the transition

and the emission probabilities to depend on several previous states/emissions.

We will briefly discuss k-th order HMMs where emissions are dependent on previous k

emissions. Specifically, Xi depends only on πi and Xi−k, . . . , Xi−1. Emission distribution

is therefore parametrized by state and previous emissions, which is a string of length at

most k (it can be shorter in the beginning of the sequence). eu,x,a is probability that state

u emits a under the condition that x is the suffix of the already emitted sequence. Let

X be sequence and π be state path. Then definition of probability that X and π were

generated by the model changes to

Pr (X, π | H) = Iπ0eπ,ε,X0

n−1∏
i=1

eπi,X[i−min{k,i}:i],Xi
aπi−1,πi

where ε is empty string. Other definitions will not change. We can use all algorithms that

we have described above, but we have incorporate these new emission distributions.

Generalized HMMs

Consider a state v with a self-transition, i.e. a state for which ev,v > 0. The number of

steps the model remains in this state is distributed according to the geometric distribution.

In particular, the probability that we will leave state v after exactly k steps is ek−1
v,v (1−ev,v).

For some applications this behaviour not appropriate [17, 53].

A generalized hidden Markov model (GHMM) (or hidden semi-Markov model) has

with every state v associated a duration distribution dv. When a GHMM enters state v,

it first samples length l according to the distribution dv. Afterwards it generates string x

of length l. To specify the probability ev,x, each symbol of generated string x is usually

generated independently, which means that ev,x =
∏|x|−1

i=0 ev,x[i]. Output of a GHMM are

three sequences: state path π = π0π1 . . . πl−1, duration sequence D = D0D1 . . . Dl−1 and

sequence X = X0X1 . . . Xn−1. The state path and the duration sequence has same length
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and
|D|−1∑
i=0

Di = |X|

.

Manipulation with GHMMs is more complicated and technical. Computing this prob-

ability of sequence X can be done by a variant of the Forward algorithm. Finding π and

D maximizing the probability Pr (π,D,X | H) can be found by the variant of the Viterbi

algorithm. However, time complexity of those algorithm on GHMM is higher because for

computing probability V [i, v] (the probability of the most probable state path ending in

state v at position i) we have to consider all possible emission lengths of state v, which is

i. The Viterbi algorithm and the Forward algorithm run in O(n2m2) time.

2.2 Other Decoding Methods for HMMs

In the previous sections we have described two decoding algorithms: the Viterbi algo-

rithm that finds the most probable state path, and the Posterior decoding that for every

symbol of the sequence assigns the state that generated such symbol with maximum prob-

ability. We have shown that in some cases these algorithms can recover bad annotation.

However, maximizing the most probable annotation is NP-hard and therefore it is not

tractable. Additionally, the most probable annotation does not necessary have to be the

best approximation of the true annotation.

2.2.1 Highest Expected Gain

In this section we will describe a framework for studying decoding algorithms in a more

systematic way. This framework was introduced originally for conditional random fields

[31]. To use this framework, we need to define a gain function, which will express similarity

(gain) between two annotations or state paths. The higher the gain, the more similar those

two annotations are. Gain function is domain specific and can penalize the differences in

the domain specific features of the state paths. Gain function is not a similarity in the

mathematical sense; it does not even have to be symmetric.

Our goal is to find an annotation that is as similar as possible to the correct annotation.

Problem is that we do not know the correct annotation. Our only assumption is that the

input sequence came from the model and therefore we will treat the correct annotation as

a random variable, with probability distribution defined by the HMM and the observed
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sequence. We will seek for annotation that maximizes the highest expected gain [58, 60].

Definition 8. Let H be an HMM and L be the set of all annotations. Any function

f : L× L→ R is an annotation gain function.

Let Π be the set of all state paths. Any function f : Π×Π→ R is a path gain functions.

Note. We will use term gain function instead of annotation/path gain function if it is

clear from the context.

Machine learning literature often uses a related term of loss function [44]. Lower loss

mean more similar annotations. Therefore instead of maximizing the expected gain we

can therefore equivalently minimize the expected loss.

Definition 9. Let H be an HMM, f be a gain function, X be a sequence generated by H

and Λ be an annotation of X. Then the expected gain of annotation Λ is

EΛX |X,H [f(ΛX ,Λ)] =
∑
ΛX

f(ΛX ,Λ) Pr (ΛX | X,H) (2.10)

Let π be a state path. Then the expected gain of state path π is

EπX |X,H [f(πX , π)] =
∑
πX

f(πX , π) Pr (πX | X,H) (2.11)

Once we have HMM H, gain function f and the observed sequence X, we try to find

the annotation/state path maximizing the expected gain.

Λ = arg max
Λ

EΛX |X,H [f (Λx,Λ)] (2.12)

We can express the classical decoding algorithms within this framework to show its

universality. We will define two gain functions: fA which corresponds to the Viterbi

algorithm and the most probable annotation problem and fp which corresponds to the

Posterior decoding.

The gain function fA is simply identity function (definition for state paths is analogous).

fA(Λ,Λ′) =

1 if Λ = Λ′

0 if Λ 6= Λ′
(2.13)

For this gain function EΛX
[fA(ΛX ,Λ)] = Pr (Λ | X,H) and therefore maximizing expected

gain is equivalent to the most probable annotation problem. Similarly if we define gain as
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the identity function over state paths, we obtain the most probable state path problem,

which can by solved by the Viterbi algorithm.

Therefore for given sequence finding annotation with highest expected gain is NP-hard

if gain function is part of the input. However, for specific gain functions we can maximize

expected gain in polynomial time.

The gain function fP compares two annotations of the same length position by position

and assigns score 1 to every position where they are equal.

fP (Λ,Λ′) =


0 if |Λ| 6= |Λ′|

∑|Λ|−1
i=0

1 if Λi = Λ′i

0 otherwise

(2.14)

Similarly, we can define gain function fP for state paths. In such case maximizing the

expected gain is equivalent to the Posterior decoding. Highest expected gain framework

give us another interpretation of the scoring function of the Posterior decoding. Let ΛX

have same length as Λ. From linearity of the expectation we have

EΛX
[fP (ΛX ,Λ)] =

|Λ|−1∑
i=0

EΛX [i][fP (ΛX [i],Λ[i])]

We say that the i-th label of Λ is correctly predicted if fP (ΛX [i],Λ[i]) = 1 (which is true

if ΛX [i] = Λ[i]). Therefore by maximizing fP we search for an annotation/state path that

maximizes the expected number of correctly predicted labels/states.

2.2.2 Maximum Boundary Accuracy Decoding

Maximum boundary accuracy decoding (MBAD) is used in the gene-finder CONTRAST

[31]. It was proposed for conditional random fields (CRF), but since CRF are similar to

HMM, we define it in the terms of HMMs.

This decoding method maximize the weighted difference between the expected number

of true-positive and false-positive coding region boundaries.

Definition 10. Let Λ = Λ0Λ1 . . .Λn−1 be an annotation. A boundary of annotation Λ is

every position i where Λi−1 6= Λi.

Maximum boundary accuracy decoding has one parameter γ. Let BΛ′ be the set of all

boundaries in Λ′. Then MBAD maximizes the following function:

f(Λ,Λ′) =
∑
i∈BΛ′

g(Λ,Λ′, i) (2.15)
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where

g(Λ,Λ′, i) =

1 if Λi−1 = Λ′i−1 and Λi = Λ′i

−γ otherwise
(2.16)

Algorithm for optimizing this gain function is similar to the posterior decoding and

details of implementation for HMMs can be found in [60]. The time complexity of the

algorithm is O(nc2 +nm2) where n is the length of the sequence, m is the number of states

and c is the number of labels.

Intuition behind gain function f is following. Like with the Posterior decoding, we

want to maximize the number of correctly predicted boundaries (the Posterior decoding

maximizes the number of correctly predicted states). The difference is in the γ. If γ = 0

then almost every possible boundary have positive gain and therefore the reconstructed

annotation will contain many false-positive boundaries with very small expected gain. Pos-

itive γ cause that boundaries with small posterior probability will have negative expected

gain and therefore it is less likely that they appear in the optimal annotation.

2.2.3 Highest Expected Reward Decoding

The Highest Expected Reward Decoding (HERD) is the extension of maximum boundary

accuracy decoding. We have developed this decoding for prediction of recombination of

HIV virus. Further details can be found in [58, 60] and in Chapter 3, where we extend

HERD to reduce the amount of systematic errors.

Genome of some viruses (for example HIV or HCV virus) can be divided into several

subtypes. Moreover, it is possible that virus is mosaic recombination of viruses from

different subtypes (we call this virus recombinant). In the problem of recombination

detection we try to decide if given sequenceX is recombinant sequence. IfX is recombinant

then we want to find original subtypes of every part of a sequence X. Recombinations

can be modeled by jumping HMMs [65] which are HMM with topology specific to this

domain. In this application is hard to find exact recombination point since annotations

with slightly shifted boundaries has similar probabilities. Therefore we have defined the

following gain function.

We say that boundary on position i is correctly predicted, if it satisfy following condi-

tions.

1. There is boundary between same labels in the correct annotation on position j and

j is within distance W from i (|i− j| ≤ W ).
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Figure 2.5: Triangles corresponds to the boundaries. Vertical lines corresponds to the

windows of size 2W , or smaller to avoid overlaps. Windows around boundaries represents

regions where we search for the corresponding boundaries in the correct annotation. The

first and the fourth boundary are correctly predicted because in the correct annotation is

boundary between same colors within distance W = 2. This picture was taken from [60].

2. There is no other boundary between i and j.

Boundaries are illustrated in figure 2.5.

Let x be the number of correctly predicted boundaries and y be the number of other

boundaries in the proposed annotation. Then f(Λ,Λ′) = x−γy where γ is defined constant.

If W = 1 then this is equivalent to the Maximum Boundary Accuracy Decoding. Intuition

behind this gain function is that we want to amplify the expected gain for the boundary

if there are many annotations with similar boundary.

Optimizing this criteria can be done in O(|X|W |C||T |+ n|C|2W 2) time and

O(
√
|X||C||V |+W |C||V |+ n|C|2) memory. Experimental evaluation, optimization algo-

rithm and implementation details can be found in [58, 60].

2.2.4 Distance Measures on Annotations

Another approach to solve similar problem was proposed by Brown, Truszkowski in [16].

Originally their implementation was aimed at prediction of boundaries in transmembrane

proteins [16], but later they successfully adapted their algorithm to jumping HMMs [67].

Their approach is trying to solve same problem as HERD: the exact boundaries of an

annotations are hard to find and grouping similar annotation is useful. At first we give

few definitions.

Definition 11. Let d be any distance measure defined on annotations. Ball of radius r

around annotation Λ is

Bd(Λ, r) = {Λ′ | d(Λ,Λ′) ≤ r}

Definition 12. Let Λ = Λ0Λ1 . . .Λn−1 be an annotations. Footprint of Λ is maximal

subsequence of Λ that does not contain two identical consecutive labels.
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Definition 13. Let bi(Λ) be i-th boundary of Λ and b(Λ) be the number of boundaries in

Λ. Border shift distance db is

db(Λ,Λ
′) =

∞ if Λ and Λ′ have different footprint

max
b(Λ)−1
i=0 di(Λ)− di(Λ′) otherwise

and border shift sum distance ds is

ds(Λ,Λ
′) =

∞ if Λ and Λ′ have different footprint∑b(Λ)−1
i=0 di(Λ)− di(Λ′) otherwise

To predict the recombinations of sequences or the annotations of the transmembrane

proteins Brown, Truszkowski maximize following function

fd(Λ,Λ
′) =

1 ifΛ ∈ Bd(Λ
′, r)

0 otherwise

As distance d, they have considered Hamming distance, Border shift distance and

Border shift sum distance [16]. If we set r = 0 then fd is same as fA and therefore finding

annotation that maximize fd is NP-hard. Additionally, if r ≥ n then the problem is

equivalent to finding the most probable footprint, and finding the most probable footprint

is NP-hard, which we show in the Chapter 3.

Maximizing fd is NP-hard but finding the annotation with footprint F and maximal

expected gain can be done in polynomial time [16]. Therefore Brown and Truszkowski

used following heuristic algorithm: At first sample the state paths to get the most prob-

able footprint F with high probability, then use the polynomial algorithm for finding the

annotation with footprint F and the highest expected gain.

Gain function fd is similar to fA: the annotation is considered correct if it is same/very

similar to the correct one. MBAD, HERD and the Posterior decoding do not care about

overall structure of annotation, they construct annotation from highly probable features.

However, decoding function fd take in to account overall structure of the sequence.

2.3 Sequence Alignments

In this section we introduce the sequence alignment problem, basic algorithms for com-

puting optimal alignments of two sequences.

Parts of two sequences are homologous, if they have evolved from same sequence in

their common ancestor. Aim of sequence alignment is to identify homologous sequences.
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Sequences can be modified by different evolution events: mutation of a residue into another

residue, deletion of a part of the sequence, insertion of residues into the sequence. There

are also large-scale rearrangement events like duplications (some substring is duplicated

and copied into other part of the sequence), inversions (some substring is reversed) or

translocations in which part of the sequence change position. We will ignore them in this

thesis, as they cannot be represented by traditional alignments. An alignment is a data

structure that represents comparisons of two or more sequences. We obtain an alignment

of k sequences by inserting dashes into individual sequences so that they have the same

length. We can represent an alignment as a matrix or a table. Each row of the alignment

is a sequence with inserted dashes, and each column is a list of residues from all rows at

the same position.

An alignment has the following biological meaning: homologous residues (those that

have evolved from a common ancestor) are in same column. Dashes represents either the

parts of sequence that were deleted during evolution (deletions) or positions where some

residues were inserted into some other sequence (insertions). In an alignment it is not

possible to distinguish between insertions and deletions – we cannot tell if something was

inserted into one sequence or if there was deletion in the other sequences. Therefore we

will refer to insertions and deletions as to indels .

Example 8. Consider the following evolutionary history of hypothetical DNA sequences

of two living organisms X and Y . There was a ancestral sequence P which evolved into

X ′ and Y ′ and after that X ′ evolved into X and Y ′ evolves into Y . These sequences are

shown bellow:

X: C C G C G A C C T T G C A C C A

X’: C C G T T G C A G C A

P: A C T G G T C G C T G A G C T A G C A

Y’: T C T G G C C G C T A G C A

Y: T C T A G C C G A T A G C A

During evolution from P to X ′, four events occurred: deletion of sequences “TG” and

“TGAGCT”, and mutations of two bases. During evolution from X ′ to X, one base was

changed, and sequence “CGACC” was inserted. Similarly, during evolution from P to Y ′,

two bases mutated, and two sequences were deleted. During evolution from Y ′ to Y one

base mutated, and sequence “CGACC” was inserted.

From evolutionary history described above, we can create an alignment of sequences X
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and Y by removing ancestral sequences, and removing columns that contain only gaps and

replacing gaps with dashes (gap symbols).

X: C C - - G C G A C C T T G C - - - A C C A

Y: T C T A G - - - - - C C - - G A T A G C A

In this alignment, symbols that are in the same column are truly homologous (they evolved

from the same symbol in P ). As you can see, homologous symbols do not have to be equal.

There is only one alignment that reflects the true evolutionary history. Our goal is to

find that alignment, or at least alignment, that is as similar as possible. The alignment

shown above is a global alignment because it is an alignment of whole sequences X and

Y . A local alignment is an alignment of parts of sequences: a local alignment of sequences

X and Y is a global alignment of strings X̄ and Ȳ where X̄ is a substring of X and Ȳ

is a substring of Y . Since global alignments do not consider rearrangement events1, local

alignments are useful to align sequence parts that did not underwent such events. We will

mostly consider global alignments, but most of the methods can be extended also to local

alignments.

In this section we will review basic methods for constructing alignments. We will

discuss basic scoring schemes and algorithms that find optimal alignment under these

schemes.

2.3.1 Scoring Schemes

Since we want to construct alignments that have biological meaning, we have to develop a

method for assessing the quality of an alignment. One way of doing so is to define a scoring

scheme, which assigns to every alignment a real number (called score). The alignments

similar to the true alignment should have higher score than the alignments that differ from

the true alignment. Once we have a scoring scheme, we will search for the alignment of

the input sequences with the highest score.

Typical scoring schemes used in practice score each column of an alignment without

gaps independently. Gaps are scored by a penalty that depends on the length of the gap

(the number of consecutive dashes). Score of an entire alignment is the sum of the scores

of all ungapped columns plus the sum of the scores of all gaps.

In particular we will assume that all sequences are from a finite alphabet Σ. Specifically,

the DNA alphabet contain 4 symbols A,C,G, T , and protein alphabet contains 20 codes

1Duplication, reversal or translocation.
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of amino acids. We will score a column containing residues a and b by S[a, b] where S

is a matrix of size |Σ| × |Σ| called substitution matrix . A gap of length x has a score

g + dx, where g is the gap opening penalty and d is the gap extension penalty. Both

are usually negative, since we want alignments that contains many columns with same

or similar symbols. Positive gap penalty causes tendency towards alignments with many

gaps, which reduce the number of aligned residues. We call this gap scoring scheme an

affine gap model [22].

Matrices and gap penalties, used as scoring schemes, are usually derived from frequen-

cies of the substitutions and indels in alignments created manually by biologists. Example

of such matrices are PAM or BLOSUM matrices[22]. Additionally, scoring matrices can

be also derived from theoretical models of evolution, one such example is Jukes-Cantor

model[22].

2.3.2 Needleman-Wunsch Algorithm

The alignment with the highest score can be found by the Needleman-Wunsch algorithm

[22]. This algorithm uses an arbitrary score table S, affine gap model with gap penalty d

and gap opening penalty g = 0 (if g = 0 then this model is also called linear gap model).

To align sequences X and Y of length n and m respectively, we define matrix M of size

n × m. Element M [i, j] will be the score of the best alignment of sequences X[: i] and

Y [: j]. We can compute M [i, j] by the following equations:

M [−1,−1] = 0 (2.17)

M [−1, i] = i · d, 0 < i < m (2.18)

M [i,−1] = i · d, 0 < i < n (2.19)

M [i, j] = max


M [i− 1, j − 1] + S(Xi, Xj)

M [i, j − 1] + d

M [i− 1, j] + d

, 0 ≤ i < n, 0 ≤ j < m (2.20)

By computing M [n − 1,m − 1], we have the score of the optimal (highest-scoring)

alignment of X and Y [22].

To cope with gap opening penalty, we have to slightly change the algorithm. We

define two other matrices MX and MY of same size as M . Element MX [i, j] will contain

the highest score of an alignment of sequences X[: i] and Y [: j] that ends with a gap in



CHAPTER 2. HIDDEN MARKOV MODELS AND THEIR DECODING 30

sequence X. MY is analogous. Values of these matrices can be computed by the following

recurrences.

M [−1,−1] = 0 (2.21)

M [−1, i] = MX [−1, i] = i · d+ g, 0 < i < m (2.22)

M [i,−1] = MY [i,−1] = i · d+ g, 0 < i < n (2.23)

MX [i,−1] = −∞, 0 ≤ i < n (2.24)

MY [−1, i] = −∞, 0 ≤ i < m (2.25)

M [i, j] = max


M [i− 1, j − 1] + S(Xi, Xj)

MX [i, j]

MY [i, j]

, 0 ≤ i < n, 0 ≤ j < m (2.26)

MX [i, j] = max

M [i− 1, j] + g + d

MX [i− 1, j] + d
, 0 ≤ i < n, 0 ≤ j < m (2.27)

MY [i, j] = max

M [i, j − 1] + g + d

MY [i, j − 1] + d
, 0 ≤ i < n, 0 ≤ j < m (2.28)

To compute the value of M [i, j] (and optionally MX and MY ), these equations use

only values from neighbouring cells which have at least one coordinate smaller. Therefore

we can order computation of rows of M so that when we compute value M [i, j], the

necessary values are already computed. Let F be the function, that takes as input matrix

M and coordinates (i, j) and computes M [i, j] according equation 2.20. Let F ′ be the

same function as F , but with max replaced with arg max. Function F ′(M, (i, j)) will thus

return which cell was used in computation of F (M, (i, j)). Note that if g is not zero, then

F would take as input the matrices M,MX , and MY and compute M [i, j],MX [i, j], and

MY [i, j] according equations 2.26-2.28

The Needleman-Wunsch algorithm can be implemented by the following code. For

simplicity we show only computation of matrix M .

1 I n i t i a l i z e M[ i ,−1] and M[−1 , i ]

2 for i in 0 . . . n−1

3 for j in 0 . . .m−1

4 M[ i , j ] = F(M, ( i , j ) )

5 ( i , j ) = (n−1,m−1)



CHAPTER 2. HIDDEN MARKOV MODELS AND THEIR DECODING 31

6 while i > 0 or j > 0

7 ( i ’ , j ’ ) = F ’ (M, ( i , j ) )

8 ( a , b ) = (X[ i ] ,Y[ j ] )

9 i f i ’ = i then a = ’− ’

10 i f j ’ = j then b = ’− ’

11 p r i n t column o f al ignment (a , b)

12 ( i , j ) = ( i ’ , j ’ )

Lines 2-5 fills matrix M and lines 6-12 implement the back-tracing procedure. Time

complexity of this algorithm is O(mn) and memory requirements are O(mn) since we

keep matrix M in memory. The algorithm for affine gap model with g 6= 0 has the same

complexity.

Note that for computing i-th row of matrix M we need only values from row i and i−1.

Therefore if we want to know just the score of the optimal alignment, we can compute it

in O(m+ n) memory: after computing of row i, we can discard row i− 1. However if we

want find the optimal alignment, we have to keep matrix M in the memory or use one of

the techniques that are described in Section 2.5.

2.4 Sequence Alignments with Pair HMM

In this section we describe pair hidden Markov models (pHMM), which are commonly

used for studying relationships between different sequences, relation between Needleman-

Wunsch and pHMM, three standard decoding methods for decoding pHMMs, and survey

of literature for examples of using pHMM for sequence alignments.

2.4.1 Pair Hidden Markov Models

Pair hidden Markov models are HMMs that generate output on two tapes, resulting in

two emitted sequences. Every state can in one step generate one symbol in each sequence,

or one symbol in one of the sequences or no symbols at all. Formally, every state generates

a pair of strings (a, b), where a and b are of length at most one. Moreover, every state

generate strings of constant length (for example it always generates one symbol on each

tape). Formal definition of pair HMMs is given below. We can use pHMM to define

probabilistic scoring schemes for alignments.

In particular, symbols generated by the same state are considered homologous (are in
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same column of an alignment). Symbols that are generated by a state that generates only

in one sequence are aligned to a gap.

Definition 14. A pair hidden Markov model (pHMM) is a tuple H = (Σ, V, I, d, e, a),

where Σ is a finite alphabet, V is a finite set of states, I is an initial distribution and a is

a transition matrix, all defined as in definition 2. dxv and dyv are state durations of state

v in sequence x and y respectively. For all v ∈ V , dxv ∈ {0, 1} and dyv ∈ {0, 1}. Emission

probability matrix e is a |V | × (|Σ ∪ {ε}|)2 matrix with the following properties:

1. ∀v ∈ V, ∀σ1, σ2 ∈ Σ ∪ {ε} : 0 ≤ ev,(σ1,σ2) ≤ 1

2. ∀v ∈ V :
∑

σ1,σ2∈Σ∪{ε} ev,(σ1,σ2) = 1

3. For all states v if e(v,σ1,σ2) > 0 then dxv = |σ1| and dyv = |σ2|

Definition of a state path is the same as for HMMs with silent states. Restriction on

the state durations (condition 3 in the definition) ensures that given a state path π and

emitted sequence X and Y , for every symbol from X and Y we can assign a state from

π that generated that symbol. However, given only two sequences X and Y and no state

path, it is not possible to determine which symbols of the two sequences were generated

together.

Definition 15. Let π = π0 . . . πl be a state path. Then the cumulative duration times are

Dx
i (π) =

∑i
j=0 d

x
πj

and Dy
i (π) =

∑i
j=0 = dyπj . Additionally, Dx

−1(π) = Dy
−1(π) = 0. If

it will be clear from the context which state path we are using, we will write Dx
i and Dy

i

instead of Dx
i (π) and Dy

i (π).

Given sequences X and Y and state path π, we can tell which symbols were generated

by which states. Since every state v generates exactly dxv and dyv symbols in X and Y

respectively, state πi generated pair (X[Dx
i−1 : Dx

i ], Y [Dy
i−1 : Dy

i ]) States π0, π1, . . . πi−1

generated first Dx
i−1 symbols in X and first Dy

i−1 symbols in Y .

Example 9. In the figure 2.6 is pair hidden Markov model modeling sequence alignment

with affine gap model. State M is called match state and generates pair of aligned residues

and corresponds to matrix M from the sequence alignment algorithm. Insert states IX

and IY represents gaps, because they generate residues in only one sequence. Insert states

correspond to matrices MX and MY from the sequence alignment algorithm from section

2.3.2.

Note that a state path uniquely define an annotation (match state corresponds to match

columns, insert states represent gap). Finding the most probable state path for this HMM

is equivalent to the Needleman-Wunsch algorithm with affine gap model [22].
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M

Σ× Σ

IX

Σ× {−}

IY

{−} × Σ

eM,M

eI,IeI,I

Figure 2.6: Pair hidden Markov model for pairwise alignment. It has two transitions

parameters eM,M and eI,I , since we set eI,M = 1− eI,I and eM,I = 1
2
− 1

2
eM,M . Match state

M generates aligned pair of symbols and states IX and IY generates symbols only in X

or Y respectively. Initial distribution is uniform.

Definition 16. Let H = (Σ, V, I, d, e, a) be a pHMM, X and Y be arbitrary sequences

over Σ and π be a state path. The probability that sequences X and Y were generated by

a model H with state path π is

Pr (X, Y, π | H) = Iπ0

 |π|∏
i=1

aπi−1,πi

 |π|∏
i=0

eπi,(X[Dx
i−1:Dx

i ],Y [Dy
i−1:Dy

i ])

 (2.29)

If Dx
|π|−1 6= |X| or Dy

|π|−1 6= |Y | then Pr (X, Y, π | H) = 0.

Similarly as for HMMs, we can define the probability that sequences X and Y were

generated by the model H.

Definition 17. Let H = (Σ, V, I, e, a) be a pHMM and X and Y be arbitrary sequences

over Σ. Then probability that sequences X and Y were generated together by model H is

Pr (X, Y | H) =
∑
π

Pr (X, Y, π | H) (2.30)

2.4.2 Viterbi Algorithm for Pair HMMs

Algorithms operating over pHMMs are similar to those for the regular HMMs, but in

general they have higher computational complexity because they combine computation

over model states with sequence alignment. In this section, we describe two-dimensional

version of the Viterbi algorithm, other algorithms are analogous.
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The Viterbi algorithm for HMMs computes variables V [i, v] and B[i, v]. Every variable

is parametrized by a position in the sequence and a state. For two-dimensional version,

we will add position in the second sequence.

Let V [i, j, v] be the probability of the most probable state path that generated X[: i+1]

and Y [: j+1] and ended in state v. Clearly, maxv∈V V [|X|−1, |Y |−1, v] is the probability

of the most probable state path, that generated X and Y . Let B[i, j, v] be the last but

one state of the most probable state path that generated X[: i + 1] and Y [: j + 1] and

ended in state v. To make it easier, we expect that all states but one are not silent – they

emit symbol in at least one sequence. Let n = |X| and m = |Y |.

V [−1,−1, v] = Iv, v ∈ V (2.31)

V [−2, i, v] = V [j,−2, v] = 0,∀v ∈ V,−1 ≤ i < n,−1 ≤ j < m (2.32)

V [i, j, v] = max
u∈V

V [i− dxv , j − dyv, u]au,vev,(X[i−dxv :i],Y [j−dyv :j]) (2.33)

B[i, j, v] = arg max
u∈V

V [i− dxv , j − dyv, u]au,vev,(X[i−dxv :i],Y [j−dyv :j]) (2.34)

In equations 2.33 and 2.34 boundaries for i and j are −1 ≤ i < n,−1 ≤ j < m and

i > −1 or j > −1.

By finding the last state v of the most probable state path and back-tracing from

B[n− 1,m− 1, v], we can reconstruct the most probable state path. Time complexity of

this algorithm is O(nm|V |2) (or O(nm(|V |+ t) where t is the number of transitions of H)

and memory requirements are O(nm|V |). However, we can use various tricks to decrease

memory requirements of such algorithms, as shown in the section 2.5.

The Forward algorithm for GpHMM can be obtained by replacing maximum with

addition for computation of V [i, j, v] term. The table B is irrelevant for the Forward

algorithm. The Backward algorithm and Forward-Backward algorithm are analogous to

the Forward algorithm and their versions for HMM.

2.4.3 Generalized Pair HMMs

A generalized pair HMM (GpHMM) (or pair hidden semi-Markov process) are combination

of HMM and GHMM. Every state generates two duration lengths dx and dy from some

joint distribution associated with the current state dv(d
x, dy) and after that it generates

two strings x′ and y′ with lengths dx and dy according to the joint distribution ev,(x′,y′).

This probability distribution can by defined for example by pair hidden Markov model. As
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with GHMMs and unlike pHMMs, the state path is not sufficient to determine which parts

of the sequences were generated by which state, we also need two sequences of durations.

The Viterbi equations for the GpHMM are following:

V [−1,−1, s] = 1 (2.35)

V [−2, i, v] = V [j,−2, v] = 0,∀v ∈ V,−1 ≤ i < n,−1 ≤ j < m (2.36)

V [i, j, v] = max
u∈V,dx≤i,dy≤j

V [i− dx, j − dy, u]au,vev,(X[i−dx:i],Y [j−dy :j])dv(d
x, dy) (2.37)

B[i, j, v] = arg max
u∈V,dx≤i,dy≤j

V [i− dx, j − dy, u]au,vev,(X[i−dx:i],Y [j−dy :j])dv(d
x, dy) (2.38)

In equations 2.37 and 2.38 boundaries for i and j are −1 ≤ i < n,−1 ≤ j < m and

i > −1 or j > −1. Additionally, in all equations dx and dy can be also bounded by D, the

maximum duration length.

Drawback of GpHMM is increased computational complexity. Assume that the emis-

sion probability can be computed in f(n′,m′) time, where n′ and m′ are the lengths of the

emitted sequences. Then the time complexity of the Viterbi algorithm isO(nm|E|D2f(D,D))

where E is the set of all transitions in a pHMM and D is the maximum duration length

[56]. In the case there is not maximum duration length, the time complexity of the Viterbi

algorithm is O(n2m2|E|f(n,m)). For example, if the emission probability is computed by

another pHMM with t transitions, then f(n′,m′) = O(n′m′t) and the time complexity of

the Viterbi algorithm is O(n3m3|E|t) or O(nm|E|D4t). GpHMMs were successfully used

for gene-finding [2, 47, 54, 56].

The Forward algorithm, and the Forward-Backward algorithm are very similar to their

versions for pHMM. We will discuss some implementation details for these algorithms in

Sections 4.4 and 4.5.

2.4.4 Decoding Methods

In this section we review three decoding methods that were used in literature to reconstruct

pairwise alignments: the Viterbi algorithm, the Posterior decoding and the Marginalized

posterior decoding.

Let H be an pHMM (or GpHMM) and X and Y be the sequences that we want to

align. The probability Pr (X, Y | H) is the probability that X and Y were generated in

model H. From state path π in a pHMM we can reconstruct a unique alignment Aπ.

The model defines the probability that Aπ is the true alignment of X and Y under the
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assumption, that X and Y were generated by model H:

Pr (π | X, Y,H) =
Pr (π,X, Y | H)

Pr (X, Y | H)

We can use Pr (π | X, Y,H) as a score of alignment Aπ. Path π with the highest score can

be found by a two-dimensional version of the Viterbi algorithm (section 2.4.2). Alignment

Aπ can be constructed from X, Y and π in a straightforward way: for every match state

from π that generated X[i] and Y [j], we add column (X[i], Y [j]). For every indel state

in π that generates X[i], we add to alignment column (X[i],′−′). An indel states for the

second sequences are analogous. The two-dimensional Viterbi algorithm is used in most

of the software tools we will discuss later.

Alternatively, we can decode pHMMs using a variant of Posterior decoding. Two vari-

ants of the Posterior decoding for the pHMMs were described in the literature: the Pos-

terior decoding and the Marginal posterior decoding [50]. Let Pr (X[i] ∼ Y [j] | X, Y,H)

be the probability that X[i] and Y [i] are aligned: the sum of the probabilities of all align-

ments that contain column (X[i], Y [i]). Let Pr (X[i] ∼ −j | X, Y,H) be the probability

that X[i] is aligned to a gap that is in Y between positions j and j + 1. Similarly let

Pr (−i ∼ Y [j] | X, Y,H) be the probability that Y [j] is aligned to a gap in X between

positions i and i + 1. Posterior probabilities defined above can be computed by the two-

dimensional version of the Forward-Backward algorithm.

Let alignment A of sequences X and Y have length n and consists of columns a0, a1, . . . ,

an−1. Each column is a pair ai = (xi, yi) where xi and yi are symbols from Σ∪{−} 2. Let

dxA(i) be the number of non-gap symbols in x0, x1, . . . xi, let dyA(i) be the number of non-

gap symbols in y0, y1, . . . , yi and define dxA(−1) = dyA(−1) = 0. In this notation, A[0 : i] is

an alignment of X[: dxA(i)] and Y [: dyA(i)]. Then the posterior probability of an alignment

column ai is

P (ai) =


Pr (xi ∼ yi | X, Y,H) if xi and yi are not gap symbols

Pr
(
xi ∼ −dyA(i)−1 | X, Y,H

)
if yi is gap symbol and xi not

Pr
(
−dxA(i)−1 ∼ yi | X, Y,H

)
if xi is gap symbol and yi not

The Posterior decoding (PD) finds the alignment A that maximizes the product of the

posterior probabilities of its columns:

A = arg max
A′∈Al(X,Y )

∏
0≤i<|A′|

P (a′i)

2Note that x and y cannot be both gap symbols.
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where Al(X, Y ) denote the set of all alignments of sequences X and Y . Similarly we

can define Marginalized posterior decoding (MPD): the marginalized posterior probability

P ′(ai) is defined as follows.

P ′(ai) =


P (ai) if xi and yi are not gap symbols∑

0≤j<|Y | Pr (xi ∼ −j | X, Y,H) if yi is gap symbol and xi not∑
0≤j<|X| Pr (−j ∼ yi | X, Y,H) if xi is gap symbol and yi not

The MPD finds an alignment A that maximizes the product of the marginalized posterior

probability:

A = arg max
A∈Al(X,Y )

∏
0≤i<|A′|)

P ′(a′i)

The Posterior decoding and the Marginalized posterior decoding were used by Lunter et

al. and both produced better alignments than alignments found by the Viterbi algorithm

(more details in section 2.4.8). Once the posterior probabilities of all possible columns

of an alignments are computed (in O(|X||Y |k2) time where k is the number of states of

pHMM), we can find the alignment that maximizes the desired function in O(|X||Y |) time

by dynamic programming similar to the Needleman-Wunsch algorithm. The difference is

that we use the posterior probabilities instead of the substitution scores and gap scores.

The recurrence for PD is following:

M [−1, i] = 0, 0 ≤ i < m (2.39)

M [i,−1] = 0, 0 < i < n (2.40)

M [i, j] = max


M [i− 1, j − 1] + P ((X[i], Y [j]))

M [i, j − 1] + P ((−i, Y [j]))

M [i− 1, j] + P ((X[i],−j))

, 0 ≤ i < n, 0 ≤ j < m (2.41)

The recurrence for the MPD is analogous and the rest of the algorithm (finding the align-

ment) is done exactly as in the Needleman-Wunsch algorithm (see Section 2.3.2). The

time complexity of the PD and MPD is O(|X||Y |k2) [50].

2.4.5 Pair Hidden Markov Models with Gene Structure

In this section we describe several pair hidden Markov models (or generalized pair hidden

Markov models) with gene structures incorporated into their topology. These models were

used either to align coding DNA or proteins to a genome or to find genes. Every gene
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consists of two types of sequences: exons (which encode amino-acids), and introns, which

are removed before translation. The total length of remaining exons have to be multiple

of three; each triplet of nucleotides is called codon and it encodes one of 20 amino-acids.

However, the length of individual exons is not necessary the multiple of three. The coding

sequence of a gene begins with a start codon (sequence ATG) and the last codon of a gene

is called stop codon (sequences TAG, TAA or TGA). An intron begins with 5’ splice site

(also called donor site), and ends with 3’ splice site (or acceptor site). Acceptor and donor

sites are sequence motifs of fixed length [49, 71].

We introduce several comparative gene finders. Comparative gene finders use evidence

from two organisms to find genes. They use pHMM to simultaneously align and annotate

two sequences. The advantage finding genes in two organisms simultaneously is that we can

use the evidence from two related organisms to detect genes, that are in both organisms.

Meyer et al. (2002) developed comparative gene finder DoubleScan. Generally, Dou-

bleScan has 54-state GpHMM with following substructures: substructure that emits exons,

substructure that emits introns and substructure that generate intergenic regions. Each

substructure has three copies in the model: one for emitting in both sequences, and one

for emitting in one sequence.

Decoding method of DoubleScan is the Viterbi algorithm, with stepping stone al-

gorithm (see Section 2.5.1). They use BLASTN [3] for computing initial seed of local

alignments. They restrict the Viterbi algorithm to follow the alignments in the subset

allowing tolerance 15 bases [56].

SLAM [2] is a comparative gene finder based on a generalized pair hidden Markov

model [47] with some states being also high-order states (with dependence on previous

emissions). It predicts gene structures for a pair of related eukaryotic organisms. SLAMs

decoding method is the Viterbi algorithm. To reduce the running time of the VA, SLAM

align sequences within 3 bases around alignment obtained by AVID global alignment tool

[11]. Topology of the model can be found in figure 2.7.

TWAIN is comparative gene-finder based on GpHMM with intereresting decoding algo-

rithm [54]: at first it independently annotates input sequences using gene-finder TIGRscan

[53], finding signals (splice sites, start/stop codons, . . . ). Then creates parse graphs for

each sequence: signals form vertices, which corresponds to a state of the GpHMM. Two

signals are connected with an edge if one can follow other in a gene. The probability
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Intergene

EI,FEI,0 EI,1 EI,2 E0,F E1,F E2,F

Intron0 Intron1 Intron2

E0,0 E0,1 E0,2

E1,0 E1,1 E1,2

E2,0 E2,1 E2,2

Figure 2.7: Topology of GpHMM used by SLAM (states for genes on reverse strand are

omitted). Gray states has self-loops, which are omitted from the Figure. Emissions of

shaded states are modeled by the basic three state pHMM. White states represent exons.

Each has associated a duration distribution and emissions are modeled by three-state

pHMM using 5-th order states that emit whole codons at once. Since introns can be inside

a codon, the model contains an exon state for every possible interruption: Ei,j, 0 ≤ i, j < 3

is an exon that begins with end of the interrupted codon of length ((3 − i) mod 3) and

ends with the start of a codon of length j. I stands for start codon and F stand for stop

codon. Introni models intron interrupting codon at the i-th position.



CHAPTER 2. HIDDEN MARKOV MODELS AND THEIR DECODING 40

of an edge is determined by the probability of the most probable state path between

corresponding two states in the TIGRscans HMM.

TWAIN then creates graph G by cartesian product of two parse graphs, omitting the

vertices corresponding to pairs of different signals. Each node in the graph corresponds

to a state of the GpHMM and a cell in the dynamic programming matrix of the Viterbi

algorithm. Edges between cells correspond to an alignment generated by a single state

from GpHMM. The Viterbi algorithm is computed only on cells corresponding to graph

G which significantly reduces running time [54].

GeneWise predict genes by aligning a protein to similar gene structures in DNA [9]. It

uses probabilistic transducers instead of pHMM. Both transducers and pHMM are proba-

bilistic finite state machines, but probabilistic transducers transform one sequence into the

other sequence. It is easy to compose transducers, while maintaining probabilistic inter-

pretation of the resulting model. Composition of two transducers A and B is transducer

C that that on the input sequence applies transducer A and then transducer B.

GeneWise model was created by composition of a gene prediction model S which

translates genomic sequence to protein sequence and a protein homology model T which

maps protein sequence to a homologous protein sequence.

Gene prediction model S consists of a single exon state which translates series of codons

into amino-acids, and three submodels for modeling introns. Protein homology model T

is a simple pHMM from figure 2.6 defined over protein alphabet [9].

The aim of Pairagon is to find local alignments of complementary DNA (cDNA) and

genome [49], By aligning experimentally obtained cDNA sequences to the genome we are

able to confirm intron and exon structures of genes. Pairagons HMM model consists of

a simple pair HMM submodel, which aligns cDNA to DNA and a 5-state submodel for

intron structures. The whole topology is in figure 2.8.

Decoding was done by the Viterbi algorithm. Runtime of the algorithm was improved

by the stepping-stone algorithm described in Section 2.5.1 and memory requirements were

improved using the Treeterbi algorithm [39], which is similar to the On-line Viterbi algo-

rithm [66].
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M

Ic

Ig

I1g

I1c

I2g

I2c

D In B BA A

Figure 2.8: Topology of Pairagon GpHMM. All states except states D,B and A have a

self-transition. Shaded states corresponds to exons: M emits aligned pairs of symbols,

Ic is insertion in the cDNA and Ig is insertion in the genome. States I1
c , I

1
g , I

2
c and I2

g

corresponds to unaligned parts of the DNA and cDNA in the beginning and the end of the

sequences. States D, In,B,BA,A correspond to intron structure: Donor, Intron, Branch,

Branch Acceptor, and Acceptor.

2.4.6 Non-Geometric Indel Models

In the simple pHMM described in figure 2.6, gap length has geometric distribution: the

probability that a gap has length n is eM,Ie
n−1
I,I (1 − eI,I) (note that the probability that

at particular position will be gap with length zero is 1 − eM,I). The Viterbi algorithm is

usually computed in log-space: instead of computing product of probabilities of events3,

we compute the sum of logarithms of those probabilities, because computation in log-space

is numerically more stable. The Viterbi algorithm for the simple HMM will become the

same as the Needleman-Wunsch algorithm. Gap penalty will be log(eM,I) + log(1− eI,I) +

(n − 1) log(eI,I). By setting d = log(eI,I) and g = log(eM,I) + log(1 − eI,I) − d we see

that this is exactly affine gap penalty. Therefore we can say that affine gap penalties

correspond to geometric distribution of indel lengths.

Using non-affine gap model can improve alignment quality. Problem with geometric

distribution (or affine gap penalties) is that they are not realistic [18, 50]. Therefore

some other distribution might be more appropriate, for example zeta distribution [18],

or combination of several geometric distributions to approximate the distribution of gap

length [29, 28].

GpHMM allow us to use arbitrary duration distributions. On the other hand, GpHMM

are much slower to decode. One way of incorporating a different gap distribution into

pair hidden Markov models without using their generalized version is to use several (for

3Event is emission or transition.
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M

I1

I2

a1

a2

1− p1

1− p2

p1

p2

Figure 2.9: Shaded state M represents the match state and states I1 and I2 represents

indel states in the same sequence. Indel states for the other sequence are omitted.

example two) indel states for every sequence. For example Lunter et al. (2008) used two

component mixture models: instead of one indel state for every sequence they use two.

They report that this improved quality of alignments. Similar approach is used in the

multiple sequence aligner FASTA [10].

Modeling non-geometric distributions with several states can be problematic when used

with the Viterbi decoding [68]. Set of states with the same emission distribution used for

modeling non-geometric distribution is called gadget. We discuss an example of such a

problem for the two component mixture model.

Let H be a simple pair hidden Markov model with two pairs of indel states. Let

I1 and I2 be indel states that generate gaps in the first sequence connected with match

state M as in the figure 2.9. Gaps in alignments (in the first sequence) generated by

such a model have length distribution d(n) = (a1p
n−1
1 (1 − p1) + a2p

n−1
2 (1 − p2)), n > 0

and d(0) = 1 − a1 − a2, where n is the length of the gap, a1 and a2 are probabilities

of entering state I1 and I2 respectively and p1 and p2 are probabilities of remaining in

state I1 and I2 respectively. This is equivalent to the generalized pair hidden Markov

model H ′ with one indel state for every sequence which has d′(n) = d(n)/(1− d(0)) as its

duration distribution (in generalized states we want to generate at least one gap. Zero-

length gap should be modeled by the probabilities of incoming and outgoing transitions

to the generalized state). Both models define the same distribution of alignments and

running the Forward-Backward algorithm or the Forward algorithm will give the same

results. However, alignments constructed by the Viterbi algorithm can be different for H

and H ′.
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Problem is that in the generalized model the Viterbi algorithm gaps of length n have

“score” d(n) but in the non-generalized pair hidden Markov model it will be m(n) =

max{a1p
n−1
1 (1 − p1), a2p

n−1
2 (1 − p2)}, n > 0 and m(0) = 1 − a1 − a2. These two scores

are different (d(n) is always higher). It is possible that the Viterbi algorithm reconstruct

different alignments. Therefore if we are using the Viterbi algorithm, we should either

construct a gadget so thatm′(n) will be a better approximation of d(n), or use a generalized

pair hidden Markov model for the Viterbi algorithm.

2.4.7 Aligning Sequences with Variable Rate of Evolution

The rate of evolution (the expected number of substitution per position in sequence over

some period of time) is not constant for the whole genome. It does not have to be constant

even within one gene. FEAST is pairwise local alignment tool [36] that takes into account

the variable evolution rate. The simple pHMM from figure 2.6 is optimized for one fixed

rate of evolution. FEAST contain k such submodels, each trained for a different rate of

evolution. Submodels are connected with a single silent state. Since FEAST is a local

alignment tool, it also contains one additional submodel for generating an unaligned pair

of sequences at both ends of the sequences.

To construct an alignment FEAST uses the Viterbi algorithm. Like many local aligners,

FEAST uses a seeding heuristics to reduce computational complexity of finding local

alignments. At first it uses six different space seeds to get candidate seed and then extends

those seeds using x-drop heuristic [4]. The extension is done by an ungapped version of the

Forward algorithm, in contrast with the Viterbi algorithm usually used for this purpose.

Estimation of parameters was done by expectation maximization approach (with Baum-

Welsch or Viterbi training). They forced gap parameters to be the same in all submodels.

Different rates of evolution were also used in the whole genome aligner GRAPe [64].

GRAPes HMM consists of two submodels: one with fast evolution rate and two component

geometric mixture model for indels and one with the lower evolution rate and geometric

distribution of indel lengths. GRAPe uses the Posterior decoding as a decoding method.

2.4.8 Biases In Alignments

Lunter et al. (2008) conducted an extensive survey concerning biases in alignment. They

considered three types of biases associated with gaps [22]. By true alignment we mean

an alignment that corresponds to the actual evolution history. Since true alignments are
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unknown for real data we can simulate evolution on randomly generated sequences, this

obtaining a dataset of “true” alignments. Lunter et al. studied following biases.

• Gap wander means, that a gap is in a different location that in the true alignment.

Is is due to random short similarities around the borders of gaps that are indistin-

guishable from true homologies.

• Gap attraction occurs when two gaps are near each other. In such case, merging

those gaps and introducing a few mismatches might lead to higher score.

• Gap annihilation occurs when there are two gaps of the same length, one in each

sequence. Since indels are not so common, removing both gaps while introducing

new mismatches might increase the score of an alignment.

Biases are ordered by their frequency from the most occurring to the least occurring

[50]. Lunter et al. explore there problems with a series of simulations.

They measure the alignment quality by sensitivity , which is the ratio of the correctly

predicted alignment columns to all homologous columns in the true alignment [50].

In the first experiment, authors use a simple model of evolution obtaining alignments

with the expected sequence identity 0.705 with geometric gap model. The sequences

were then realigned using the Viterbi algorithm with the same model as was used for

simulation. Sensitivity was lowest for the columns near gaps (56%) and the sequence

identity for columns near gaps was 85% which does not agree with the expected sequence

identity 0.705%. Moving away from gaps the average sequence identity dropped to 0.68%.

The increased sequence identity near gaps is due to gap wander bias. The gap attraction

effect caused that the number of gaps that are near each other was lower than the expected

value obtained from the used gap model.

They also run the Viterbi algorithm parametrized by a range of substitution and indel

rates. The highest sensitivity was obtained for the parameters that were identical to

the parameters used for simulation. However, even then the sensitivity was only 84%

indicating that even if we have the right evolution models, some biases in the alignments

are inevitable.

Lunter et al. also studied the effect of different decoding methods and different models

on the alignment quality. They simulated evolution with parameters that are close to

the parameters of human-mouse evolution. They simulated for example the large-scale

variation of GC content, GC-content dependent indel and substitution rates and GC-

independent local substitution rate variation [50]. They simulated 20, 000 homologous
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sequence pairs with average length of 700 nucleotides. They add flanking sequences of

length 100 nucleotides to the generated sequences to simulate local alignments.

After simulation they realigned homologous sequences using the Viterbi algorithm

(VA), the Posterior decoding (PD) and the Marginalized posterior decoding (MPD) with

different models: the three state pHMM (HS); HS with two indel states for every sequence

representing the two component geometric mixture gap model (HM) and the full model

with all parameters that were used for simulation (HF ).

They also introduce two additional measures of the alignment quality. The false positive

fraction (FPF) is the proportion of the columns that are ungapped in the true alignment

but wrongly aligned by an algorithm [50]. The the nonhomologous fraction (NHF) is

the proportion of columns containing padding sequence among all columns aligned by an

algorithm.

The use of the different models has little impact on the sensitivity of the constructed

alignments. It is interesting that for the Viterbi algorithm the sensitivity was lower for

the full H3 model than for the simple model H1. This might be explained by the multiple

path problem. With other decoding algorithms the models H2 and H3 has slightly higher

sensitivity then the H1 model.

While the use of the “better” model does not significantly improve the quality of

alignments, using the Posterior decoding and Marginalized Posterior decoding improved

the sensitivity by approximately 2.5% regardless of the model. On the other hand the

FPF and the NHF was increased with use of the PD and MPD. The sensitivity of the PD

and the MPD were similar but the FPF was lower for the MPD than for PD.

The main outcome of this experiment is that proper decoding method can improve

the alignment quality while the use of a simpler model doest not significantly reduce the

alignment quality. However, Lunter et al. use in their simulations models only relatively

simple models of the evolution.

2.5 Algorithmic Improvements

Needleman-Wunsch algorithm and decoding algorithm for HMMs and pHMMs uses dy-

namic programming. In this section we review several algorithmic improvements to these

algorithms. Some of the techniques will not be universally applicable. With these tech-

niques, alignment algorithms could be used with sequences much longer than several thou-

sand bases.
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2.5.1 Restricting Search Space

One commonly used technique for speedup (and decreasing memory requirements) of se-

quence alignment is to restrict the search space of dynamic programming. We compute

alignment only in some parts of matrix M and we assume that omitted parts of matrix

correspond to alignments with low score. These techniques are also applicable for pHMMs.

If the two sequences are quite similar, the optimal global alignment will not be too far

from the main diagonal of matrix M . Therefore it is not necessary to compute parts of

matrix M that are too far from the main diagonal [19] (distance from diagonal a is user-

defined value or can be computed during alignment [33]). However, this method is not

useful for local alignment or global alignment of distant sequences. Now we will discuss

some more advanced techniques to restricting search space of dynamic programming.

Seeds

Seeds are a technique frequently used to reduce time complexity of local alignment. They

were popularized by BLAST algorithm [3]. A seed is a short alignment which is likely to

be a part of an alignment with high score. After a seed is found, it is extended with an

extension algorithm to a local alignment.

Seeds that cannot be extended to high-scoring alignments are discarded. Such candi-

date seeds are called false positives. Alignments that were not found by our heuristics are

called false negatives. It is important that heuristics used to find seeds has a small number

of false negatives and a large number of true positives, otherwise many true high-scoring

local alignments will not be found. On the other hand, high number of false positives

implies longer running time.

The most traditional approach is to take as seeds all pairs of positions i and j, such

that X[i : i+ τ ] = Y [j : j + τ ] for some constant τ . This approach is used in BLAST [3].

Various generalization were developed to improve trade off between speed and accuracy,

such as seeds with mismatches [40], space seeds [52], vector seeds [13] or daughter seeds

[21].

Extension of a seed to a full alignment is done in both directions, usually using equation

2.20 (equation is altered to reverse direction). Extension is stopped, when some criterion

is reached. For example, BLAST introduced X-drop heuristics: extension stops if the score

of an alignment is lower than the best score that was seen so far minus some user-defined

constant [4].
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Stepping-Stone Algorithm

Stepping-stone algorithm (SSA) [56, 49] is suitable for global alignment algorithms. The

idea is to use good local alignments as anchors. An anchor is similar to a seed: it is a

short alignment which we expect to be in the optimal global alignment. However, local

alignment tools give local alignments that do not have to be consistent with each other.

A set of local alignments is consistent if all local alignments can be together in one global

alignment.

SSA chooses a consistent set of local alignments by a simple greedy method, always

adding highest-scoring alignment consistent with those selected so far. Selected anchors

will be extended to a global alignment. However, since local alignments may contain

errors, SSA will relax them. If Xi and Yj were aligned in some anchor, then Xi can be

aligned to positions from j − τ to j + τ in the global alignment4 for some user defined

constant τ . Similarly, Yj can be aligned to positions from i − τ to i + τ . This technique

is also called banding , and it is often used. We used this technique in chapter 4.

2.5.2 Reducing Memory Complexity

One general technique to reduce the memory requirements of dynamic programing is

checkpointing [30].

In order to compute the i-th row of matrix M , we need only row i− 1. As mentioned

in section 2.3.2, to compute the score of the best alignment we need to store only two

consecutive rows. However, if we want to recover the optimal alignment, after we have

computed its score, we need all rows of matrix M again, in decreasing order.

Checkpointing solves this problem by storing every k-th row of matrix M , dn/ke rows

in total. While back-tracing, we will remember an additional block B of consecutive k

rows in interval [ik, (i+ 1)k). We can compute such a block in O(kn) time using the basic

dynamic programming, starting from row number ik which is stored in memory. Overall,

we recompute every block at most once, and therefore the time complexity will be O(mn).

If we set k =
√
n then the memory complexity will be O(m

√
n). By using l recursive

applications of this technique we can obtain algorithm with memory complexity O(m l
√
n).

Checkpointing can be used to decrease the memory complexity of the Viterbi algo-

rithm with back-tracing procedure and the Posterior decoding to O(
√
nm). Similarly, this

technique can be used to reduce memory complexity of the algorithms for pHMMs to

4Or aligned to a gap in that region.
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O(nm
√
n) where n is the length of the longer sequences and m is the number of states of

HMM.

Even more reduction in memory requirements can be obtained using the Hirschberg

algorithm [35]. The idea is following: if we want an alignment of sequences X and Y that

has bases Xi and Yj aligned, we have to do dynamic programming only in submatrices

M1 = M [0 : i, 0 : j] and M2 = M [i : n− 1, j : m− 1]. If i = dn/2e then the total number

of cells in those matrices is roughly half of the number of cells in M . The Hirschberg

algorithm incorporates a procedure to compute j such that Xdn/2e is aligned to Yj in the

optimal alignment. This procedure takes O(nm) time and O(n+m) memory (alignment

algorithm that keeps only one row of M in memory). If Xi is aligned to a gap, it finds

j such that Xi is aligned to gap that comes right after Xj. The algorithm then uses j

to determine submatrices M1,M2 and finds alignments in submatrices recursively. The

optimal alignment is a concatenation of optimal alignments in matrices M1 and M2.

Since total size of the two subproblems is always at most half of the size of the original

problem, the running time of the algorithm will be roughly double of the standard dynamic

programming. The Hirschberg algorithm keeps in memory only a constant number of rows

of M , and therefore the memory requirements are O(n + m). The Hirschberg algorithm

reduces memory more than checkpointing, but checkpointing can be applied to a wider

class of algorithms.

2.5.3 Exploiting Sequence Repetition

There are two similar techniques to accelerate sequence alignment. Both divides the

dynamic programming matrix into blocks (square of rectangle submatrices). Each block

has input and output cells. Input cells are in the left and bottom border of the submatrix

and output cells are in the top and right border of the submatrix (if the computation

is performed in top-right order). Each submatrix transforms the input cells into output

cells (the computation of dynamic programming). It is possible to use either compression

or pre-computation to compute alignment in time proportional to the total length of the

borders of the blocks instead of the total size of the block (block of size t× u has border

length O(t+ u) and size O(tu)).

The first such technique is called Four-Russian technique [5, 33] and can be used for

computing edit distance or sequence alignment with some restriction on the scoring matrix.

It divides the dynamic programming matrix into equally sized blocks and pre-computes

the output cells for all possible input cells and all possible blocks (the differences between
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values of the input cells are small, so all possible inputs can be enumerated). By setting

the block size to the O(log(n)), the total running time of the algorithm is O(n2/log(n)2)

in the unit-cost model [33].

Instead of dividing matrix into equally sized submatrices, we can run LZ78 factorization

[45] on both sequences. LZ78 factorization is compression technique which divide sequence

into sequence of O(n/log(n)) segments, where each segment s has predecessor segment sp,

where s = spc, c is a single character. We can use these segments to construct blocks.

Each of such blocks has three predecessors blocks that are obtained by using predecessor

segments [20]. Crochemore et al. developed technique to compute the values of the output

cells from the predecessor blocks and input cells in O(b) time where b is the total border

length of the block. It utilizes the O(A + B) algorithm for computing row minima and

maxima in totally a monotone matrix of size A×B [1]. The total time complexity of this

algorithm is O(n2/ log n) time [20].

Similar idea was also used for accelerating dynamic programming for decoding and

training of HMMs [69]. The computation of the Forward algorithm can be decomposed

as an series of matrix multiplication. Using LZ78 factorization, we can divide this into

multiplication of n/ log(n), where multiplication of matrices in each block is done in O(m3)

where m is the number of states of HMM. Using this, we can compute the Forward

algorithm in O(nm3/log(n)) time which lead to O(log(n)/m) speed-up [69]. Similarly,

it is possible to use this technique to the Viterbi algorithm. In this case we replace

summation with maximum in the matrix multiplication operation [69].



Chapter 3

Two Stage Decoding of HMMs

In this chapter we will study several decoding techniques, which are aimed to reduce sys-

tematic errors in sequence annotation. We will illustrate our approach using the HIV

recombination prediction domain, discussed in Section 2.2.3. Here, the goal is to deter-

mine which parts of a recombinant virus sequence originate in which subtype. For this

task, we have previously developed the HERD decoding method [58, 60] (Section 2.2.3)

which performed better than the Viterbi algorithm. However, in some cases the resulting

annotation contains some systematic errors, for example frequent switching between dif-

ferent subtypes. One such example can be found in Figure 3.1. To mitigate such effects,

one can use a two-stage decoding strategy. First we search for the most probable footprint

F . The footprint is what is left from labeling after keeping only one label from each group

of consecutive identical labels. Formally it was defined in section 2.2.4 by definition 12.

In the second stage we find the annotation with footprint F that maximizes the expected

reward (or some other criterion). The second stage is forced to keep the structure of foot-

print, and therefore rapid changing of types as in Figure 3.1 is not possible, unless the

footprint contains a large number of recombinations.

More generally, in the first stage we search for the best guide, which is a general

constraint on the allowed annotation, for example in the form of footprint or a set of labels.

In the second stage, we find the optimal annotation constrained by the selected guide.

Example of such algorithm is the most probable ball problem [16, 67] discussed in Section

2.2.4. In this this algorithm, the two-stage approach was motivated by computational

complexity, since optimizing the border shift distance is NP-hard [16]. Our motivation

to use the two-stage algorithms is to improve their accuracy and decrease the amount of

systematic errors.

In this chapter, we will focus mainly on the computational complexity of the first

50
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HERD
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F-HERD/S-HERD
114

1540

2575

3482
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6489
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Correct recombination

1541

2586

3532

4529

5545

6477

7504

Figure 3.1: Each row corresponds to one annotation of the same HIV recombinant, colors

represent virus subtypes. Unaltered HERD algorithm predicts a wrong subtype and also

contains too many segments. But restricting to the specified footprint (F-HERD) or to

the specified set (S-HERD) provides an almost correct annotation without these errors.

step: finding the most probable guide. Complexity of the second step, namely finding the

annotation with highest expected gain without guides we studied in [58, 60]. Footprint

and restriction guides can be easily incorporated to traditional decoding methods, but set

guide will likely to lead to NP-hard problems. At first we give a formal definition of the

two-stage algorithm. Then we show an experiment illustrating effects of the two-stage

decoding on the HIV recombination detection problem. Further in this chapter we prove

that finding the most probable guide is for certain guide functions NP-hard.

3.1 Formal Definition

In this section we will define two-stage decoding algorithms, and the generalization of the

footprint function from the first stage, the guide function. Additionally to the footprint,

we define a different guide function called annotation set. A footprint was already defined

in definition 12, and we denote the footprint of annotation Λ as F (Λ).

Note. The following definitions could also use state paths instead of annotations. How-

ever, annotations are more general, because by setting λ to the identity function, all

annotations become state paths.

Definition 18 (Annotation set). Let π = π1π2 . . . πn be a state path and λ be coloring

function as in definition 5. The Annotation set of labeling Λ is the set of labels visited on

the state path:

S(π) = {λ(π1), λ(π2) . . . λ(πn)}
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Annotation set of an annotation Λ = Λ1Λ2 . . .Λn is the set

S(Λ) = {Λ1,Λ2, . . .Λn}

A state set is an annotation set when the labeling function is the identity function.

Two-stage decoding system can be described in Highest Expected Gain framework

introduced in section 2.2.1. At first, we define guide and guide function.

Definition 19 (Guide function, guide relation, guide). Let H be an HMM, and f be an

annotation gain function. Let L be the set of all annotations, W be an arbitrary set. We

call any function R : L→ W a guide function and R(Λ) is the guide of annotation Λ.

A guide relation is a relation R̂ ⊆ L × W with the property that for all Λ ∈ L,

(Λ, R(Λ)) ∈ R̂.

We will define the probability of guide r given sequence X:

Pr (r | X,H) =
∑

Λ∈L,R(Λ)=r

Pr (Λ | X,H) (3.1)

A natural way of defining guide relation is the following: (Λ, r) ∈ R̂ if and only if

R(Λ) = R. However, in some cases it might be useful to relax the restriction provided by

the guide.

Note that we can see a guide as a generalization of an annotation. However, our use

of guides is quite different from our use of annotations. While annotations are the final

product, purpose of guides is to capture some important properties of the input, that can

be subsequently used to find the correct annotation. Finally, we can formally define the

two-stage decoding:

Definition 20 (Two-stage decoding). Let H be an HMM, f be an annotation gain func-

tion, R be a guide function and W be a set of all possible guides. Let X be a sequence of

interest and L be the set of all annotations of X. In the two-stage decoding we search for

annotation Λ, defined as:

Λ = arg max
Λ′∈L,(Λ′,r)∈R̂

EΛX |X,H [f(ΛX ,Λ
′)] (3.2)

where guide r is defined as

r = arg max
r′∈W

Pr (r′ | H,X) (3.3)
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Finding the most probable guide can be decoupled from finding the annotation with

highest expected reward. Implementing search with guides is straightforward, and we will

discuss it later.

Note that we could use a different method to select guide r. While it is possible to use

gain functions for defining optimization criteria to select guide (and altering the equation

3.3), we did not study such variations.

3.2 Experiments

In this section we apply the two-stage decoding methods on the HIV recombination detec-

tion problem. Our goal is to illustrate the effect and usefulness of the two-stage decoding

algorithms, not to compare it with the other methods for recombination detection. We

will describe the HIV recombination detection domain, two two-stage decoding algorithm

and show experiment on the artificial dataset of recombinant HIV sequences.

In section 2.2.3 we described HERD decoding. It was used with jumping HMMs [65] for

detecting recombinations in HIV virus. However, using this criteria lead to two artefacts:

• Producing annotations with many short recombinations.

• Producing recombinations of wrong virus subtype.

Example of both type of errors are illustrated in Figure 3.1.

3.2.1 Application Domain

We use the problem of recombination detection in HIV virus for the demonstration of

usefulness of two-stage decoding. This section contains background information about

data used in the experiment.

The genome of the HIV virus is an RNA sequence roughly 9000 bases long. Mutation

rate of the HIV virus is high [65], and additionally HIV virus is categorized into several

subtypes [62] based on sequence similarity. Phylogenetic tree of subtypes is show in figure

3.2. Subtypes A and F are further divided into sub-subtypes A1, A2 and F1, F2. Due to

high sequence similarity, subtypes B and D are sometimes recognized as sub-subtypes of

subtype BD [62].

Additionally to high mutation rate, recombination occurs in evolution of HIV virus

[62]. Recombination of two source viruses v1 and v2 is a mosaic virus which contains parts

from both v1 and v2. The relative position of individual parts is retained, so each region of
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Figure 3.2: Phylogenetic tree of the HIV-M1 group of genomes with outgroup sequences

from the of HIV-O group generated by phyml [32] from the database distributed with

jpHMM [65]. Figure was originally used in [60]. The lengths of the branches correspond

to evolution distances.

the recombinant virus originates from the corresponding region in the source virus. There

can be multiple recombination points within the same virus, and since recombination can

occur between two recombinants, there can be multiple source subtypes or sub-subtypes

in one recombinant.

Given a recombinant sequence X, the goal of recombination detection is to label each

base x of sequence X with the subtype from which x originates. The input sequence does

not have to contain recombination. In such case the annotation of the sequence contain

only single subtype. The set of annotation symbols therefore contains all subtypes/sub-

subtypes of the HIV virus.

3.2.2 Model

In our experiments, we use jumping HMM (jpHMM) developed for recombination detec-

tion by Schultz et al. (2006). The main building block of the jpHMM are profile Hidden

Markov Models (profile HMMs).

Profile HMMs are HMMs with a special topology used for matching certain motifs

[22]. Profile HMM of length n consists of match states M1,M2, . . . ,Mn, insert states

I0, I1, . . . , In, silent delete states D1, D2, . . . , Dn and silent init state and silent final state.
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Figure 3.3: Example of a profile HMM of length 6. Shaded states are silent. The leftmost

shaded state is the init state, the rightmost shaded state is the final state. Figure is from

[60].

All states are connected by transitions as in the figure 3.3. A motif is represented by the

chain of match states, each with its own emission distribution. Insert states model (short)

insertions between positions of the motif. Delete states allow to skip some parts of the

motif. A profile HMM can be obtained from an alignment of similar sequences; match

states then represent columns of the alignment. Not all of the columns correspond to

match states; columns that contains gaps above some threshold are usually omitted [22].

Jumping HMMs are built upon profile HMMs [65]. We start with an alignment of all

HIV sequences and construct a profile HMM for each subtype or sub-subtype (it depends

on whether we want to distinguish between sub-subtypes). We then add global init state

and global final state to connect profiles in parallel. Column numbers of each match, insert,

and delete states are preserved, so we know the corresponding column for all submodels.

Transitions between different profiles are added to model recombinations: These ”jump”

transitions always end in the state that corresponds to the nearest column of the original

alignment following their source column. Jump from column c1 in subtype A to column

c2 > c1 in subtype B is allowed if and only if there are no states in the profiles of A or

B corresponding to columns between c1 and c2. A simplified topology of a jpHMM is in

figure 3.4. More details can be found in [65].

3.2.3 Algorithms

In this section we describe the HERD algorithm and how to modify the Viterbi algorithm

and the HERD to use footprint and the annotation set as the guides. We denote HERDs

gain function, described in section 2.2.3, as fHERD (note that the gain function of the

Viterbi algorithm is fV ). Details of the algorithm that optimizes this gain function can
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Figure 3.4: The simplified structure of a jpHMM. Insert and delete states are omitted

from the figure for readability. Picture is taken from our previous work [60]

be found in [58, 60]. We use the footprint and the annotation set as a guide functions. In

case of footprint, we use the natural way to define guide relation, however in case of the

annotation set we use guide relation R̂S defined as follows:

(Λ, r) ∈ R̂S ⇔ R(Λ) ⊆ r

The reason for using this guide relation is that it allows us to use simpler and faster

optimization algorithm. This is not a problem because HERD have problem with detecting

additional wrong subtypes, not missing the correct one. In our tests it never occurs that

the resulting annotation had different set than the most probable set from the first stage of

the algorithm. In the following text, we will use the term segment , which is the maximal

single-colored consecutive subsequence of annotation.

The original HERD algorithm can be decomposed into two phases. In the first phase,

it constructs an annotation graph. An annotation graph is a graph in which each path

from the start vertex to the end vertex represents an annotation. The length of such a

path equals to the expected gain of the corresponding annotation. The longest path in the

annotation graph therefore corresponds to the annotation with the highest expected gain.

Annotation graph is directed and acyclic and its structure is described in Figure 3.5. In

the second phase we find the longest path in this graph and convert it to the annotation.

Since the annotation graph is directed and acyclic, it is possible to find such a path in

polynomial time [60].

To add guides, we need to change the second phase of the algorithm. We will be

searching for an annotation restricted to the guide with the highest expected gain. If the

guide function is an annotation set, we simply remove vertices with colors that are not

in annotation set from the annotation graph and use the original algorithm described in

[60]. Since trimming the annotation graph can be done trivially in linear time, this does

not change the computational complexity of the HERD algorithm.
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Figure 3.5: Part of a path in an annotation graph with the corresponding annotation.

A node with color c and caption (b, w) represents the vertex (b, c, w) of the graph. The

dashed lines connect each vertex to its corresponding segment. (b, c, w) corresponds to

the beginning of c-colored annotation segment starting at position b. End of the segment

is determined by the following vertex in the path; therefore each edge in the graph corre-

sponds to a possible annotation segment. The length of an edge is the expected gain of

the corresponding annotation segment. If w is less than maximal window width W , which

is a parameter of the HERD algorithm, the edges from such vertex are allowed only to

vertices of the form (b+w, ∗, ∗) where ∗ can be any valid value. If w = W , then outgoing

edges are of the form (b+W + k, ∗, ∗) where k ≤ 0. Figure is from our previous work [60]

Using the footprint as a guide requires more changes to the algorithm then just remov-

ing vertices with colors that are not in the footprint; we also alter the dynamic program-

ming formula for computing the longest path. We order vertices of the annotation graph

topologically from start to end vertex into sequence v0, v2, . . . vn−1 where n is the number

of vertices in the annotation graph, v0 is the init vertex and vn−1 is the end vertex. This

will be the order in which the dynamic programming equations will be computed. Let

f = f0f2 . . . fk−1 be the footprint we use as a guide and V [i, j] be the length of the longest

path ending in vi that has footprint f [: j]. Therefore the length of the longest path with

footprint f is V [n− 1, k]. If E is the set of all edges and C(vi, vj) is the weight of an edge

(vi, vj), then V [i, j] can be computed by following equations:

V [0, 0] = 0 (3.4)

V [0, j] = −∞, 0 < j ≤ k (3.5)

V [i, j] = max
i′,(vi′ ,vi)∈E


C(v′i, vi) + V [i′, j] if λ(vi) = λ(vi′)

C(v′i, vi) + V [i′, j − 1] if λ(vi) 6= λ(vi′) and λ(vi′) = fj−1

0 otherwise

(3.6)

Note that since we have ordered vertices topologically, to compute V [i, j] we use only

values of V [i′, j′] where i′ < i, j′ ≤ j. Therefore we can compute V in increasing order of
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i. The longest path can be computed using back-tracing as in section 2.3.2. The time and

memory complexity of this part of the algorithm increased by the factor of k. Therefore

the time complexity increases to O(mWC|E|+mkC2W 2) where C is the number of colors

(labels), W is the window size, m is the length of the sequence and |E| is the number of

transitions in the HMM. Space requirements increased to O(
√
mCn + WCnk + mkC2).

However, in practice guide contains only a small number of colors and as a result, graph

is much smaller then in the unguided version. Implementation details of other parts of an

algorithm can be found in [60].

As we will show in this chapter, finding the most probable set and the most probable

footprint are NP-hard and NP-complete problems. Therefore we used heuristic algorithm

implemented in the from program balls [16], which is also described in section 2.2.4. Note

that the balls algorithm estimates the footprint by sampling state paths and selecting the

most frequent footprint of sampled paths. For using the set as a guide, we have chosen

the set of labels used in the footprint guide, since these sets were almost always correct.

Altering the Viterbi algorithm to use set as an restriction is as simple as for the HERD;

we only need to to ignore states that are not in the guide set. We can do it by removing

state that are not in the guide set from the HMM without normalizing the transition

probabilities.

Optimizing the Viterbi algorithm with footprint f as an guide can be done by com-

puting following equations:

V [0, v, 0] = Ivev,X0 , λ(v) = f0 (3.7)

V [0, v, 0] = 0, λ(v) 6= f0 (3.8)

V [0, v, l] = 0, l > 0 (3.9)

V [i, v, l] = max
u∈V


V [i− 1, u, l]au,vev,Xi

if λ(v) = λ(u)

V [i− 1, u, l − 1]au,vev,Xi
if λ(u) = fl−1 and λ(v) = fl

0 otherwise

(3.10)

(3.11)

where v ∈ V, 0 < i < n. Computation of back-links B[i, v, l] are analogous to the compu-

tation of V [i, v, l] as in the Viterbi algorithm. Note that these equations are the original

Viterbi equations from Section 2.1.3 with additional dimension: the position l in the foot-

print. The time complexity of this algorithm is O(nm2k), where k is the length of the

footprint. This algorithm is k times slower than the Viterbi algorithm.
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3.2.4 Data and Results

We created an artificial dataset of recombinant HIV sequences and run HERD and the

Viterbi algorithm (VA) with two guide functions: annotation set and footprint. HERD

was run with default parameters, γ = 0.2,W = 10. The model was trained using jpHMM

program on the alignment of HIV sequences distributed with jpHMM [65]. We removed

10% of sequences from this alignment before training data and used them for evaluation.

We refer to the alignment distributed with jpHMM as the source alignment .

Artificial testing sequences were generated by alternating segments of two real se-

quences from different subtypes. These alternating segments were selected from an align-

ment of original sequences. We did experiments with two types of segment lengths: either

200− 300 (short) or 950− 1050 (long) with additional 0− 750 and 0− 500 bases for the

first and for the last segment respectively. The Length of each segment was drawn from

the uniform distribution.

Apart from two different recombination length, we also evaluated algorithm of recom-

binants of sequences from same subtypes but different sub-subtypes, which gave us 4

different data sets. For all datasets we generated 150 recombinants of two sequences. For

subtypes we use subtypes A, BD, C, F, G. For sub-subtypes we have used sub-subtype

pairs A1-A2, B-D and F1-F2.

To measure accuracy of the algorithms and amount of systematic errors, we use the

following metrics.

1. %id: Percentage of the bases with correctly predicted label.

2. Segment specificity: Percentage of the number of correctly predicted segments

out of the number of all predicted segments. Segment is correctly predicted if its

boundaries are within 10 bases of the correct boundaries.

3. Segment sensitivity: Percentage of the number of correctly predicted segments

out of the number of segments in the correct annotation.

4. %correct footprints: Percentage of correctly predicted footprints.

5. Footprint distance: Edit distance of predicted footprint and the correct footprint

normalized by the length of the correct footprint (averaged over all samples).

6. Set specificity: Percentage of the number of correctly predicted label types out of

the total size of predicted label set.

7. Set sensitivity: Percentage of the number of correctly predicted label types out of

the total size of correct label set.
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Aim of measures 1−3 is to quantify the performance of the algorithm in terms of ability to

correctly predict the correct annotation. Measures 4−7 quantify the amount of previously

mentioned systematic errors in the predicted annotation.

We use three versions of HERD and VA in our experiments: original algorithm, version

with annotation set as a guide denoted by S-HERD (S-Viterbi) and version using footprint

as a guide denoted by F-HERD (F-Viterbi). The results of experiments are in the table

3.1.

In general, we expect short recombination length to be harder than long recombination

length and distinguishing between sub-subtypes to be harder than distinguishing between

subtypes. Both of these expectations were observed in the results. In all experiments

on recombinants with long recombination length, footprint algorithms outperformed their

non-guided versions in all metrics, especially with the metrics 4 − 7: for HERD, the

fraction of correct footprint was increased from 76.67% to 100% in case of subtypes and

from 21.33% to 98% in case of sub-subtypes (similarly for VA). However on recombinants

with short recombination length, used footprints were wrong most of the time and in the

sub-subtypes dataset, all of the algorithms predict zero correct footprints. In fact, accuracy

of F-HERD and F-Viterbi decreased in all metrics except for annotation set specificity and

sensitivity. This and increase in footprint distance suggest the problem might be cause by

heuristic methods for finding the best footprint and that improvements in these methods

are needed; to check this, we computed the probability of predicted and correct footprints.

For short recombination length and sub-subtypes, 88.67% of predicted footprints have

lower probability than the correct footprint, 2.67% have the same probability and 8.67%

have higher probability than the correct footprint. For the same recombination length and

subtypes, 60.67% of the predicted footprints have lower probability and 39.33% have higher

probability than the correct footprint. For the long recombination lengths, footprints

which were not correctly predicted have higher probability than the correct footprint.

Methods with set as an guide performs slightly worse than footprint based methods

on the data sets with long recombination lengths, but the metrics were still significantly

better than unguided HERD algorithm. Additionally, using set as an guide for short

recombination length was not performing worse than original algorithm; accuracy was

similar.
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%id segment segment %correct footprint set set

sp. sn. footprints distance sp. sn.

subtypes, short recombination length

HERD 88.09 65.59 67.71 30.67 0.0728 56.67 100.0

S-HERD 88.55 68.17 67.71 37.33 0.0699 99.33 100.0

F-HERD 84.71 65.02 58.19 2.67 0.1653 99.33 100.0

Viterbi 86.33 62.73 61.31 19.33 0.1097 68.67 100.0

S-Viterbi 87.01 64.33 62.12 26.0 0.100.08 99.33 100.0

F-Viterbi 84.75 61.99 55.57 2.67 0.1653 99.33 100.0

sub-subtypes, short recombination length

HERD 72.72 32.79 27.56 0.0 0.3416 19.33 100.0

S-HERD 72.33 35.77 26.59 0.0 0.3937 100.0 100.0

F-HERD 68.05 30.65 16.97 0.0 0.4777 100.0 100.0

Viterbi 69.34 30.54 21.04 0.0 0.4729 32.0 99.33

S-Viterbi 70.21 32.28 21.37 0.0 0.4715 100.0 99.33

F-Viterbi 67.91 26.18 14.67 0.0 0.4777 100.0 100.0

subtypes, long recombination length

HERD 93.86 50.20 61.82 76.67 0.0579 77.33 100.0

S-HERD 94.12 53.46 63.68 98.67 0.0030 100.0 100.0

F-HERD 94.19 53.57 63.83 100.0 0.0 100.0 100.0

Viterbi 93.82 49.09 59.40 86.67 0.0230 86.67 100.0

S-Viterbi 93.96 50.24 60.10 98.0 0.0046 100.0.0 100.0

F-Viterbi 93.99 50.61 60.33 100.0 0.0 100.0.0 100.0

sub-subtypes, long recombination length

HERD 84.10 19.87 25.63 21.33 0.4089 29.33 100.0

S-HERD 83.90 24.87 28.55 47.97 0.1026 98.65 100.0

F-HERD 85.03 26.65 30.24 98.0 0.0038 98.67 100.0

Viterbi 84.75 22.46 26.18 40.0 0.1520 56.67 100.0

S-Viterbi 85.23 24.61 27.70 64.0 0.0654 98.67 100.0

F-Viterbi 85.39 24.57 27.70 98.0 0.0038 98.67 100.0

Table 3.1: Results of experiments on four data sets. Note that larger values are better

for all columns except footprint distance column where a lower value is better. The best

value out of each column is shown in bold.
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3.3 Computational Complexity Problems

In the previous experiments, we demonstrated that the two-stage algorithm can be a

useful technique to improve HMM decoding algorithm. In this and following sections we

will discuss theoretical aspects of defining guides and finding the most probable guides.

In particular, we show that the following problems are NP-hard: the most probable set ,

the most probable footprint , and the most probable restriction. The last problem is variant

of the most probable set. In this section, we define these problems and state the main

results. The following sections then discuss individual problems and prove the results.

Definition 21 (The most probable set problem). Given an HMM H, sequence X of

length n and a number p ∈ [0, 1], decide if there exists a set of states S such that

Pr (S(π) = S,X | H) ≥ p.

Theorem 3. The most probable set problem is NP-hard.

In the most probable set problem, we consider only paths that use all of the states

from the annotation set. As in the experiments, it is more natural to include also paths

that use only a subsets of annotation set. Therefore we might be interested in maximizing

Pr (S(π) ⊆ S,X | H) =
∑
π′⊆π

Pr (S(π′) = S,X | H)

However, this probability is trivially maximized by the set of all labels. To get a meaningful

problem definition, we can restrict the size of the annotation set to be l:

Definition 22 (The most probable restriction problem). Given an HMM H, sequence X,

integer l and number p ∈ [0, 1], decide if there exists a subset of states S of size l, such

that Pr (S(π) ⊆ S,X | H) ≥ p.

Theorem 4. The most probable restriction problem is NP-complete.

Finally, we also show that the most probable footprint problem is NP-complete.

Definition 23 (The most probable footprint problem). Given an HMM H, sequence

X of length n and a number p ∈ [0, 1], decide if there exists a footprint F such that

Pr (f(π) = F,X | H) ≥ p.

Theorem 5. The most probable footprint problem is NP-complete even if a labeling func-

tion is the identity function.
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Note that if we allow labeling function to be arbitrary, we can reduce the most probable

annotation problem to the most probable footprint problem, we only need to make sure

that it is not possible to have two consecutive states with same label in possible state

path. It can be done by adding states with new label in the middle of the transitions, that

generates new symbol and adding such symbols between symbols of the input sequence. In

such case, the most probable annotation and the most probable footprint will be identical.

First we show combinatorial proof of theorem 3. Then we show proof of theorem 4.

Finally we show proof of theorem 5 by showing 8-state HMM for which is NP hard to find

the most probable footprint, then we extend this proof to theorem prove theorems 3 and

4.

3.4 The Most Probable Set Problem

In this section, we prove NP-hardness of the most probable set problem, theorem 3.

We will use a reduction from the maximum clique problem [26]. Given a graph G =

(V,E) and a clique size k, we first choose a suitable threshold k′ ≥ k, as detailed below,

and construct a graph G′ = (V ′, E ′) such that G′ has a clique of size k′ if and only if G has

a clique of size k. This is achieved simply by adding k′ − k new vertices and connecting

each of the new vertices to all other vertices in V ′. As long as k′ − k is not too large, this

transformation can be done in polynomial time.

In the next step, we use G′ and k′ to construct an HMM HG′ , an input sequence and

a probability threshold. Every state set in HG′ with probability above threshold for the

given sequence corresponds to a clique of size k′ in graph G′. We will use the following

straightforward way of converting a graph to an HMM.

Definition 24. Let G = (V,E) be an undirected graph (without self-loops). Then the

graph HMM HG is defined as follows:

• Its set of states is V ∪ {ψ}, where ψ /∈ V is a new state called the error state.

• Its emission alphabet is {0, 1}.
• Each state v ∈ V has initial probability Iv = 1/|V |, the error state has initial proba-

bility Iψ = 0.

• Each state v ∈ V emits 0 with probability 1, the error state emits 1 with probability

1.
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• Transitions with non-zero probability between states u, v ∈ V correspond to edges in

E:

au,v =

 1
|V | {u, v} ∈ E
0 otherwise

• au,ψ = 1−∑v∈V au,v and aψ,u = 0 for all u ∈ V . The error state has a self-transition

with probability 1: aψ,ψ = 1.

The purpose of error state ψ is to level the probabilities of admissible state paths

without ψ to the same probability. Since ψ is the only state that generates 1, only

sequences of form X = 0n can be generated by admissible state paths without the error

state. Emission probabilities on such strings are 1, initial probability and all transitions are

equal to |V |−1, and therefore Pr (π,X = 0n | HG, n) = |V |−n. Each such path corresponds

to walk in graph G. Each set of states in HG naturally corresponds to a subset of vertices.

The probability of the set is proportional to the number of corresponding walks in the

graph G. Therefore we will count the number of special walks in induced subgraphs of G.

Definition 25. Let G = (V,E) be a graph and S ⊆ V be an arbitrary set of its ver-

tices. Then walk w = v1v2 . . . vn, (vi ∈ V ) of length n − 1 covers set S, if and only if

{v1, v2, . . . , vn | 1 ≤ i ≤ n} = S. We say that walk w covers graph G if w covers the whole

set of vertices V .

In other words, a walk covers set S if it uses only vertices from S and each vertex from

S is used at least once.

Let Y (n,G) be the number of graph covering walks of length n − 1. Since a walk

of length n − 1 contains n vertices, Y (n,G) = 0 if n < |V |. We consider a special

case of this formula for complete graphs: let Kk be complete graph with k vertices, then

D(n, k) = Y (n,Kk). The following claim clearly holds:

Lemma 1. If G is a graph with k vertices and n ≥ k, then Y (n,G) ≤ D(n, k) with equality

only for G = Kk.

In our reduction, we use HMM H = HG′ and X = 0n for a suitable choice of n and k′

discussed below. We will set threshold p to D(n, k′)/|V |n. Clearly, if the input graph G

has a clique S of size k, graph G′ has a clique S ′ of size k′ and there are D(n, k′) walks of

length n − 1 that cover S ′. Each such walk corresponds to one state path, and therefore

the probability of the set of states S ′ is exactly p.
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n/k 0 1 2 3 4 5 6 7 8 Mn

0 1 0

1 1 1

2 2 2

3 2 6 3

4 2 18 24 4

5 2 42 144 120 4

6 2 90 600 1200 720 5

7 2 186 2160 7800 10800 5040 6

8 2 378 7224 42000 100800 105840 40320 7

9 2 762 23184 204120 756000 1340640 1128960 7

10 2 1530 72600 932400 5004720 13335840 18627840 8

nk 0 1 2 3 4 6 7 8 10

Mnk
0 1 2 3 4 5 6 7 8

Table 3.2: Values of D(n, k), nk, Mn, and Mnk
for small values of n and k. Empty cells

contain zeros.

In order to prove the opposite implication ”if there exists a set of states with probability

p then there is clique of size k in G”, we need suitable choices of n and k′. Table 3.2 shows

values of D(n, k) for small values of n and k. For a fixed length of walk n, the number of

walks in Kk initially grows with increasing k, as we have more choices which vertex to use

next. However, when k approaches n, D(n, k) starts to decrease, because the walks are

more constrained by the requirement to cover every vertex. We are particularly interested

in the value of k where D(n, k) achieves the maximum value for a fixed n. In particular,

we use the following notation:

Mn = min

{
k;D(n, k) = max

0≤k′≤n
D(n, k′)

}
Note that if there are multiple values of k achieving maximum, we take the smallest

one as Mn. In our reduction, we would like to set n to be the smallest value such that

Mn = k, but we were not able to prove that such n exists for each k. Therefore we choose

as n the smallest value such that Mn ≥ k, and we denote this value nk. As k′ we then use

Mnk
. The following lemma states important properties of nk and Mnk

.
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Lemma 2. The value of nk is at most dk ln ke, and nk and Mnk
can be computed in

polynomial time.

Before proving this lemma, we finish the proof of the reduction. Let us assume that

there is a set of states S such that Pr (s(π) = S,X | H,n) ≥ p. This means that if we

consider walks in the subgraph G′(S) induced by the set S, we get Y (n,G′(S)) ≥ D(n, k′).

We will consider three cases:

• If S is a clique and |S| ≥ k′, we have the desired clique in graph G′, and therefore

there is also a clique of size k in graph G.

• If S is a clique and |S| < k′, then by definition of Mn we have Y (n,G′(S)) =

D(n, |S|) < D(n,Mn) = D(n, k′). This is a contradiction with our assumption.

• If S is not a clique, then by Lemma 1 and definition of Mn we have Y (n,G′(S)) <

D(n,K|S|) ≤ D(n,Mn) = D(n, k′). Again we get a contradiction with the inequality

Y (n,G′(S)) ≥ D(n, k′).

Therefore, we have proved that G contains a clique of size k if and only if the most

probable set of states in HG′ that can generate X has probability at least p. Moreover,

we can construct nk, Mnk
, HG′ , X, and p in polynomial time. To complete this proof we

need to prove Lemma 2. We start by proving another useful lemma.

Lemma 3. The following recurrence holds for 2 ≤ k ≤ n:

D(n, k) = (k − 1)D(n− 1, k) + kD(n− 1, k − 1).

In addition, D(n, n) = n!, D(n, 1) = 0 for n > 1, and D(n, k) = 0 for k > n.

Proof. Clearly, D(n, n) = n! since walks of length n − 1 correspond to permutations of

vertices. If n > 1 then D(n, 1) = 0, since K1 does not contain any edges. If k > n,

D(n, k) = 0 since a walk of length n− 1 can pass through at most n vertices.

Now let 2 ≤ k ≤ n. Let v(w) be the number of different vertices covered by walk w.

Let w be a walk of length n − 1 with v(w) = k, and let w′ be a walk obtained by taking

the first n− 1 vertices of walk w. Then v(w′) is either k or k − 1.

Every walk w′ of length n − 2 with v(w′) = k can be extended to a walk w of length

n − 1 in Kk in k − 1 ways, because as the last vertex of w we can use any vertex except

the last vertex of w′. Therefore there are (k − 1)D(n− 1, k) different walks w in Kk with

property v(w′) = k.
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On the other hand, if v(w′) = k− 1, we can create a walk w′′ in Kk−1 by renumbering

the vertices in w′ so that only numbers {1, . . . , k− 1} are used (if the vertex missing in w′

is i, we replace j by j − 1 for every vertex j > i). The same representative w′′ is shared

by k different walks w, because to create w from w′′, we need to choose the missing vertex

i from all k possibilities, renumber vertices to get w′ and then to add the missing vertex

i at the end of the walk. Therefore there are kD(n − 1, k − 1) walks with the property

v(w′) = k − 1. Combining the two cases we get the desired recurrence.

Proof. [Proof of Lemma 2] Assume that k ≥ 3. Clearly, D(n, k) ≤ k(k − 1)n−1, since

k(k−1)n−1 is the number of all walks of length n−1 in Kk. However, this number includes

also walks that avoid some vertices. The number of such walks can be bounded from above

by k(k− 1)(k− 2)n−1 where we choose one of the k vertices to avoid and then consider all

possible walks on the remaining k− 1 vertices. In this way we count some walks multiple

times; nonetheless by Bonferroni inequality we obtain bound

D(n, k) ≥ k(k − 1)n−1 − k(k − 1)(k − 2)n−1

For k ≥ 4 we therefore have that if

(k − 1)(k − 2)n−1 < k(k − 1)n−1 − k(k − 1)(k − 2)n−1

then D(n, k−1) < D(n, k). By taking logarithm of both sides of the inequality, we obtain

n > f(k) where

f(k) = 1 +
ln(k2 − 1)− ln k

ln(k − 1)− ln(k − 2)

Let n = df(k)e for some k ≥ 4 and consider row n in Table 3.2. We have that D(n, k−1) <

D(n, k) and since function f is increasing, we also we have that D(n, k′ − 1) < D(n, k′)

for all k′ ≤ k (we have proved it only for k′ ≥ 4, but it is easy to see that it is also true

for 2 ≤ k′ ≤ 3). The maximum in row n is therefore achieved at some position Mn ≥ k.

Recall, that nk is the smallest n such that Mn ≥ k. Therefore nk ≤ df(k)e. The function

k ln k/f(k) is decreasing and its limit is 1 as k approaches∞. Therefore df(k)e ≤ dk ln ke,
which gives us the inequality nk ≤ dk ln ke. This inequality can also be easily verified for

k < 4. Since Mn ≤ n, we also have Mnk
≤ dk ln ke.

We can compute nk and Mnk
by filling in table D(m, j) for all values of m and j up

to dk ln ke using the recurrence from Lemma 3. Since D(n, k) ≤ kn ≤ nn, we can store

D(m, j) in O(k ·polylog(k)) bits. Therefore computing the desired values nk and Mnk
can

be done in polynomial time.
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Note that it is not clear if the most probable set of states problem is in NP. In particular,

given a set of states S, it is NP-hard to find out if its probability is greater than some

threshold p, even if this threshold is 0, as we show next.

Theorem 6. Given HMM H, sequence X of length n and a subset of state space S, the

problem of deciding if Pr (s(π) = S,X | H,n) is non-zero is NP-complete.

Proof. The proof is a reduction from the problem of finding Hamiltonian path.

Let G = (V,E) be a graph and HG be the corresponding graph HMM as in Definition

24. Let X = 0|V |. It is easy to see that Pr (s(π) = V,X | HG, |X|) > 0 if and only if G

contains a Hamiltonian path.

Theorem 7. The most probable set problem is fixed-parameter tractable. There is an

algorithm with time complexity O(2mm2n) where m is the number of states of the HMM

and n is the length of the input sequence.

Proof. Let V be the set of states of the HMM, and X the input sequence of length n.

We can find the most probable set of states in time O(2mm2n) by a dynamic program-

ming algorithm similar to the Forward algorithm. We define F [i, S, v] to be the sum of

probabilities of all states paths π of length i such that s(π) = S, π ends in state v and

generates the first i characters of sequence X. The probability of a set S is the of all state

paths that generated X with state set S:

Pr (S | X) =
∑
v∈V

F [n, S, v] (3.12)

We can find the most probable state set by enumerating all sets and choosing the one with

the highest probability. To compute F [n, S, v], we use the following equation:

F [i, S, v] =


Ive(v,X[1]) i = 1, S = {v}∑
u→v

au,ve(v,X[i]) (F [i− 1, S\{v}, u] + F [i− 1, S, u]) i > 1, v ∈ S

0 otherwise

(3.13)

Computing F can be done in O(2mm2n) time assuming that manipulation with the nu-

meric representation of probabilities is in constant time. Assuming that the parameters of

HMM are rational numbers, we can represent all quantities with the polynomial number

of bits and the resulting time complexity will be higher by a polynomial factor.
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3.5 The Most Probable State Restriction

The most probable restriction problem is following: given HMM, decide if there exists

such subset of the set of states, that have size l and probability at least p. We prove that

this problem is NP-complete.

Proof. (Theorem 4) We will prove NP-hardness by a reduction from 3-SAT. Consider an

instance of 3-SAT with the set of variables U = {u1, u2, . . . , un} and the set of clauses

C = {c1, c2, . . . , cm}. Based on sets U and C, we construct an HMM H as follows. The

set of states V will contain all positive and negative literals. The emission alphabet Σ

contains all clauses, all variables and a special error symbol ψ. The initial probability of

each state is 1/(2n), and the transition probability between any two states is also 1/(2n).

State for a literal u emits with probability 1/|Σ| every clause that contains u. State for

literal u also generates the positive form of the literal with probability 1/|Σ|. For proper

normalization, it also generates the error symbol with probability 1−∑x∈C∪U e(v, x).

We also create string X = u1u2 . . . unc1c2 . . . cm and set the size of the restriction l to

equal the number of variables n. Every state path π that can generate X has probability

(2n|Σ|)−|X|; we set threshold p to this value. Each variable ui in the first part of X can

be generated only by states ui and ūi; therefore at least one of these states needs to be

in the path. The first portion of the path thus traverses l (equals to n) different states;

only these states can be used to emit the second part of the sequence. Since each of ui

(1 ≤ i ≤ n) has to be generated, exactly one of the states ui, ūi will be in the state path.

Therefore the set of states used by a state path corresponds to assignment of variables. If

this assignment is satisfying, it is possible to generate the rest of the sequence: c1c2 . . . cm,

and state path is admissible. If the assignment is not satisfying, there exists clause cj

that cannot be generated states were used in the first part of the sequence (and it is not

possible to add additional state into the state set) and therefore any state path using this

set of states will be inadmissible. Therefore if there is admissible state path that generates

X, then there is an satisfying assignment for the instance of the SAT problem.

Note that given a restriction S, we can easily verify if its probability is at least p by

a variant of the Forward algorithm in which we allow only states in S. Therefore the

problem is in NP.

Theorem 8. The most probable restriction is fixed parameter tractable.

Proof. We can use the same algorithm as in the proof of the theorem 7, with the difference

that we compute the probability of only for sets of size at most l. During the computation
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S

Σ− {T}
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Σ− {S}
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{S}

iS′
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Figure 3.6: The HMM from the proof of Theorem 5. States are shown as circles; under

each we list the set of symbols that the state emits with non-zero probability. Each of

these symbols is emitted with probability 1/k, where k is the size of the set. The HMM

always starts in state S. All outgoing transitions from a particular state have the same

probability.

we use only subsets of states with size at most l and therefore the time complexity is

O

(
l∑
l=0

(
m

k

)
m2n

)
(3.14)

where m is the number of states, n is the length of the sequence and l is the size of the

restriction.

3.6 The Most Probable Footprint

In this section we show proof that the most probable footprint problem is NP-hard. Given

HMM H, sequence X and the probability p, goal is to decide if there exists a footprint F

with the probability at least p. We show result for constant-sized HMM and the identity

function as an labeling function (proof for arbitrary labeling function is trivial).

Proof. (Theorem 5) We will prove NP-hardness by a reduction from the maximum clique

problem using the HMM in Figure 3.6 with eight states and alphabet Σ = {S, S ′, T, T ′,#, 0,
1, ?}.

Let G = (V,E) be an undirected graph with n vertices V = {1, 2, . . . , n}. We will

encode it in a sequence X over alphabet Σ as follows. For every vertex v ∈ V , we create a

block Xv with 2n + 3 symbols: Xv = S ′#bv,1#bv,2# . . .#bv,n#T ′, where bi,j = 1 if i = j,

bi,j =? if (i, j) ∈ E and bi,j = 0 otherwise. Sequence X is a concatenation of blocks for all

vertices with additional first and last symbols: X = SX1X2 . . . XnT .

All state paths that can generate X have a similar structure. The first symbol S and

several initial blocks are generated by state S, one block, say Xi, is generated by states

S ′, #, 0, 1, and T ′ and the rest of the sequence, including the final symbol T , is generated
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by state T . We will say that a state path with this structure covers the block Xi. Note

that state E is never used in generating X, its role is to ensure that the probability of

self-transition is the same in states S and T . All state paths that can generate X have

the same probability q = Pr(π,X | H) = 2−2n2−2n3−n−17−2n2−n+1.

We say that a state path π is a run of footprint F , if π can generate X, and f(π) = F .

Every footprint that can generate X has the following structure: F = SS ′#c1#c2# . . .#

cn#T ′T , where ci ∈ {0, 1}. The probability of footprint F is qk, where k is the number of

its runs. Also note that every run of F covers a different Xi, because once Xi and F are

fixed, the whole path is uniquely determined.

We will now prove that the graph G has a clique of size at least k if and only if there

is a footprint for sequence X with probability at least qk. First, let R be a clique in G of

size at least k > 0. Consider the footprint F = SS ′#c1#c2# . . .#cn#T ′T where ci = 1 if

i ∈ R and ci = 0 otherwise. For any i ∈ R, there is a run πi of F that covers Xi. This run

will use state 1 for generating each bi,j such that j ∈ R and thus both bi,j ∈ {?, 1} and

cj = 1. For j /∈ R we have bi,j = 0 and cj = 0, thus they will use state 0 in π. Since there

is a different run for every i ∈ R, footprint F has at least k runs.

Conversely, let F be a footprint with probability at least qk > 0 and thus with at least

k runs. We will construct a clique of size at least k as follows. Let R be the set of all

vertices i such that F has a run that covers Xi. Clearly the size of R is at least k. Since

F has non-zero probability, it has the form SS ′#c1#c2 . . .#cn#T ′T for ci ∈ {0, 1}. For

all i ∈ R, ci = 1 because the i-th block has bi,i = 1. Therefore for all i, j ∈ R, we have

bi,j ∈ {1, ?}, which means that (i, j) ∈ E or i = j. This implies that R is indeed a clique.

To summarize, given graph G and threshold k, we can compute in polynomial time

sequence X and threshold qk such that G has a clique of size at least k if and only if

sequence X has a footprint with probability at least qk. This completes our reduction.

The problem is in NP (even if HMM is not fixed, but given on input), because given

an HMM H, sequence X and a footprint F , we can compute the probability Pr(f(π) =

F,X | H, |X|) in polynomial time by a dynamic programming algorithm which considers

all prefixes of X and all prefixes of F . If probability p and parameters of HMMs are

given as rational numbers, we can compute all quantities without rounding in polynomial

number of bits.
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Σ− {T}
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{S}

S′
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1n

{1, ?}

0i
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Figure 3.7: The HMM from the proof of Theorem 3 for n = 3. States are shown as circles;

next to each we list the set of symbols that the state emits with non-zero probability.

Each of these symbols is emitted with probability 1/k, where k is the size of the set. The

HMM always starts in state S. All outgoing transitions from a particular state have the

same probability.

3.6.1 The Most Probable Set Problem

In this section, we show an alternative proof of NP-hardness of the most probable set

problem. We show how to modify the proof of theorem 5 to obtain a proof of theorem 3.

Proof. (Theorem 3) Let G = (V,E) be an undirected graph with n vertices as in the

proof of theorem 5. Note that V = {1, 2, . . . , n}. Graph G will be encoded in sequence X

as in the proof of theorem 5, but without # symbols. Let Xi be the block that represents

vertex i. Then X = SX1 . . . XnT .

Instead of using one fixed HMM, we expand the middle part of the model so that it

generates blocks of length n + 2 (n vertices and S ′, T ′ states). We remove state # and

expand states 0 and 1 into n copies denoted 0v and 1v for v ∈ V . Transitions are from S ′

to 01 and 11, from 0n and 1n to T ′ and for all i < n from ci to di+1 for c, d ∈ {0, 1} as in

figure 3.7.

State paths that generate X have a similar structure as in the proof of theorem 5.

State S generate the first symbol S, and some initial blocks. One block Xi is generated

by some of the states S ′, T ′, 0v, 1v, v ∈ V . Rest of the sequence is generated by the

terminal state T . Construction of the HMM and sequence X guarantees that for all

v ∈ V exactly one of 0v, 1v is in the state path. We say that a state path with this

structure covers block Xi. All state paths that can generate X have the same probability

q = Pr(π,X | H) = 2−n
2−3n+16−n

2−n.

We say that a state path π is a run of set D, if π can generate X and s(π) = D. The
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probability of set D is qk, where k is the number of runs of D. Every run of D covers a

different block, since once the block is known, the path is uniquely determined.

We will now prove that the graph G has a clique of size at least k if and only if there

is a set of states for sequence X with probability at least qk. First, let R be a clique in

G of size at least k > 0. Consider the set D = {S, S ′, c1, c2, . . . , cn, T
′, T} where ci = 1i if

i ∈ R and ci = 0i otherwise. For any i ∈ R, there is a run of D that covers Xi. This run

will use state 1j for generating each bi,j such that j ∈ R and thus both bi,j ∈ {?, 1} and

cj = 1j. For j /∈ R we have bi,j = 0 and cj = 0j, thus the run will use state 0j. Since there

is a different run for every i ∈ R, set D has at least k runs.

Conversely, let D be a set of states with probability at least qk > 0 and thus with at

least k runs. We will construct a clique of size at least k as follows. Let R be the set of all

vertices i such that D has a run that covers Xi. Clearly the size of R is at least k. Since D

has non-zero probability, it has the form {S, S ′, c1, c2, . . . , cn, T
′, T} for ci ∈ {0i, 1i}. For

all i ∈ R, ci = 1i because the i-th block has bi,i = 1. Therefore for all i, j ∈ R, we have

bi,j ∈ {1, ?}, which means that (i, j) ∈ E or i = j. This implies that R is indeed a clique.

Given graph G and threshold k, we can compute in polynomial time sequence X and

threshold qk such that G has a clique of size at least k if and only if sequence X has a set

of states with probability at least qk. This completes our reduction.

3.6.2 The Most Probable Restriction

Finally, we show that the proof from the previous section is also proving NP-hardness of

the most probable restriction problem (Theorem 4).

Proof. (Theorem 4) Consider the proof of Theorem 3 from Section 3.6.1. Any set for

for sequence X that have non-zero probability on sequences that encodes graph with n

vertices have size n+ 4. Therefore if we set l = n+ 4 (l is the restriction parameter), the

proof of theorem 3 is also a proof of this theorem.



Chapter 4

Alignment with Tandem Repeats

A tandem repeat is a region in a genomic sequence that contains two or more consecutive

copies of some motif , which is a short genomic sequence. The instances of the motif in

a tandem repeat are called repetitions . Tandem repeats, like other sequences, undergo

evolution, and events like substitutions, insertions, and deletions occurs in the individual

repetitions. Therefore individual repetitions are only approximate copies of a motif. More

than 2% of the human genome is covered by short tandem repeats, and they occur in

many genes and regulatory regions [27]. Additionally, recent short insertions in the human

genome are mostly caused by tandem duplication [55]. Most of the tandem repeats have

evolved by tandem segmental duplications, which means that a tandem repeat was created

by several successive duplication events. The consequence is that the homologous tandem

repeats in two related sequences may contain a different number of copies of the original

motif. Note that it is possible that none of the current repetition is the exact copy of the

original motif.

Example 10. Below is an example of a sequence with tandem repeat with motif AT and 12

repetitions. One repetition contains insertion (I in the annotation) and another repetition

contains substitution (M in the annotation). The repetitions are annotated by alternating

. and characters.

Sequence: ACGTCGATGCATATATATATATATAATATCTATATGAGCTGATGCTAGCTAC

Annotation: __..__..__..__I..__M.__..

Note that while it is not clear to which repetition the insertion belongs, we do not find it

important.

Aligning homologous tandem repeats is hard, because it is not clear which repetitions

are orthologous (which originate in the same ancestral repetition). Tandem repeats do

74
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not only affect quality of alignment within them, but the error can spread into adjacent

columns of an alignment, as we show in Section 4.6.3, Figure 4.5. These inaccuracies can

spread further and cause artifacts in the results of comparative genomic methods that use

sequence alignments.

In this chapter, we introduce a tractable model that explicitly accounts for tandem

repeats. We use the maximum expected gain framework to explore several decoding

criteria for our model. We evaluate our model with different decoding criteria using

simulated data.

4.1 Related Work

Alignment methods that take into consideration tandem duplications were first studied

by Benson [6], who proposed an extension of the Needleman-Wunsch algorithm. They

extend the scoring scheme by adding a duplication event, which creates a tandem repeat.

A duplication consists of copying some substring U in one input sequence into multiple

tandem copies of U in the second sequence. The score of the duplication event is the sum

of the duplication initiation cost, duplication extension cost (multiplied by the number

of repetitions), and the maximum alignment score for aligning the sequence U to its

repetitions in the second sequence. Time complexity of this algorithm is O(n4), and

Benson also proposed a heuristic algorithm to compute the alignment in a reasonable

time. Several variants of this problem were also studied [63, 8]. Another approach to align

sequences with tandem repeats is to use a lossy compression scheme to collapse tandem

repeats, and then align compressed sequences [24].

A traditional approach to deal with tandem repeats is to mask them in both sequences

and then align masked sequences by some alignment algorithm. Masking means replacing

tandem repeats and other low complexity regions either with lower-case letters (soft-

masking) or with N symbols (hard-masking, N represents any base). Masking is done

by some method for finding tandem repeats, such as Tandem Repeat Finder (TRF) [7],

TANTAN [25], mreps [41], or ATRhunter [70].

Methods for aligning sequences with tandem repeats mentioned above were not based

on probabilistic models. The first probabilistic method specifically targeting tandem re-

peats was introduced by Hickey and Blanchette [34]. They developed a context-sensitive

model based on pair Tree-Adjoining grammars. Their model does not explicitly model an

arbitrary number of repeats; it focuses on short context-sensitive indels caused by tandem
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duplications. Each such context sensitive indel was modeled by assuming that the indel

sequence and previous/following aligned pair of sequences evolved from single common

ancestor. The time complexity of their decoding algorithm is O(n2L2), where n is the

length of the sequences and L is the maximal length of context sensitive indels.

Another, partially probabilistic method was developed by Kováč et al. (2012). The

aim of the method was to align repetitive motifs occurring in some protein families (for

example zinc finger proteins), which are similar to tandem repeats in DNA. Their method

focused on correctly aligning individual occurrences of the motifs. They combined a profile

HMM of the motif and a pair HMM, and developed a new decoding algorithm similar to

the Viterbi algorithm. Despite the use of probabilistic models, their method was not a

probabilistic model, because scores from different models were combined in an ad-hoc

manner.

Hudek [37] developed an algorithm which combines the Viterbi and the Posterior de-

coding. The goal of the algorithm was to reduce misalignments due to short tandem

repeats with the motif length 1, for example AA in the first sequence and AAAAAAAAA

in the second sequence. The algorithm does not search for alignment, but for the most

probable segmentation; alignment is divided into segments, such that each block contain

gaps in only one sequence. Within one block, algorithm considers all possible evolutionary

histories of such block; the probability of the block is the sum of the probabilities of all

alignments of sequences within block. The probability of the segmentation is the product

of probabilities of all blocks along with transition probabilities between blocks. This was

implemented using pHMM with two colors (each color for one segment) and the algo-

rithm effectively search for the most probable annotation (segmentation). Authors give

the algorithm for searching for the most probable segmentation in O(n4) time, where n is

the length of the sequences. Additionally, authors provide heuristic with time complexity

O(n2k), where k is the limit for the maximal block length.

4.2 Finding Tandem Repeats

Although our main goal is to align sequences with tandem repeats, our model will feature

submodels that can be used to find the repeats in a single sequence. In this section, we

describe our repeat submodel and repeat model from the TANTAN repeat finder [25]. We

start by describing non-probabilistic approach to finding repeats, which we also use in the

preprocessing phase of our method.
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4.2.1 Tandem Repeat Finder

Probably the most popular method for finding tandem repeats is the Tandem Repeat

Finder (TRF) [7]. Tandem repeat finder finds the position of a tandem repeat (referred

as an interval), consensus sequence (an approximation of the original motif), alignment

of the consensus sequence and the input sequence, and various other information about

each repeat.

The method consists of two components: detection and analysis. The detection com-

ponent tries to find a set of candidate tandem repeats by analyzing the distances between

occurrences of the same k-tuple (substring of length k). It uses several statistical criteria

to detect repeats and distinguish between tandem repeats and non-tandem repeats [7].

The analysis component aligns a candidate consensus using wraparound dynamic pro-

gramming [57] with the surrounding sequence. If the alignment is not successful (candidate

consensus has to be aligned at least twice to be successful), candidate repeat is discarded.

Otherwise, the final consensus sequence is computed from the alignment along with other

statistics about tandem repeat.

Tandem repeats found by the TRF are often redundant. They can overlap, have slightly

different consensus motifs, the motifs can be shifted cyclically, and can have different

lengths, as in the following example:

Sequence X: CACCGCCACCACCGTAG

Consensus ACCACC: ACCACCACCACC 2 repetitions

Consensus ACC: ACCACCACCACC 4 repetitions

consensus CAC: CACCACCACCACC 4.3 repetitions

The sequence X contains a tandem repeat and there are three consensus sequences

with different number of repetitions. Note that the repetition of the consensus can be

incomplete; as with the CAC consensus where we have 4.3 repetitions (0.3 stands for the

last C in the repetitive sequence). Note that the purpose of this example to illustrate

possible redundancies in the TRF output. If we actually run TRF on sequence X, the

output would be only the repeat with consensus CAC.

4.2.2 Sunflower Model

The sunflower model is an HMM that represents tandem repetious of one previously

specified motif C = c0 . . . ck−1. We have developed this model as a part of our model for

aligning sequences with tandem repeats, which we describe in section 4.3, but it can be
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(a) Cyclic profile model (b) Sunflower model

Figure 4.1: Example of the Sunflower model with the motif of length 10. White states

emit one character and gray states are silent states. States s and e are initial and final

silent states. Sunflower model has additional delete states D′0, . . . D
′
8 to remove silent cycle

from the model.

also used as a simple tool for finding tandem repeats and we use it to improve a candidate

set of tandem repeats initially constructed by the TRF program (see Section 4.5).

The sunflower model is an extension of the profile HMM described in Section 3.2.2

(see Figure 3.3 on page 55). In particular, the sunflower model is a circular version of the

profile HMM with match states representing motif C. This model implicitly assumes that

repetitions evolved from motif C independently of each other, as of at single point of time,

motif C was copied several times forming tandem repeat, which then underwent several

simple evolution events (substitutions, deletions and insertions). This does not accurately

reflect a typical evolution history of a tandem repeat, where individual repetitions arise

over time from existing copies which could differ from the original consensus C. However,

trying to model such evolution would lead to a much more complicated model.

Our model contains typical profile HMM states M0, . . . ,Mk−1, I0, . . . , Ik−1 and D0, . . . ,

Dk−1. The transitions between the states are similar to profile HMM: Mi → Mi⊕1,Mi →
Ii,Mi → Di⊕1, Ii → Ii, Ii → Mi⊕1, Ii → Di⊕1, Di → Di⊕1, Di → Mi⊕1, Di → Ii for all

0 ≤ i < k, where ⊕ is + modulo k. As in the profile HMM, states Di are silent. We

add silent start state s and silent final state e with transitions s → M0, s → D0, Dk−1 →
e,Mk−1 → e and transition s → e to model empty tandem repeats. The whole model
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topology is shown in Figure 4.1a.

The problem is that the cyclic profile contains a cycle of silent states, which causes

problems with training and decoding algorithm (see Section 2.1.7). Removing these states

would lead to additional θ(k2) edges. Therefore, we have decided to remove the transition

between delete states Dk−1 and D0. To compensate for the lost possibility of deleting an ar-

bitrary part of the tandem repeat, we add an additional chain of delete states D′0, . . . , D
′
k−2,

which are accessible only from state Dk−1 by transition Dk−1 → D′0, and their outgoing

transitions are similar to delete state transitions: D′i → Mi+1, D
′
i → Ii for 0 ≤ i ≤ k − 2

and D′i → D′i+1 for 0 ≤ i < k − 2. Note that D′k−2 is connected only to Mk−1 to avoid

passing a full circle by delete states. The full model is in Figure 4.1b. We call this model

the Sunflower model.

This model has 4k + 1 states and 12k + 1 transitions, out of which 2k + 1 states

are silent. There are 14k + 2 parameters to train for a motif C (including emissions of

insert and match states over the alphabet if size 4). Models with such a large number of

parameters are hard to train, so we reduced the number of parameters as follows. First,

we tied similar transitions, so that they have the same probability. We used the set of

parameters pab where a, b ∈ {m, i, d, ·}, where m stands for any match state, i stands for

any insert state, d states for any delete state (from both chains), and · is either start or

final state. Therefore the probability of transition from match state to delete state is pmd

and probability of transition from insert state to final state is pi·. Probabilities were set

so that
∑

b∈{m,i,d}pab = 1 for all possible a. Therefore, transitions from states Mk−1, Dk−1

and D′k−1 do not sum to 1, because they are either missing one transition or having one

additional transition. For those states, the probability of transitions were normalized in

order to form a probability distribution.

To reduce the number of emission parameters, all insert states share the same emission

distribution. For the emission distribution of match state Mi, we assumed that the con-

sensus base ci from the motif evolved over evolutionary time t according to Jukes-Cantor

model1. Jukes-Cantor model is a theoretical model of evolution that assumes constant

rate of evolution. Under this model base B1 evolved over time t to different base B2

with probability 1/4(1 − exp(−4t/3)). The probability that B1 after time t will be still

(or again) B1 is 1/4(1 + 3 exp(−4t/3)) [22]. Time t was the same for all match states.

Therefore emissions of all states are specified using only 4 parameters (1 for match states

1 The parameter t of Jukes-Cantor model is not time as measured by years, but rather a branch length

in an evolutionary tree obtained by multiplying of substitution rate and time. More details can be found

in [22].
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(a) Simple model (b) With indels (c) With first repetition

Figure 4.2: Three variants of the core of the TANTAN model. Gray states are silent. The

first one is a simplified model, only containing repeat states. The second was used by

Frith [25], allowing insertions and deletions. The last one is our extension with additional

prefix states P1, . . . PK which model the first repetition.

and 3 for insert states).

To use the sunflower model models for finding tandem repeats, we have to add state B

that models non-repetitive part of the sequence. Let SC be the sunflower model for motif

C. We add the transitions from B to the start state of SC and from the final state of SC

to the state B. The probability of transition from the state B to the submodel SC is pr,

the probability of repeat starting at particular position in the sequence. Probability of

transition from final state of SC to B is 1. There is also transition B → B with probability

1−pr. We can use the Viterbi algorithm with this model to find all occurrences of tandem

a repeat with motif C. However, with this model we can search only for a specific motif.

We call this method of finding tandem repeats the Sunflower repeat finder (SRF).

4.2.3 TANTAN

TANTAN is a high-order HMM aimed at finding tandem repeat developed by Frith [25].

Unlike the Sunflower model, TANTAN models tandem repeats with an arbitrary motif.

Its only restriction is the maximal length of the motif K. In this section, we describe the

core of the model; the part that models tandem repeats. This core can be transformed

to the model usable for search by adding a background state B as we described for the

Sunflower model.

The principal idea is to use the state of order l to model a repeat with motif length
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l. TANTANs high order states uses less information than standard high order states.

Emission of symbol X[i] in a standard state of order l depends on subsequence X[i− l : i].

Emission in TANTANs states of order l depends only on the symbol X[i− l]. The model

consists of K high-order states Rl, 1 ≤ l ≤ K called repeat states, where state Rl is of

order l. Emission of state Rl is set so that the state emits the same symbol as X[i − l]
with a high probability. By adding transition Rl → Rl we obtain an HMM modeling

tandem repeats without indels with a motif of length l. By connecting states R1, . . . , RK

to a single start and final state as shown in Figure 4.2a, we obtain an HMM that models

repeats with the motif lengths 1 through K.

This simplified model does not allow insertions and deletions in repetitions. Indels

are handled similarly to a profile HMMs, by adding insert states I1, . . . , IK−1 and silent

delete states D1, . . . , DK−1 connected as in the Figure 4.2b. There are however significant

differences from profile HMMs. In a profile HMM, delete states are used to skip at least

one match state, while in TANTAN a delete state is used move to a state with a lower

order. Conversely, insert states allows us to move in the opposite direction; using insert

state causes an increase of the order of the repeat state. It is also possible to move from

the insert state Ij to the insert state Ij+1, which is not possible in a profile HMM.

One disadvantage of the TANTAN model is that it does not model the first occurrence

of the motif sequence, since repeat states model only the subsequent repetitions of the

sequence. This caused problems when we wanted to incorporate TANTAN as a submodel

for aligning sequences. Therefore we have added an additional chain of prefix states

P1, . . . , PK modeling the first repetition. Transitions from the start state are now only to

the final state (modeling an empty sequence) and the state P1. State Pl, 1 ≤ l ≤ K has

transitions to the final state, repeat state Rl and the state Pl+1, if such a state exists.

We set emission distribution of the insert and prefix states to the background proba-

bility: the distribution of the bases in DNA. Emission state of the state Rl was derived

using Jukes-Cantor model with parameter t, where the emission X[i] evolved from X[i− l]
over time t.

The TANTAN model evolution of repetitions differently than the Sunflower model.

While the Sunflower model assumes that the repetitions evolved independently from the

single common ancestral motif, TANTAN assumes that each repetition evolves from the

previous repetition. Therefore the substitutions, insertions, and deletions carry over to

the following repetition.
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4.3 Models for Aligning with Tandem Repeats

In this section we describe models that we have designed and used in our methods. We

describe the model in an dual way; as a generalized pHMM and as an equivalent non-

generalized pHMM (emissions length is at most 1 in both sequences). The distribution

of generated alignments and annotations (with certain annotation functions) are same in

both models, but clearly the distribution of state paths will be different due to different

sets of states.

The generalized model is obtained by taking the simple 3-state pHMM model from

section 2.4 and adding a single generalized pair state R, called the repeat state, which in a

single step generates tandem repeats in both sequences. The overall topology of GpHMM

is illustrated in the Figure 4.3.

To made this model more flexible, the emission distribution of state R is defined by

an additional pHMM. Since the repetitions in the tandem repeat are very similar to each

other, we did not try to model the evolution of repetitive parts of the sequences. We

assumed that repeat evolved from the original motif by one event, and then repetitions

evolved independently. The goal of state R is to model such evolution in single generalized

emission. Model was constructed from the Sunflower models. Let C be the set of all motifs

that can occur in the alignment. For each motif c ∈ C we created sunflowers SXc and SYc .

Sunflower SXc is the sunflower model with motif c which generates symbols only in sequence

X; SYc generates symbols in Y . We connect SYc and SXc by a transition from the final

state of SXc to the start state of SYc with probability 1 and thus getting model Hc that

generates repeats in both sequences. We connected models Hc for all c ∈ C in parallel

by a single start state and a single final state as in Figure 4.3. The probability of the

transition from the start state of R to the start state of model Hc was proportional to the

distribution of motifs Pr (c). Note that the size of this model is determined mostly by the

total length of all motifs, and therefore this model can be very large, even infinite if we

consider all possible sequences as possible motifs for tandem repeats. To keep the model

size reasonable, we computed a set of candidate motifs C and use it for construction of

the model. More details are in section 4.5. We call this generalized model the sunflower

field (SFF) model.

Note that the state R defined as above can generate arbitrary long sequences. Ad-

ditionally, the Sunflowers are combined in a way, which does not produce an alignment

of tandem repeats. Its task is to filter tandem repeats out of alignment, so that they do

not cause biases in the parts of an alignment emitted by other states (match and indel
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Figure 4.3: Topology of the Repeat pHMM. We extended the 3-state pHMM with one

generalized state R, which in one emission generates tandem repeats in both sequences.

The emission distribution of state R is defined by another pHMM shown in a dotted

box (*). Bellow the model we show an example of emitted alignments. Dashed gray lines

corresponds to multiple emissions from the same states, while the full line represents one

emission from a generalized state.

(*) Black states in this submodel are silent start state and final state. Spirals represents

sunflower submodels. They are in pairs of two identical models SXc and SYc , one for

generating tandem repeat in one sequence, other for generating tandem repeat in the

other sequence. There are multiple pairs of submodels, each for modeling different motif

c.

states). Alignment of homologous tandem repeats is done later in a post-processing step

(see Section 2.4.4).

We also experimented with using a TANTAN-like model for defining emissions dis-

tribution of state R. We used the TANTAN model with the prefix states from Section

4.2.3. Similarly as with the sunflower model, we created two copies of TANTAN, each

generating repeats in only one sequence and connect them together exactly as we would

connect the sunflower models. Since TANTAN model does not rely on a motif, it is not

necessary to create more copies of the TANTAN HMM and its general topology looks like

SFFs with only one motif. Since TANTAN is a high order HMM, the resulting model is a

high order and generalized pair HMM. We refer to this model as TANTAN pHMM (TTP).

The advantage of this model over SFF is in it’s size, since TTP will have in practice fewer

states than SFF; the size of SFF model depends on the total length of all motif strings

while the size of TTP model depends on the maximum motif length (we set this limit to
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50 bases). Therefore the SFF model can be exponentially larger than the TTP.

Another difference between the SFF and the TTP is in the assumed evolution of orthol-

ogous tandem repeats. The SFF model assumes that repetitions accumulated substitutions

independently, while the TTP model assumes that each repetition evolve from the previ-

ous occurrence of the repetition. In the SFF model, we require that the tandem repeats

in both sequences share motif, but there is no dependence between the two sequences in

the TTP model; there is no penalty for them having different motifs.

In reality, tandem repeats at orthologous positions in two species share common an-

cestor and therefore share part of their evolutionary history. However, it is possible that

they were consequently modified by additional evolution events after speciation (including

more tandem duplications). In our model, we ignore such complex evolution of repetitions,

because it would lead to very complex model and increase the difficulty in decoding and

training. Kováč et al. developed a method with limited dependence by adding repeat

submodels emitting copies in the two sequences at same time [42].

Both SFF and TTP are defined as 4 state high order GpHMMs. In general, using

generalized models increases the time complexity of decoding algorithms quadratically.

Therefore we also used expanded versions of the models: we replaced the generalized state

R with the pHMM submodel defining emissions of R. All transitions entering into R were

replaced by transitions to the start state of the submodel, and all outgoing transitions

from R were replaced by transitions starting in the final state of the submodel. This

transformation does not change the distribution of alignments generated by the model.

4.3.1 Parameter Estimation

We used the alignment of the human chromosome 15 and its orthologous sequences in

the dog genome as the source alignment for the estimation of the parameters of the used

models. In our experiments, we have used 310, 091 consensus sequences found by the TRF

program on the source alignment as motifs for building SFF. The probability of choosing a

particular motif is the observed frequency of the motif in the TRF output. Since resulting

model is large, we limit Sunflower submodels (see Section 4.5.

We set the parameters of the Sunflower submodel manually: the insert and delete rates

were set to 0.005, the match states allows substitutions in motif sequence according to the

Jukes-Cantor model with parameter t = 0.05. The emission of the insert states were set

according to the frequency of the bases in the input human-dog alignment. Parameters of

the TANTAN submodel were estimated by the Baum-Welch algorithm [22] on 500 repeats
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sampled from the SFF model.

We have annotated the source alignment using TRF program; each alignment column

was annotated as a repeat if any of its bases were annotated as repeat. We assumed that

all columns annotated as repeats were generated by state R and all other columns were

generated by respective state: M , IX , or IY . Note that is is clear which non-repeat column

was generated by which state. Therefore could estimate the emission distributions and

transition distributions from the frequencies of occurred transitions in transitions in the

source alignment (see Section 2.1.6).

4.4 Decoding Methods

The right selection of the decoding method can have significant effect on the quality2

of predictions of a method. In sections 2.1.5, 2.2 and Chapter 3, we described several

decoding algorithms whose aim was to increase the accuracy of the sequence annotation.

Similarly, Lunter et al. (2008) studied the effect of different decoding algorithms on the

quality of the constructed alignments (see Section 2.4.8) and showed that the Viterbi

algorithm was not the best method for constructing sequence alignments. Therefore it is

worth to consider domain-specific decoding methods for constructing alignments.

In this section we describe several optimization criteria that we used with the 3-state

model, the SFF model and the TTP model: the Viterbi algorithm (VA), the posterior

decoding (PD), the marginalized posterior decoding (MPD), the block Viterbi algorithm

(BVA) and the block posterior decoding (BPD). The first three methods are used with the

non-generalized versions of the models, the latter two methods (block methods) are used

with GpHMMs. We have already described the first three algorithms in Section 2.4.4.

While the first three methods are general purpose decoding methods of pair HMMs, we

introduce BPD and BVA as an domain-specific decoding methods. Their goal is to remove

tandem repeats out scope of the three state part of the SFF model.

Before continuing, we make additional argument for the use of the domain-specific

decoding methods instead of finding the most probable state path, the most probable

annotation, or in case of the pHMM, the most probable alignment. When constructing

the model, we do many simplifications of the biological processes. This is because because

without these simplifications, we would end up with very large and impractical models. We

can use the domain-specific decoding method as an compensation for such simplifications;

2The term quality is intentionally loose.
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we can practically move the complexity from the model into the decoding method.

In Section 2.2.1 we defined a gain function as a functions of two annotations. For

pair HMMs we define a gain function as a function of two annotated alignments consist-

ing of alignment columns along with annotation symbols. This is necessary, because we

use generalized models, and therefore annotation symbols do not uniquely determine the

alignment (there can be multiple alignments with the same annotation).

We represent columns of an annotated alignment using indices to sequences and an-

notation symbols. In the case of generalized models, which can generate more than

one column in one step, only the first column will contain annotation symbol, other

columns will contain symbol ∅. Formally, an annotated alignment of length t of se-

quences X = x0x1 . . . xn−1 and Y = y0y2 . . . ym−1 is represented as a sequence of tu-

ples (u0, a0, b0), . . . , (ut−1, at−1, bt−1) where ai ∈ {0, . . . , n− 1} ∪ {−0, . . . ,−n} and bi ∈
{0, . . . ,m − 1} ∪ {−0, . . . ,−m}, and ui is either an annotation symbol or symbol ∅. We

will refer to triple (ui, ai, vi) as an annotated alignment column. Number i represents i-th

symbol in the corresponding input sequence and −i represents a gap in the sequence be-

fore position i (if i is the length of the sequence, it represents the gap at the end of the

sequence). For example (IX , 47,−42) means that x47 is aligned to a gap that is between

y41 and y42 and that this column has annotation IX . Naturally, indices in ai and bi have

to be in non-decreasing order, and each non-dashed symbol has to be in the corresponding

sequence in the alignment exactly once. Additionally, a0 has to be 0 or −0, at is n or −n.

The constrains for b are analogous. The first annotation symbol u0 6= ∅ and if some ui is

equal to ∅ then such a column was emitted by the same emission as the previous column.

If we use a non-generalized model, the annotated alignment cannot contain symbol ∅.

The reason for using annotation symbol ∅ is that we need to distinguish between different

generalized emissions. We can define the probability of an annotated alignment Λ as the

sum of the probabilities of the state paths that generate Λ. We denote this probability as

Pr (Λ | X, Y ).

We are interested in the repeat annotation with annotation function λR. For generalized

SFF and TTP (and 3-state pHMM), λR is the identify function. For the non-generalized

versions, λR(u) = R for all states u from the submodels modeling tandem repeats.

Similarly as for the regular HMMs, we can define a gain function G(Λ,Λ′) that cor-

responds to “similarity” of two annotated alignments Λ and Λ′. Note that for HMMs,

symbol Λ represents annotation; with pHMMs, we use this symbol for an annotated align-

ment. Since a pHMM defines the probability distribution ΛT of the correct annotated
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alignments, we can define the expected gain of an annotated alignment given sequence X

and Y and gain function G:

EΛT |X,Y [G(ΛT ,Λ)] =
∑
ΛT

G(ΛT ,Λ) Pr (ΛT | X, Y ) (4.1)

Since we do not know the correct annotated alignment, we search for the annotated

alignment Λ∗ with the highest expected gain:

Λ∗ = arg max
Λ

EΛT |X,Y [G(ΛT ,Λ)] (4.2)

Finally, we express the optimization criteria of various decoding methods using the

highest expected gain framework.

The Viterbi algorithm and block Viterbi algorithm Gain function for the Viterbi

algorithm assigns +1 if the predicted annotated alignment is identical to the true annotated

alignment. In both cases, the labeling function is the identity function. The optimization

algorithms were described in sections 2.4.2 and 2.4.3. The time complexity of VA is

O(nmE) where E is the number of non-zero transitions in the model and n and m are

lengths of the two sequences. We will discuss the time complexity of BVA at the end of

this section.

We make a distinction between the VA and BVA when using the SFF or the TTP

models. Using the VA on the expanded model is referred to as the VA. Using the VA on

the generalized version of the model will be referred to as the BVA. The difference between

these two versions is that in the VA, we account for only one state path through the repeat

submodel. The BVA however sums all possible paths through the repeat submodel, and

therefore abstracts from the exact realization of the alignment of tandem repeats to their

consensus.

Posterior decoding The Viterbi algorithm awards non-zero gain only if an annotated

alignment is entirely correct. The gain function of the posterior decoding is more granular.

In the traditional version (discussed in Section 2.4.4) it assigns +1 for every correctly

predicted alignment column ignoring column labels. An annotated alignment column

(ui, ai, bi) is correctly predicted if there is an alignment column (v, ai, bi) for arbitrary v in

the true annotated alignment.

We will consider a stricter version of the PD in which the corresponding annotated

alignment column in the correct annotated alignment has to be identical (annotations have
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to be same as well). This stricter condition is aimed for the expanded versions of SFF

and TTP, since without this condition the PD would treat repeats as gaps despite having

orthologs in the other sequence (our models treat such repeats independently and models

them formally as gaps). For the 3-state HMM, this stricter condition is equivalent to the

original version because each alignment column determine the used state. The running

time of the PD is again O(nmE).

The difference from the original PD is in the used recurrence. In stricter version we

also keep the used label c in the recurrence M . The interpretation of M [i, j, a] if following.

The score of the best annotated alignment that aligning sequences X[: i] and Y [: j], where

the last annotation symbol is a. The recurrence is following:

M [−1, i, a] = 0, 0 ≤ i < m (4.3)

M [i,−1, a] = 0, 0 < i < n (4.4)

M [i, j, a] = max
b∈C


M [i− 1, j − 1, b] + Pr ((X[i], a, Y [j]))

M [i, j − 1, b] + Pr ((−i, a, Y [j]))

M [i− 1, j, b] + Pr ((X[i], a,−j))

, 0 ≤ i < n, 0 ≤ j < m

(4.5)

C is the set of all annotation symbol and Pr (A) is the posterior probability of the anno-

tation alignment column A. The posterior probability of an annotated alignment column

A is the sum of the probabilities of all annotated alignments that contain A. It can be

computed by the Forward-Backward algorithm.

Marginalized posterior decoding Marginalized posterior decoding is similar to the

posterior decoding. The only difference is that gaps that differ only in their position in

the sequence are considered identical. Therefore we treat column (u, i,−j) to be same

as (u, i,−k); gaps in the second sequence are treated symmetrically. The optimization

of this gain function is almost identical to the optimization of posterior decoding. The

only difference is that after computation of the posterior probabilities for all annotated

columns, we replace probability (u, i,−j) with the sum of (u, i,−l) for all l. The algorithm

has also time complexity O(nmE). As with PD, this decoding method is not used on the

generalized models.

Block posterior decoding Block posterior decoding is based on the posterior decoding

and is aimed at generalized models. BPD scores whole emissions instead of individual
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Figure 4.4: An example of the BPD gain function. Gray solid boxes enclose single blocks,

dashed boxes combine multiple block (each alignment column in such a box is one block).

Block from repeat state have gain +16 because it emits 16 sequences in exactly same

regions of the input sequences. Other alignment columns get +1 only if there is same

alignment column in the correct alignment that was generated by same state.

columns. The segment of an annotated alignment that was emitted by one emission is

called a block . In particular, the states M , IX and IY emit one-column blocks, and state

R emits multicolumn blocks. An annotated alignment can be divided into blocks using

∅ symbol, which mark continuation of a block. The gain function scores each block

individually. A one-column block (ui, ai, bi), ui ∈ {M, IX , IY } gets score +1 if there is an

identical column in the true annotated alignment; otherwise gain for such a block is 0.

A block of form ΛE = (ui, ai, bi)(∅, ai+1, bi+1) . . . (∅, aj, bj) where (j + 1)-th column does

not contain ∅ (or there is no (j + 1)-th column) gets score +l if the block is correct.

The gain l is the number of emitted non-gap indices in the block. For example block

(R, 4,−8)(∅, 5,−8)(∅, 6, 8) contains 4 non-gap indices: 4, 5, 6 in the first sequence and 8

in the second sequence. The block is considered correct if exactly the same regions in X

and Y form a block with the same annotation in the true annotated alignment.

The reason for using score +l instead of +1 is that otherwise the decoding method

would be biased towards short blocks. Instead of l, the number of emitted symbols,

we could use the number of emitted columns. However we would then discriminate the

submodels that would tried to align repeats (although we did not used such models). An

example of this gain function in Figure 4.4.

To optimize this gain function, we have to compute posterior probabilities for all po-

tential blocks. This can be done by the Forward-backward algorithm. In a GpHMM, each
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block is given by a state and two intervals; one in sequence X and one in sequence Y .

In our models, only state R is generalized and the overall number of states is constant.

The number of possible blocks is therefore O(n2m2). The expected gain of the block is

its posterior probability multiplied by the number of emitted symbols. After computing

the expected gains of individual blocks, we can compute the highest scoring annotated

alignment in O(n2m2) time by the dynamic programming will be described in the end of

this section.

If we use the Forward algorithm for pHMM for computation of the emissions of state

R, then time complexity of the Forward-Backward algorithm (computation of the poste-

rior probabilities of all blocks) would be in O(n3m3E) time, where E is the number of

transitions in the repeat submodel; O(nmE) term is computing the emission probability.

With some pre-processing, we can lower the O(nmE) term to O(k) where k in the number

of sunflower pairs in the repeat submodel (in case of TTP, k = 1).

Let us consider the repeat submodel H with k sunflower pairs SX1 , S
Y
1 , . . . , S

X
k , S

Y
k . Let

pi be the probability of entering sunflower SXi . The probability of transition from SXi to

SYi is 1. We can write the probability of generating an arbitrary pair of sequences X ′ and

Y ′ by H as

Pr (X ′, Y ′ | H) =
k∑
i=1

pi Pr
(
X ′ | SXi

)
Pr
(
Y ′ | SYi

)
(4.6)

By pre-computing all of the emission terms Pr
(
X ′ | SXi

)
and Pr

(
Y ′ | SYi

)
, we can

compute the posterior probability of the block in O(k) time. Naive computation of prob-

ability Pr
(
X ′ | SXi

)
for all intervals X ′ would take O(n3E) time, but this can be further

improved. When computing Pr
(
X ′ | SXi

)
using the forward algorithm, we can use the

values from the forward table to compute the probability of emitting any prefix of X ′ by

looking at the forward probability of final state for the corresponding column. We thus

need to run the forward algorithm only once for every suffix of X. The optimization for

the other sequence is analogous. Using these techniques, we can pre-compute the emission

terms in O((n2 +m2)E) time, and the overall time complexity of computing the posterior

probabilities of blocks is O(kn2m2 + (n2 +m2)E).

Once the posterior probabilities are computed, we find the best-scoring alignment using

similar dynamic programming as for the PD. The difference is that blocks now are longer
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than one column and therefore the recurrence uses

M [−1, i, a] = 0, 0 ≤ i < m (4.7)

M [i,−1, a] = 0, 0 < i < n (4.8)

M [i, j, a] = max
b∈C

M [i− i′, j − j′, b] + Pr ((X[i′ : i], a, Y [j′ : j])) (4.9)

where 0 ≤ i′ ≤ i < n, 0 ≤ j′ ≤ j and i − i′ > 0 or j − j′ > 0 (at least one base was

emitted). The Pr ((X[i′ : i], a, Y [j′ : j])) is the posterior probability of a block with label

a containing sequences X[i′ : i] and Y [j′ : j]. The time complexity of this step is O(n2m2)

and therefore the overall time complexity of BPD is O(kn2m2 + (n2 +m2)E).

We can use the same techniques to optimize the BVA; the most expensive step in the

BVA is the computation of the block probabilities for state R, namely ev,(X′,Y ′). We can

use same trick to pre-compute all emission terms in O((n2 +m2)) time, afterwards we can

compute block probability in O(k). The complexity of the Viterbi algorithm (see Section

2.4.3) will be O(kn2m2) and the overall time complexity of BVA is O(kn2m2+(n2+m2)E).

Post-processing The problem with the SFF and the TTP models is that they model

repeat sequences in the sequences X and Y independently and do not try to align tandem

repeats at orthologous locations. Therefore we post-process the alignment using the 3-

state pHMM by realigning segments of alignments that are annotated as repeats. We also

include adjacent gaps into this post-process step.

4.5 Optimizations

In this section, we summarize additional techniques we have used to decrease the running

time of the decoding algorithms. The fastest decoding algorithms described above run in

O(nmE) time, which is still prohibitive for longer sequences. Additionally, block-based

methods are even slower. We used the following optimizations:

We implemented a standard technique of banding (Section 2.5.1). We first align input

sequences using Muscle [23] with default parameters. The final alignment methods were

then restricted to be within 30 bases from this guide alignment. This technique reduces

the O(nm) factor from the time complexity to O((n + m)d) where d is the maximum

distance from the guide alignment.
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The size of the SFF model is enormous. It is not practical to use a model with 310, 091

sunflower pairs. Therefore we used the TRF program [7] to find consensus motifs in

the input alignment and used only those to build SFF model. Note that the transition

probabilities to individual sunflower pairs were kept the same as in the original model. In

case that TRF found a consensus that was not in the original set of consensus sequences

used to build the SFF model, we assign it the probability of the least frequent consensus

from the original set. This technique is not applicable to TTP model.

To further reduce the running time of the block-based algorithms (BVA and BPD), we

restrict the emissions of the state R to specific intervals in both input sequences. First, we

find the candidate set of tandem repeat intervals for each input sequence independently.

Let TX and TY are the sets of candidate intervals (not necessarily disjoint) for sequences

X and Y respectively. We restrict emission of state R only to the pairs of intervals iX , iY

where iX and iY have beginning and end within 10 bases from some interval from TX

and TY respectively, or if one of iX or iY is an empty interval (there can be a tandem

repeat in only one sequence). By this heuristic, state R can have emissions in at most

(400|TX | + n)(400|TY | + m) positions. We applied this method to both SFF and TPP

models.

We used the following algorithm to select candidate intervals TX and TY :

1. Run the TRF program on the input sequences X and Y . Obtain sets of intervals

TX and TY and lists of consensus sequences CX and CY .

2. For every consensus c ∈ CX ∪CY , build the SRF model Sc (Sunflower repeat finding

model from Section 4.2.2).

3. Each model Sc is run on the sequences X and Y using the Viterbi algorithm. All

found repeat intervals are added into corresponding sets TX and TY .

The reason for using this method instead of using only intervals from TRF is that running

TRF on the input sequences independently can cause several problems. For example, if

sequence X contains three repetitions of motif m and sequence Y contains only one, then

the TRF would return interval only for sequence X. Additionally, consensus can be found

in both sequences but can be rotated, and therefore intervals in both sequences would be

shifted.
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4.6 Experiments

In sections 4.3 and 4.4 we proposed new methods for aligning sequences that contain

tandem repeats; SFF and TTP model. We also described five decoding methods, out of

which two are new (BVA and BPD). To show the usefulness of the proposed methods,

we investigate the effects of using these methods instead of standard methods for aligning

sequences, which were described in Section 4.1. We evaluated these methods on the

simulated data generated from a model trained on the human-dog alignment. Evaluating

model on real data is hard, because we do not know the correct alignment of the real DNA

sequences, and thus we have to use indirect methods for evaluation. We do not present

such a comparison in this thesis, but in [59] we compare several methods on real data

counting the number of genes that map through each alignment to the other genome to a

plausible gene structure.

4.6.1 Simulated Data

We trained the SFF model, the TTP model, and the 3-state HMM on the human-dog

alignment as described in section 4.3.1. Then we sampled 200 test alignments each of

length at least 200 bases from the SFF submodel with the condition, that the number

of repetitions in the tandem repeat has to be at least three in both sequences; we were

sampling emission from state R until the condition was met. The reason for this is that

otherwise we would have many segments of alignments that are annotated as repeats,

but in fact contain only one copy of the motif. We refer to these alignments (along

with the sampled repeat annotation) as the correct alignments and correct annotation

(repeat intervals and consensuses). The program Context [34] was trained of 200 separate

alignments sampled from the same SFF model.

4.6.2 Accuracy Measures

We use several measures to compare the correct alignment and predicted alignments.

It is important to use multiple measures for evaluating predicted alignments, because the

measure determine the optimal gain function; when comparing using measure β(Λ,Λ′), we

can alway search for an alignment that optimizes the expected value of β(Λ,Λ′). However

in practice we are looking for methods that give good results under multiple measures.

The first measure we used was the error rate; the fraction of incorrectly predicted

columns of an alignment. It was measured only on the alignment columns generated from
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non-repeat states during sampling, because SFF and TTP do not model alignment of

repetitive regions.

Additionally, we investigate the accuracy of predicting exact repeat block boundaries

in alignments by measuring the number of correctly predicted repeat blocks; a block is

correctly predicted if it contains identical parts of the sequences as the corresponding block

in the correct alignment. We report the block sensitivity, which is the number of correctly

predicted blocks divided by the number of all repeat blocks in the correct alignment, and

block specificity, which is the number of correctly predicted blocks divided by the number

of all predicted repeat blocks. We also investigate the accuracy of prediction of repeat

annotation for individual bases; the repeat sensitivity and specificity.

4.6.3 Results

We have conducted several experiments to compare the accuracy of the predicted align-

ment, and measure the effects of using different models and algorithms. First we compare

the accuracy of our SFF-based methods with standard alignment methods. The results

are in the Table 4.1. We choose the Viterbi algorithm with the 3-state model as a baseline

method. From standard methods, we also run the Muscle software [23], the Context [34],

and the posterior decoding on the 3-state HMM with and without hard-masking of tan-

dem repeats. The hard-masking was done using the TRF program. None of the standard

methods provides repeat annotation, and therefore we report only the alignment error.

The only exception is the PD with masking, where we annotated predicted columns as

repeats if at least one base in the column was masked.

We run all decoding algorithms described in section 2.4.4 with SFF model and com-

pared it with standard alignment methods. In general, using the SFF model decreased the

alignment error rate by 15− 30% compared to the baseline method (see table 4.1). Other

standard methods also had in general higher error rate than the SFF-based methods. The

high error rate of the Context program could be caused by insufficient training data or

some software issues. We run muscle with default parameters, and therefore its scoring

scheme was not tailored to our data. Higher error rate of PD with hard-masking might

be caused by the insufficient accuracy of the tandem repeat annotation.

The 15% decrease of the error rate was obtained by replacing the 3-state model with the

Sunflower Field model, additional improvements was due to use of the different decoding

algorithms, with the marginalized posterior decoding having the lowest error rate. The

Viterbi based methods had consistently higher error rate than posterior based methods
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Alignment Repeat Block

Algorithm error sn. sp. sn. sp.

3-state VA (baseline) 4.78%

Context 5.98%

Muscle 5.62%

3-state PD 4.41%

3-state masked PD† 5.03% 99.23% 74.16% 7.66% 7.24%

SFF MPD 3.37% 95.97% 97.78% 43.07% 44.87%

SFF PD 3.53% 95.86% 97.87% 42.70% 47.37%

SFF BPD 3.51% 93.09% 98.07% 36.50% 41.67%

SFF BVA 3.91% 93.26% 97.96% 35.77% 40.66%

SFF VA 4.04% 95.29% 97.85% 42.70% 48.95%

Table 4.1: Accuracy of decoding methods on simulated data. †Columns with at least one

masked character are considered as repeats.

and the block-based versions of the algorithms decreased the error rate by at most 3.3%

compared to the non-block based methods. Surprisingly, block based methods had poorest

performance in the block sensitivity and specificity and repeat sensitivity. These measures

are closer to what block methods optimize, so we expected the opposite. Reason for this is

perhaps due to the use of approximate intervals obtained by TRF and SRF. Note that the

block-based methods use both predicted intervals and motifs to restrict the search space

due to their high running time. In contrast, the remaining methods use only motifs (see

section 4.5).

Indeed when we replace predicted motifs and intervals with the correct ones, accuracy

of the block-based methods improved significantly (see Table 4.2). Results in Table 4.2

help us to quantify the effect of not using correct repeat intervals and thus can be seen

as an upper bounds for the performance of our models achievable by improving repeat

annotation. There is clearly room for improvements of repeat intervals; we could perhaps

try to use other programs that detect tandem repeats, like ATRhunter [70] or mreps [41].

The change from predicted to real intervals had even more pronounced effect on the

TTP model (see Table 4.3); using the correct intervals, the TTP model has only slightly

worse error rate than the SFF, which is expectable, since the data were generated from the

SFF model. However, using predicted intervals, TTP has a significantly higher error rate,
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Alignment Repeat Block

Algorithm error sn. sp. sn. sp.

SFF MPD 3.37% 95.97% 97.78% 43.07% 44.87%

SFF PD 3.53% 95.86% 97.87% 42.70% 47.37%

SFF BPD 3.51% 93.09% 98.07% 36.50% 41.67%

SFF BVA 3.91% 93.26% 97.96% 35.77% 40.66%

SFF VA 4.04% 95.29% 97.85% 42.70% 48.95%

SFF MPD◦ 3.02% 98.93% 99.64% 77.01% 76.17%

SFF PD◦ 3.42% 98.84% 99.51% 75.91% 80.93%

SFF BPD◦◦◦ 3.21% 97.70% 99.87% 80.66% 94.44%

SFF BVA◦◦◦ 3.71% 98.12% 99.85% 81.75% 92.18%

SFF VA◦ 3.94% 98.54% 99.45% 75.55% 83.47%

Table 4.2: Accuracy of decoding methods using real motif and/or real intervals on sim-

ulated data. ◦method uses motifs from the correct repeat blocks. ◦◦◦method uses the

correct motifs and intervals from the correct repeat blocks.

Alignment Repeat Block

Algorithm error sn. sp. sn. sp.

3-state VA (baseline) 4.78%

SFF BPD 3.51% 93.09% 98.07% 36.50% 41.67%

SFF BVA 3.91% 93.26% 97.96% 35.77% 40.66%

TTP BPD 5.05% 61.38% 97.48% 0.00% 0.00%

TTP BVA 6.17% 67.86% 96.51% 0.00% 0.00%

SFF BPD◦◦◦ 3.21% 97.70% 99.87% 80.66% 94.44%

SFF BVA◦◦◦ 3.71% 98.12% 99.85% 81.75% 92.18%

TTP BPD◦◦ 3.42% 60.45% 99.90% 0.36% 0.46%

TTP BVA◦◦ 3.83% 61.74% 99.88% 0.00% 0.00%

Table 4.3: Accuracy of decoding methods using real motif and/or real intervals on sim-

ulated data. ◦◦method uses intervals from the correct repeat blocks. ◦◦◦method uses the

correct motifs and intervals from the correct repeat blocks.
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Alignment Repeat Block

Algorithm error sn. sp. sn. sp.

3-state VA (baseline) 4.78%

SFF MPD 3.37% 95.97% 97.78% 43.07% 44.87%

SFF MPDU 3.63% 96.03% 97.74% 42.70% 43.33%

SFF MPDUU 3.36% 95.99% 97.81% 40.88% 43.08%

Table 4.4: Accuracy for marginalized posterior decoding with different models or real

motifs. UParameters of the three-state submodel were estimated from human-chicken

alignment. UUParameters of SFF submodel were perturbed randomly.

which means that TTP is even more sensitive to the intervals that are used. The high

error rate and low repeat and block prediction accuracy could be caused by improperly

modeling the first repetition, because annotations of the TTP methods almost always

skip the first copy of the repeat motif. Additionally, in TPP the tandem repeat motifs in

sequences X and Y are not dependent between sequences, which can also increase error

rate. This could be improved by merging the separate chain of prefix states P1, . . . , PK

for sequences X and Y into a chain of match states aligning the first repetition.

Since we use the same model for generating data and testing, we tried to quantify the

effect of misspecification of the model parameters. The SFF model has two principal types

of parameters; parameters of the 3-state HMM and parameters of the Sunflower model.

We investigate the effect of misspecification for both types independently. For the 3-state

model, we have estimated the parameters from human-chicken alignments (chromosome

20 in human genome) instead of human-dog alignments. For the second type, we have

perturbed the each parameter of the Sunflower model randomly by an additive term from

0.02 to 0.05. On these models, we run marginalized posterior decoding. Table 4.4 shows

that our method is quite robust. Our method is more sensitive to change in the training

alignments for the 3-state submodel, since the error rate for MPD increased by 8%, but it

is still significantly better than the baseline method. Perturbing parameters for Sunflower

submodel did not have significant effect on error rate (increase by 0.5%).

We were also investigating the use of the different different repeat finding methods

for masking (see Table 4.5). We use the Sunflower model (modified for finding tandem

repeats as described in section 4.2.2), TRF, and TRF with non-overlapping repeats (we

select maximal scoring non-overlapping set of tandem repeats out of TRF output). We
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Alignment Repeat Block

Algorithm error sn. sp. sn. sp.

3-state Viterbi (baseline) 4.78%

3 state masked PD, TRF† 5.03 99.23 74.16 7.66 7.24

3 state masked PD, Sunflower† 5.21 98.30 68.65 9.12 7.53

3 state masked PD, TRF?† 4.77 88.17 79.63 7.66 9.13

3 state masked PD, ◦◦◦† 4.50 100.00 97.23 45.99 61.13

3 state masked VA, TRF† 5.89 99.25 73.29 5.47 5.14

3 state masked VA, Sunflower† 5.82 98.32 67.90 5.84 4.89

3 state masked VA, TRF?† 5.10 88.33 78.68 5.47 6.47

3 state masked VA, ◦◦◦† 5.02 100.00 95.41 45.99 44.21

Table 4.5: Accuracy of decoding method using the simple 3-state HMM and hard-masking.

The best and the second best are bold. †Columns with at least one masked character are

considered as repeats. ◦◦◦method uses the correct motifs and intervals from the correct

repeat blocks. ?Non-overlapping set of repeats from TRF output with maximal total score

is used.

used hard-masking as described in section 4.1. For decoding we used both the VA and the

PD with the 3-state model. Apart from masking the correct intervals, the best performing

masking was one where we masked non-overlapping repeats from TRF.

In the last experiment, we investigate the relation between the error rate and the

distance from the nearest repeat. An alignment column was considered as a repeat if in

the correct alignment at least one base of the column was annotated as a repeat. The

distance from the repeat is measured by the number of columns. When the distance

from the repeat is high, our model is almost identical to a 3-state pHMM, and therefore

the performance of both models should be similar in such regions. However, we do expect

models incorporating repeats to be more precise in the regions near tandem repeats. Figure

4.5 contains plots for this metric for various combinations of parameters. In general, all

algorithms have the highest error rate near boundaries of the repeat, with the error rate

lowering with the distance from the repeat. Most methods reach the baseline error rate

within distance 10 bases of the repeat border.

Figures 4.5a and 4.5b suggests that the right selection of decoding method can improve

error rate near repeats, but most of the drop in the error rate was caused by using the
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Figure 4.5: The relation between the error rate and the distance from the nearest repeat.

On the Y axis is error rate of the algorithm; the number of incorrectly aligned columns.

On the X axis is the distance from the nearest repeat. Baseline is the overall error rate,

with no relation to the distance from the repeat border, for 3-state model with the VA.
◦method uses motifs from the correct repeat blocks. ◦◦method uses intervals from the

correct repeat blocks. ◦◦◦method uses the correct motifs and intervals from the correct

repeat blocks. ?Non-overlapping set of repeats from TRF output with maximal total score

is used.
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SFF model. As with other metrics, TTP with correct intervals performs similarly to SFF

model, but TTPs error rate near repeats raises significantly where intervals were obtained

from the TRF (see Figure 4.5d). Figure 4.5c demonstrates that for block methods, using

BVA instead of BPD almost double the error rate near repeat. Overall these plots confirm

our expectation that the improvement of the SFF model is concentrated near tandem

repeat borders.



Chapter 5

Conclusion

In this thesis we studied the use of hidden Markov models for sequence annotation and

sequence alignment and provided both theoretical and practical contributions.

Chapter 3 considers two-stage decodings for sequence annotation. In a two stage

decoding, we at first compute the guide and then find an annotation optimizing a chosen

gain function using the guide as a restriction. Guides can be used to decrease running

time, but we have shown experimentally that guides can also improve the accuracy. Then

we focus on the computational problems of computing guides. We gave the combinatorial

proof that the most probable set problem is NP-hard. We also show that this problem is

fixed-parameter tractable when the fixed parameter is the number of states of the HMM.

It is not clear, if the most probable set problem is in NP. Then we show a reduction from

3-SAT to the most probable restriction problem proving that this problem is NP-complete.

Similarly to the most probable set problem, this problem is also fixed-parameter tractable.

Finally, we focus on the most probable footprint problem. We showed a constant-sized

HMM for which finding the most probable footprint is NP-hard even if we use the identity

function as a labeling function. We also show how to alter the proof of the most probable

footprint to the proofs of the most probable set and the most probable restriction.

There are still some open problems left. The most probable footprint is a special case

of the most probable ball problem (with the border shift sum distance, where r is the

radius) which was studied by Brown and Truszkowski [16]; we described it in Section

2.2.4. This problem is NP-hard even for r = 0 [16], if multiple states can have same label.

Additionally, if r ≥ n, where n is the length of the input sequence, the most probable

ball problem is equivalent to the most probable footprint problem. Our results thus imply

that the most probable ball problem is NP-hard even if all states have unique labels. It

is still open problem, if the most probable ball problem is NP-hard for r < n and HMMs
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with the identity function as an annotation function.

From the practical point of view, two-stage algorithms could be used for pair hidden

Markov models, or in different application domains; for example the gene finding.

In Chapter 4 we study the sequence alignment problem using pair HMMs. We propose

the new SFF model that incorporates tandem repeats, which are prevalent in the genomic

sequences. In addition to the new model, we explored several decoding criteria including,

the block Viterbi algorithm and the block posterior decoding, which treat tandem repeats

as blocks. On the simulated data, the SFF model alone decreased the error rate by at

least 15% compared to the standard three-state model with the Viterbi algorithm. The

decrease in the error rate was concentrated near repetitive intervals.

There are several possible directions for further research. For example our model does

not take into account dependencies between repetitions, and therefore tandem repeats in

different sequences are independent (apart from using the same motif). We could model

the evolution of repeats more realistically either in the SFF model, or we could incorporate

it into the decoding algorithm. Similar improvement can be done into the TTP model,

which does not model the first repetition well and allows the use of the different motifs in

homologous repeats. This problem could be solved by modeling the first repetition as a

pair profile HMM and other repetitions would be modeled by the TANTAN model. Other

improvement can be incorporating additional submodels modeling other genomic features,

for example gene structures. It might be interesting to study the ways of incorporating

different, but overlapping features into the same model (for example the tandem repeats

inside of gene structures). Finally, we can extend this method to align multiple sequences.

From the practical point of view, our software needs to be optimized, so it can be used on

genomic sequences of arbitrary length.

We studied the decoding algorithms in all chapters of this thesis. The selection of

a proper decoding method is neglected problem, and many applications simply choose

the Viterbi algorithm. While it is true that for many applications the Viterbi algorithm

is optimal, our experience shows that choosing the proper decoding method can signifi-

cantly improve the accuracy of predicted annotations or alignments. We believe that the

selection of the decoding function should be an important part of designing a method

that uses a probabilistic model, because domain-specific decoding algorithms can decrease

some statistical biases and can be used as a compensation for simplifications done during

designing of the HMM. Finally, there are many interesting computational problems that

arise in the area of decoding algorithms, from the most probable annotation problem to



CHAPTER 5. CONCLUSION 103

the optimization of custom gain functions.
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motifs. In Information Technologies - Applications and Theory (ITAT), pages 41–48,

2012.



BIBLIOGRAPHY 108

[43] Anders Krogh, Björn Larsson, Gunnar von Heijne, and Erik LL Sonnhammer. Pre-

dicting transmembrane protein topology with a hidden Markov model: application

to complete genomes. Journal of Molecular Biology, 305(3):567 – 580, 2001.

[44] J Lember and AA Koloydenko. A constructive proof of the existence of viterbi pro-

cesses. Information Theory, IEEE Transactions on, 56(4):2017 –2033, april 2010.

[45] A Lempel and J Ziv. On the Complexity of Finite Sequences. Information Theory,

IEEE Transactions on, 22(1):75 – 81, jan 1976.

[46] David A Levin, Yuval Peres, and Elizabeth L Wilmer. Markov chains and mixing

times. American Mathematical Society, 2006.

[47] Pachter Lior, Alexandersson Marina, and Simon Cawley. Applications of Generalized

Pair Hidden Markov Models to Alignment and Gene Finding Problems. Journal of

Computational Biology, 9, July 2004.

[48] Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. MSAProbs: multiple sequence

alignment based on pair hidden Markov models and partition function posterior prob-

abilities. Bioinformatics, 26(16):1958–64, Aug 2010.

[49] DV Lu, RH Brown, M Arumugam, and MR Brent. Pairagon: a highly accurate,

HMM-based cDNA-to-genome aligner. Bioinformatics, 25:1587–1593, Jul 2009.

[50] Gerton Lunter, Andrea Rocco, Naila Mimouni, Andreas Heger, Alexandre Caldeira,

and Jotun Hein. Uncertainty in homology inferences: assessing and improving ge-

nomic sequence alignment. Genome Res, 18(2):298–309, Feb 2008.

[51] Rune B Lyngsø and Christian N S Pedersen. The consensus string problem and the

complexity of comparing hidden Markov models. Journal of Computer and System

Sciences, 65(3):545 – 569, 2002.

[52] Bin Ma, John Tromp, and Ming Li. PatternHunter: faster and more sensitive homol-

ogy search. Bioinformatics, 18(3):440–5, Mar 2002.

[53] W H Majoros, M Pertea, and S L Salzberg. TigrScan and GlimmerHMM: two open

source ab initio eukaryotic gene-finders. Bioinformatics, 20(16):2878–9, Nov 2004.

[54] WH Majoros, M Pertea, and SL Salzberg. Efficient implementation of a generalized

pair hidden Markov model for comparative gene finding. Bioinformatics, 21:1782–

1788, May 2005.



BIBLIOGRAPHY 109

[55] P. W. Messer and P. F. Arndt. The majority of recent short DNA insertions in the

human genome are tandem duplications. Mol Biol Evol, 24(5):1190–1197, 2007.

[56] IM Meyer and R Durbin. Comparative ab initio prediction of gene structures using

pair HMMs. Bioinformatics, 18:1309–1318, Oct 2002.

[57] EW Myers and W Miller. Approximate Matching of Regular Expressions. Bulletin

of Mathematical Biology, 51(1):5–37, 1989.
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