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Abstrakt

V tejto dizerta£nej práci sa zaoberáme problémami súvisiacmi so zostavovaním DNA

sekvencií. Na²im hlavným cie©om je pracova´ s rozli£nými kombináciami typov £ítaní,

vrátane krátkych £ítaní s krátkymi a dlhými medzerami, £i dlhých £ítaní. Navrhli sme

algoritmus GAML (z angl. Genome Assembly by Maximum Likelihood � zostavovanie

genómu s najvä£²ou vierohodnos´ou), ktorý systematicky pracuje s rozli£nými typmi £í-

taní, pri£om ich vlastnosti reprezentuje pomocou pravdepodobnostných modelov. GAML

optimalizuje vierohodnos´ zostavenia genómu, ktorá silno koreluje s kvalitou zostavenia.

Po£as vývoja GAMLu sme na narazili na nieko©ko zaujímavých problémov súvisiacich

s indexovaním £ítaní. Vyvinuli sme novú dátovú ²truktúru CR-index, £o je index pre

mnoºinu £ítaní, vyuºívajúci fakt, ºe £ítania £asto pochádzajú zo spolo£ného nadslova. Tieº

navrhujeme MH-index, pre dlhé DNA sekvencie, ktorý vyuºíva minimalizéry.

Oxford Nanopore MinION je technológia, ktorá produkuje dlhé £ítania, ktoré sú dôleºité

pre zlep²enia zostavenia genómu. S pouºitím rekurentných neurónových sietí, sme vyvinuli

nástroje, ktoré zlep²ujú preklad elektrického signálu zo sekvenátora na DNA bázy a taktieº

sme zlep²ili algoritmy na porovnávanie signálov zo sekvenátora s referen£nou sekvenciou.

K©ú£ové slová: zostavovanie genómu, indexovanie re´azcov, minimalizéry, rekurentné

neurónové siete
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Abstract

In this thesis, we study several problems related to the DNA sequence assembly. Our main

focus is on handling di�erent combinations of read types, including short reads with short

and long inserts, and long reads. We propose the genome assembly by maximum likelood

(GAML) framework, which handles a variety of sequencing data in a systematic way by

using probabilistic models. In particular, GAML optimizes assembly likelihood score, which

has previously been shown to be strongly correlated with the assembly quality.

During the development of GAML, we have encountered several interesting problems

concerning indexing of sequencing reads. We have developed a new data structure CR-

index, an index for a collection of short reads that exploits the property that reads usually

originate from a common superstring. We also propose a index for long DNA strings, based

on the idea of minimizers, called MH-index.

Oxford Nanopore MinION is a technology producing long reads, which are important for

improving the sequence assembly. By using recurrent neural networks, we have developed

tools for improving the base calling (translation of the raw electric signal from the sequencer

to the DNA bases). We have also improved approaches for comparing raw signals from the

sequencer to the reference sequence.

Keywords: sequence assembly, string indexing, minimizers, recurrent neural networks
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Chapter 1

Introduction

Knowledge of DNA sequences has become indispensable for basic biological research and

in numerous applied �elds like diagnostics, forensic biology, etc. It is also important for

understanding cancer, �ghting antibiotic resistant bacteria, etc. With decreasing cost of

the DNA sequencing we are able to sequence more organisms, but consequently we have

to handle much bigger amounts of data.

For our purposes, we can consider DNA sequence to be a string over a four letter

alphabet {A,C,G, T} (individual letters will be called DNA bases). Usual length of DNA

sequence of an organism is between millions and billions of characters. For example, human

DNA has approximatelly three billions bases. Unfortunately, we are still not able to read

the whole DNA sequence at once, we can only read it in small pieces called reads. Usual

length of reads vary between hundred to tens of thousands of bases depending on the

sequencing technology. Thus, our only option is to try to computationaly reconstruct

original sequence, using overlap information between reads. This process is called sequence

assembly.

Theoretically formulating DNA genome assembly leads usually to NP-hard problems

(Kececioglu and Myers, 1995) (see more in Chapter 2), thus we resort to heuristic ap-

proaches. To make matters worse, there are also multiple technologies (Quail et al., 2012;

Liu et al., 2012) for reading DNA with very di�erent properties like read length, error rate,

error types, etc. Some technologies produce paired reads with known distance between

pairs. Usually assembly algorithms are tailored to a speci�c type of data and thus do not

work with every combination of data we can get. For example, ALLPATHS-LG (Gnerre

et al., 2011) assembler requires paired reads with speci�c distance between them. In Chap-

ter 2, we present GAML (Genome assembly by maximum likelihood), our own genome

1



CHAPTER 1. INTRODUCTION 2

assembly framework, which allows to seamlessly combine multiple data types. GAML is

based on optimizing genome likelihood score (Ghodsi et al., 2013; Clark et al., 2013; Rah-

man and Pachter, 2013), which was shown to strongly correlate with the quality of the

assembly. In GAML, we optimize the likelihood score by using simulated annealing, while

we speed up likelihood evaluation by reusing results from the previous evaluations. We

experimentally evaluate our algorithm and show that it produces comparable results to

other assemblers, which are tailored to speci�c datasets. We also show that GAML is able

to correct and improve previously created assembly by an other assembler.

Eventhough assembly algorithms are heuristics, they need to use many theoretically

interesting data structures and algorithms to scale to large genomic datasets. Examples

include probabilistic data structures for de Bruijn graphs (Chikhi et al., 2012), minhashing

approaches for overlaps (Koren et al., 2017) and fast and memory e�cient algorithms

for string indexing (Li and Durbin, 2009; Ferragina and Manzini, 2000). In GAML, we

encountered a problem of indexing large collections of short reads. In Chapter 3, we

present our solution to this problem, a compressed index for genomic data. called CR-

Index. In CR-Index, we exploit the fact that reads are usually derived from some unknown

superstring, which we approximately reconstruct and use for indexing. We also achieve a

large memory savings by carefully handling sequencing errors. CR-Index uses much less

space that other solutions, while maintaining fast querying speed.

Another traditional problem is indexing of a long DNA string and �nding positions of

short substrings of prespeci�ed size. Typical solutions include hash tables, which are fast,

but use more memory, and FM-Index (Li and Durbin, 2009; Ferragina and Manzini, 2000),

which uses less memory, but is slower. Inspired by success of minhashing for other genomic

tasks (Koren et al., 2017; Wood and Salzberg, 2014), in Section 3.2 we present our own

idea for fast and practical data structure called MH-index for searching for �xed-length

small substrings in a long string, which uses minhashing. Our new data structure has fast

speed comparable to hash-tables and uses small memory amount of memory comparable

to FM-indices.

In Chapter 4 we explore problems relate to Oxford Nanopore MinION, which is one

of the newest sequencing technologies showing a great promise in clinical applications and

other areas. MinION produces long but very noisy reads. An interestring part of MinION

from computer science point of view is that it does not perform exact base detection directly

in hardware, but instead only collects electrical signal, which needs to be translated into

DNA bases using a special software called base caller. We present our own base caller
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for MinION, called DeepNano, which uses recurrent neural networks. On older versions

of MinION, DeepNano had much better accuracy and base calling speed than the original

base caller. On newer versions, DeepNano has a slightly worse accuracy, but slightly better

speed than the original base caller.

One interesting ability of MinION is to produce results while DNA is being sequenced

and to reject reads while they are being sequenced, so we can focus sequencing on interesting

parts of the DNA (Loose et al., 2016). Unfortunately, base calling algorithms are slower

than the sequencing hardware, so we either have to use large computers, or come up with

fast approach for rejecting reads. One of such approaches, is working directly with electrical

signal coming from MinION, using algorithms like dynamic time warping (Sanko� and

Kruskal, 1983). We experimentally show that the original version of DTW is not suitable

in our case and propose a suitable improvements and experimentally demonstrate that our

improvements lead to better sensitivity and speci�city.

In each chapter we provide provide overview of related research alongside the presented

work. We present our original work in Sections 2.5 - 2.8 (GAML), Section 3.2 (MH-index),

Section 3.4 (CR-index), Section 4.2 (Deepnano), and Section 4.3 (our improvement for

dynamic time warping).



Chapter 2

Probabilistic Sequence Assembly

Current technologies cannot read the whole sequence at once, instead they produce many

(usually uniformly sampled) overlapping substrings of the sequence, called reads. The

length of reads ranges from hundreds of bases to tens of thousands of bases depending on

the sequencing technology. The goal of the sequence assembly is to reconstruct the original

string.

In this chapter, we present the genome assebly by maximum likelihood (GAML), our

own framework for the genome assembly problem. Its main bene�t is an ability to seam-

lessly integrate any combination of genome sequencing data. In contrast, most of the

current genome assembly tools are tailored to speci�c data types.

We �rst introduce a theoretical background of the sequence assembly, review current

algorithms and heuristics used in practice, as well as problems of evaluating the quality

of the sequence assembly, and calculating the likehood of the genome assembly. Then

we describe our own GAML framework, which introduces new extensions to the assembly

likelihood evaluation and provides an algorithm for �nding assemblies with high likelihoods.

Sections 2.1 - 2.4 give an overview of methods used in modern assemblers and give an

introduction to the problem of comparing genome assemblies. Sections 2.5 - 2.8 describe

and evaluate our new framework, which we published in Boºa et al. (2014).

Perhaps the oldest formulation of the assembly task as a computer science problem is

the shortest common superstring problem.

De�nition 1 (The shortest common supersting) Given a set of strings

P = {S1, S2, . . . , Sk}, the shortest common superstring is the shortest string S that contains

every string from P as a substring.

4



CHAPTER 2. PROBABILISTIC SEQUENCE ASSEMBLY 5

Unfortunately, �nding the shortest common superstring is NP-hard (Gallant et al.,

1980; Garey and Johnson, 1979). There is a known 2.5-approximation algorithm (Sweedyk,

2000). The most common greedy heuristic for this problem can be described as follows.

while P > 1 do

a, b← two strings from P with the largest overlap

c← merge(a, b)

P ← P \ {a, b} ∪ c
end while

The approximation factor for this heuristic is not known. It is conjectured to be a

2-approximation algorithm (Blum et al., 1994), which is also the best known lower-bound

for the approximation ratio. The best known upper bound is 3.5 (Kaplan and Shafrir,

2005).

In the following sections, we will examine more realistic formulation of the assembly

problem.

2.1 Challenges of Real Sequencing Datasets

Over the years, it has been shown that the shortest common superstring formulation does

not represent the assembly problem very well. On one hand, the problem is di�cult to solve

computationally, and the approximation algorithms do not yield very practical results. On

the other hand, this formulation does not consider some speci�cs of the underlying data,

which are outlined below.

Repeats. Original DNA sequence usually contains long repetitive regions, which are

often longer than the longest available read. Thus, if we have multiple repeated regions

in a row, the shortest common superstring solution is likely to collapse these repeats.

Moreover, if there are multiple repeated regions with unique sequences between them, the

shortest common superstring formulation will be unable to resolve the order of these unique

sequences.

Reverse complement. The DNA comes in two strands, which are reverse complements

of each other.

De�nition 2 (Reverse complement) For given DNA sequence S, its reverse comple-

ment is de�ned as RC(S) = h(SR), where h(·) is a homomorphism where h(A) = T ,
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Technology
Read Error Paired Cost per Reads Time

length rate reads million bases per run per run

Sanger 900 0.1% Yes $2400 ≈ 100 few hours

454 700 0.1% Yes $10 1 million one day

Illumina 50 - 300 2% Yes $0.05− $0.15 3 billion few days

PacBio 20000 14% No $0.13− $0.60 50000 few hours

Oxford Nanopore 30000 10%− 20% No $0.5 20000 one day

Table 2.1: Overview of current sequencing technologies

h(C) = G, h(G) = C, h(T ) = A.

During sequencing, we usually obtain reads from both strands of the DNA and we do

not have any information about the read orientation (which strand the read comes from).

Errors in reads. Sequencing technologies are prone to errors. Sometimes there are small

errors in reads, substitutions, small insertions and deletions. The error rate depends on

a speci�c sequencing technology. For example, some technologies have higher amount of

substitutions, while others have high amount of insertions. There are also reads which do

not belong to the sequenced genome, but result or contamination.

Paired reads. Some technologies produce reads in pairs for which we know an approxi-

mate distance in the genome. The total length of reads plus approximate distance between

reads is called insert size. Paired reads with long insert sizes can help resolve ambiguities

around repetitive regions.

Variety of sequencing technologies. There are several sequencing technologies cur-

rently available. They vary in cost, read length, accuracy, throughput, etc. 2.1 sumarizes

currently used sequencing technologies, based on data from Quail et al. (2012); Liu et al.

(2012); Mikheyev and Tin (2014). We have also added statistics of old Sanger sequencing

for comparison.

A wide variety of technologies presents an additional challenge to the assembly software.

Ideally, we would handle multiple combinations of read libraries from possibly di�erent

technologies (like Illumina + PacBio, or multiple libraries of Illumina reads with di�erent

insert sizes). We will discuss this topic further in Section 2.2.
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Due to these problems, it is obvious that �nding the shortest common superstring

is not a good formulation for the sequence assembly. In practice, our goals are usually

more humble and we are satis�ed with reconstructing unambiguous parts of the DNA

sequence. Assembly tools usually produce substrings from the original sequence called

contigs. Sometimes it is possible to detect approximate distances between contigs, but

the DNA sequence between them remains unknown. A sca�old is a sequence of contigs

with known approximate distance between them. In genome assemblies unknown areas are

often represented as a strings of several Ns.

2.2 Overview of Current Solutions

In this section, we discuss several attempts at theoretical formulation of the sequence

assembly problem and then we describe currently used assembly algorithms.

Informally, our goal is to reconstruct DNA sequence from reads, which:

• are much smaller than the original sequence,

• have an unknown orientation,

• contain errors,

• some of them did not originate from the original sequence,

• and may come in pairs with approximatelly known distance.

To account for the possibility of sequencing errors, Kececioglu and Myers (1995) pro-

posed a variant of the shortest common superstring problem.

De�nition 3 (The shortest common superstring with errors) Given set of reads F
and error rate ε, �nd the shortest sequence S such that for every A ∈ F there is a substring

B of S where:

min(d(A,B), d(Ā, B)) ≤ ε|A|

This formulation can be also extended to account for portion of reads originating from

di�erent sequence and paired reads. Not surprisingly, this problem is NP-hard (Kececioglu,

1991).

While accounting for sequencing errors, this formulation is still problematic since it

compresses repeated regions in the genome. One way towards solution of this problem is
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to observe that if we collapse repeated regions, we will see far more reads coming from

collapsed regions than from the rest of the genome. This is used in formulation given by

Myers (1995). Myers considers a coverage of the output sequence by reads and requires

that it is as uniform as possible.

Consider our reconstructed string S, and the positions of reads (layout) consisting of

F pairs of integers (si, ei), each pair indicating a starting and ending position of a read

in the reconstructed sequence. The layout is ε-valid if for each read A, the edit distance

between S[si : ei] and the read is at most ε|A|.
We will now formalize the notion of uniform coverage. Consider an observed distribution

of read start points (the proportion of reads which start before x):

Dobs(x) =
|{si < x}|

F

We will compare the observed distribution Dobs to a distribution of some sampling

process Dsrc (also called source distribution). Distribution Dsrc is usually uniform, but can

be nonuniform due to some systematic errors. We de�ne a maximum deviation between

these two distributions as

δ = max|Dobs(x)−Dsrc(x)|

De�nition 4 (DNA sequence reconstruction problem) Given set of reads F and

error rate ε, �nd a sequence S and ε-valid layout which has a minimal maximum devi-

ation between observed and source distribution of reads.

There are no theoretical results known for this formulation (the original paper focuses

on developing branch-and-bound algorithm and does not consider NP-hardness or approx-

imation).

The above mentioned formulations have never been used to design a practical sequence

assembler, because the exact solutions are too slow and approximate solutions are imprac-

tical. A more popular approach is to design heuristic solutions. Most practical assembly

algorithms are not backed by a well de�ned formulation, proof of correctness, or approx-

imation guarantees. In general, these heuristics proceed to "glue" reads which can be

unambiguously glued together, building the assembly step-by-step without following clear

optimization criteria. They use e�cient representation of overlaps between reads and try

to resolve ambiguous regions using paired reads and long reads.

A good review of assembly algorithms can be found in Miller et al. (2010). The algo-

rithms can generally be divided into two types, based on the overlap representation.
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ACCTGAC

CCGACTT

GACTTAGC
TAGCCC

TTAGCAAT

Figure 2.1: Example of overlap graph for reads ACCTGAC, CCGACTT, GACTTACG, TAGCCC,

TTAGCAAT.

Overlap-layout-consensus algorithms. The overlap-layout-consensus (OLC) algorithms,

�rst suggested by Myers (1995), work with overlaps between reads, which are usually rep-

resented by an overlap graph (see Figure 2.1). In an overlap graph, two reads are connected

by an edge if there is a su�ciently long overlap between them.

An OLC assembler works in three major steps. First, we have to �nd overlaps between

reads. We usually allow small edit distance between overlapping parts of reads. Naive

implementation of overlapping step has quadratic running time in the number of reads,

but it can be speeded up by using various seeding heuristics, where we �rst look for exact

matches of small prespeci�ed length.

After �nding overlaps and constructing an overlap graph, we perform the layout step.

Major part of the layout step is removal of transitive edges. We remove an edge from u to

w if there is an vertex v and edges from u to v and from v to w. After the transitive edges

removal, we attempt to �nd a reasonable layout of reads in the assembly. Each contig from

the assembly can be represented as a path in the assembly graph. Assemblers usually start

by joining reads which can be joined unambiguously (i.e. when read u is only one following

read v and v is only one preceeding u). and then use information from paired reads to

resolve the areas around repeats.

Finally, in consensus step we perform basecalling, i.e. if multiple reads overlap in one

position and they disagree, we decide the base using majority voting.

A typical example of an OLC algorithm is Celera (Myers et al., 2000). It was mainly

used for assembling of Sanger reads. The OLC framework was not suitable for assembling

typical Illumina datasets due to a large number of rather short reads (three to ten times

shorter than Sanger reads), which would dramatically increase the number of overlaps. The

OLC algorithms gained popularity again after introducing PacBio reads which are longer,

but have higher error rate. Due to high error rate, the overlap phase is quite challenging,

but doable with careful implementation (Myers, 2014).

Nowadays, OLC algorithms are used for assembling long reads with high error rate.
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One example is Celera successor Canu (Koren et al., 2017). To handle noisy reads, Canu

�rst corrects reads and then runs the OLC algorithm.

De Bruijn graphs. Another family of algorithms is based on de Bruijn graphs. These

algorithms do not work directly with reads, but with sequences of k consecutive bases

(k-mers) which occur in reads. The nodes in de Bruijn graph represent k-mers and edges

represent adjacencies between k-mers in reads. Note that time required to construct this

graph is linear in the length of reads, but on the other hand we lose long range connectivity

information since we are not working with complete reads but instead we cut each read to

smaller k-mers. After constructing de Bruijn graph we can join k-mers which be unam-

biguously joined (see more in Section 2.3) and then apply various heuristics for resolving

repeats. We will describe de Bruijn graphs in more detail in the next section. A typical

example of de Bruijn assembler is Velvet (Zerbino and Birney, 2008).

There are some more technical aspects of the assembly software. Some assemblers

like AbySS (Simpson et al., 2009), allow distributed computing of the assembly. Also

many assemblers have special requirements for the input data. For example, Allpaths-LG

(Gnerre et al., 2011) requires two Illumina read libraries, one with small insert size (apx.

150 bases), and one with longer insert size (apx. 3000 bases), but optionally it can also use

information from other libraries (paired reads with very long insert sizes or PacBio reads).

2.3 De Bruijn Graphs

In this section, we discuss de Bruijn graphs, which are an important tool for handling

short reads, and serve as a foundation for many assembly algorithms. We will discuss

de�nition and construction of de Bruijn graphs, techniques for handling sequencing errors,

and extensions of de Bruijn graphs for handling paired and noisy reads.

A de Bruijn graph (de Bruijn and Erdos, 1946) is a structure for representing all possible

overlaps between strings of length k.

De�nition 5 (De Bruijn graph) For given k and alphabet size m, a de Bruijn graph

is a directed graph, with mk vertices, where each vertex represents one string of length k.

The edges of de Bruijn graph represent possible overlaps of length k− 1, i. e. if have have

an edge (u, v) and vertex u represents k-mer a1, a2, . . . , ak, then vertex v represents k-mer

a2, a3, . . . , ak, x and k-mer in vertex v can follow k-mer in vertex u.
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Figure 2.2: Example of de Bruijn graph for k = 3 and alphabet {0, 1}.

Figure 2.2 shows an example of de Bruijn graph for k = 3 and m = 2. Besides

application in DNA sequencing, de Bruijn graphs are in many other areas, including design

of fault tolerant networks (Baker, 2011) and distributed hash tables (Kaashoek and Karger,

2003).

2.3.1 De Bruijn Graphs for Sequence Assembly

For sequence assembly, de Bruijn graphs were �rst used by Pevzner et al. (2001). To

accommodate speci�cs of the task, several modi�cations were introduced to the concept

(Pevzner et al., 2001; Zerbino and Birney, 2008).

In particular, to represent reads from both strands, for each vertex v there is a twin

vertex v
′
which represents the reverse complemented k-mer. Union of v and v

′
is called

a block. During manipulation of de Bruijn graphs, any change applied to node v is also

symmetrically applied to its twin v
′
. To ensure that there is no k-mer that would be the

same as its reverse complement, k must be an odd number. Example of de Bruijn graph

is in Figure 2.3.

Vertices u, v in the de Bruijn graph can be connected by a directed arc if the last k− 1

bases of u are the same as the �rst k − 1 bases in v. Also note that if there is an edge

between vertices u, v, there is an inverted edge between their twins, i.e. there is an edge

from v
′
to u

′
.

We construct de Bruijn graph from reads in a straightforward way. We extract every

k-mer from each read and its reverse complement. Then we join by edge each pair of k-mers

which are consecutive in some read. Some assemblers also record simple statistics that will

be useful in later stages of the assembly process, such as multiplicity of each vertex or edge.

Note, that in our application, we are only working with k-mers which are present in some
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Figure 2.3: Example of de Bruijn graph constructed from reads: AACA, CTTG, with

k = 2.

reads (compared to the original de�nition using all possible k-mers).

This construction can be done e�ciently by using hash tables, like in Velvet (Zerbino

and Birney, 2008). There are also space-e�cient representations of de Bruijn graphs based

on Bloom �lters (Chikhi et al., 2012).

After constructing de Bruijn graph, the assembly can be represented as a set of walks in

the graph. Individual assemblers di�er in criteria on optimal set of walks and in particular

algorithms how to �nd them e�ciently. One approach is to look for an Eulerian path

through the graph (Pevzner et al., 2001). Even better approach is to look for an Eulerian

superpath � the path which visits every read, i.e. it contains sequence of k-mers from each

read as contigous subsequence.

De�nition 6 (Eulerian superpath problem) Given graph G and set of paths P, �nd
path P which contains every path from P as a subpath.

Euler assembler (Pevzner et al., 2001) solves some instances of Eulerian superpath

problem using simple transformations, transforming an Eulerian superpath instance to an

equivalent Eulerian path instance.

Other assemblers, like Velvet (Zerbino and Birney, 2008), will join vertices which can

be joined unambiguously. More preciselly, two vertices u, v can be joined if there is an

edge from u to v and that edge is the only outgoing edge from u and the only incoming

edge to v. When all possible vertices are joined, each vertex represents one contig of the

�nal assembly.
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Figure 2.4: Example of two tips (in black).

Figure 2.5: Example of bubble with two paths marked in black and gray.

2.3.2 Handling Sequencing Errors

Sequencing errors in reads increase complexity of de Bruijn graphs (Pevzner et al., 2001).

Common artefacts in a graph that appear due to the sequencing errors are tips and bubbles

(see Fig. 2.4, 2.5). Assemblers like Velvet (Zerbino and Birney, 2008), and Abyss (Simpson

et al., 2009) handle errors directly during the construction of de Bruijn graph by detecting

these artefacts and removing them.

The naive approach would be to remove all k-mers with low coverage. This can be

problematic, since some sequencing technologies do not produce reads with uniform cov-

erage, and consequently we would remove good low coverage regions and the graph would

become disconnected. Instead, several more sophisticated techniques have been proposed

to remove most of the error artefacts from de Bruijn graphs.

Removing tips. A tip is a chain of vertices disconnected at one end. Tips usually

represent some local errors in the reads. Their removal is pretty straightforward and does

not destroy connectivity in the graph. But sometimes, the tips could represent correct

sequences interupted by a gap in the coverage. Velvet (Zerbino and Birney, 2008) removes

tips which are at most 2k bases long and only if the edge starting the tip has a lower

multiplicity than some othe edges in the branching vertex.

Removing bubbles. Bubbles are compose of two or more paths which share the start

and end vertices and contain similar sequences (see Fig. 2.5). Bubbles are typically caused

by small errors in the middle of the read. Velvet �nds such similar paths using the following

algorithm: We start a breadth �rst search-like algorithm from an arbitrary vertex, but

consider higher coverage arcs as shorter. Whenever we encounter a previously visited
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u

v

wx

Figure 2.6: Example of bubble �nding. We start a search from node u. The shortest

path between u and v is shown using dashed edges. When searching node w, we will visit

node v again. Now we can �nd the closest common ancestor of current path to w and the

shortest path to v, which is vertex x.

vertex v, we try to �nd the closest common ancestor of the current path and the shortest

path to v (see Fig. 2.6). Then we extract the sequences belonging to both paths and if

these two paths are judged to be similar enough, the longer path is merged into the shorter

one.

Another option is to use tools like QUAKE (Kelley et al., 2010), which try to correct

reads without assembling them. These tools usually consider k-mers with low abundance

as erroneous and attempt to correct them using a few simple edits in reads.

After correcting for errors, we join vertices, which can be joined unambiguously as

described above. We can use this vertices as a base for forming contigs of the assembly.

Most assemblers go further and use various heuristics to incorporate information from long

and paired reads. In the next section we will look more into handling paired reads.

2.3.3 Handling Paired Reads

De Bruijn graphs do not incorporate any information from paired reads. Usually heuristics

are employed to handle paired reads.

ABySS (Simpson et al., 2009) uses paired reads in the following way. After an initial

error correction, we align paired reads to reasonably long vertices. Two vertices are consid-

ered linked if there are at least p read pairs (usually p = 5) which join these two vertices.

We denote Pi the set of vertices which are linked to vertex vi. Then we perform search for

single unique path from vi through the graph which visits each vertex from Pi. Search is

limited by using various heuristics (upper bound on number of visited vertices in search

and using distance estimates for distances between vi and elements in Pi). This process is

performed for each vertex and consistent paths are stitched to the �nal assembly.

ALLPATHS-LG assembler (Gnerre et al., 2011) uses a more complicated approach. It
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requires at least two Illumina short read libraries: one with short insert size (around 100

- 200 bases) and one with medium insert size (around 3000 bases). Their main idea is

to �nd all possible �llings of the gap in the middle of a paired read using using other

reads (without regard to their pairing). Then they merge the �lled reads to produce the

assembly.

To reduce the computational complexity of this approach, they split the assembly prob-

lem into several regions and assemble them separately in a process called localization. Lo-

calization starts by building de Bruijn graph of the assembly and building initial contigs

from it. Then we select long enough contigs as seeds. The region of an assembly is build

from the seed, its neighborhood (everything within 10000 bases from the seed) and all reads

from the neighborhood. We assemble each region separately and then merge the results

into the �nal assembly.

2.3.4 Variants of de Bruijn graphs

In several works, authors decided to use variants of de Bruijn graphs incorporating addi-

tional information besides the k-mers. One important variant are paired de Bruijn graphs

(PDGs) (Medvedev et al., 2011). To handle paired reads, PDGs use k-bimers as a basic

unit of the graph. k-bimer is a pair of two k-mers (a, b), with known distance between

them. PDG is constructred and used similarly to de Bruijn graph. This works well, when

we know exact distances between reads. If the distance between reads is only approximate,

we need to add polishing steps, which merges k-bimer coming from the same location.

It is generally thought, that de Bruijn graphs are not well suited for assembly of noisy

reads, since the resulting graph would be highly contaminated by the noise. ABrujin graphs

(Lin et al., 2016) solve this problem by constructing the graph only from selected "good"

k-mers, which are then connected by labeled edges with distances between connected k-

mers.

2.4 Evaluating the Quality of Assemblies

As shown in earlier sections, assembly algorithms are mostly heuristics. Since the assembly

usually serves as a basis for other genome analyses (including �nding genes, calculating

evolutionary histories, etc.), any errors in the assembly process will have a large impact

on downstream analyses. Often, we have access to several variants of the assembly and we
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need to choose the best one. Thus it is important to consider methods for systematically

evaluating the quality of assemblies.

In this section, we give an overview of several techniques and statistics for evaluating

genome assemblies. We start with simple indicators based only on the assembly. We also

describe indicators based on comparing the assembly to the correct answer (the correct

answer is usually available in cases when we are benchmarking assemblers). Finally, we

describe a probabilistic framework for evaluating the assembly quality, which will form the

basis for our own work.

2.4.1 Basic Statistics

Statistics based only on the assembly. To evaluate continuity of the assembly, it is

vital to look into distribution of contig lengths. We give a brief overview of metrics used

in QUAST (Gurevich et al., 2013), which is a standard tool for assembly evaluation.

First, we consider a total length of contigs. We can have expected assembly length from

other sources so if the total length of contigs is far from the expected value, we can already

see a problem with the assembly. Number of contigs gives us an approximate notion of

fragmentation of the assembly. Sometimes it is better to look at the number of contigs

longer than x (where usually x = 1000), since very small contigs are usually artefacts of

the assembly process. Other statistics for contig length distribution include the length of

the largest contig, and Nx (where 0 < x ≤ 100), the largest contig length L, such that

using contigs of length ≥ L accounts for at least x% of the bases of the assembly.

Note that each of this statistics can be "gamed", so we should take results based on

them cautiously. Problems with them often happen in practice, for example Salzberg et al.

(2012) shows in his experiments that some assemblers have higher N50 but also higher

number of errors.

Statistics based on the assembly and the reference sequence. If we have access

to the true sequence, we can compute various statistics summarizing the number of errors

in the assembly. Calculating these statistics usually starts with aligning the assembly to

the reference genome, which gives us information in the form: "Substring of the assembly

starting at position a and ending at position b can be mapped to the substring of the

reference genome starting at c and ending at d with e edits." We call these aligned substrings

blocks.
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Assembler
No. of N50 No. of NA50

contigs (thousands) missassemblies (thousands)

ABySS 246 34 1 28

ALLPATHS-LG 12 1092 0 1092

SGA 456 208 0 208

Velvet 45 762 17 126

Table 2.2: Comparison of several assemblers on Staphylococcus aureus dataset.

Note that some assemblers produce quite high N50, but also produce many missassemblies,

and their NA50 is much lower.

After �nding aligned blocks, we �nd missassemblies, which are de�ned as positions in

the assembly where block on the left aligns more than 1000 bases away from the block on

the right in the reference or the two blocks align to the opposite strands or to di�erent

chromosomes (Gurevich et al., 2013).

Now we can count the number of missassemblies and number of contigs containing a

missassembly. We can also look for small di�erences and count the number of substitu-

tions, insertions, or deletions. We can also introduce metrics similar to Nx , called NAx ,

computed in the same way as Nx , but before computing this statistics, we break contigs

at missassemblies.

Table 2.2 show an example of usage of these metrics from GAGE (Salzberg et al., 2012),

a project benchmarking the performance of several assemblers.

2.4.2 Probabilistic Models

In many cases, we have to compare multiple assemblies and decide which one is the best.

Ghodsi et al. (2013) showed that a very simple and theoretically sound probabilistic model

can provide a good indication of the assembly quality.

We will consider a probabilistic model that de�nes probability Pr(R|A) that a set of

sequencing reads R is observed assuming that the assembly A is the correct assembly

of the genome. Since the sequencing itself is a stochastic process, it is very natural to

characterize concordance of reads and an assembly by giving a probability of observing a

particular read.
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Basics of the likelihood model. The model assumes that individual reads are indepen-

dently sampled, and thus the overall likelihood is the product of likelihoods of the reads:

Pr(R|A) =
∏

r∈R Pr(r|A). To make the resulting value independent of the number of reads

in set R, we use as the main assembly score the log average probability of a read com-

puted as follows: LAP(A|R) = (1/|R|)
∑

r∈R log Pr(r|A). Note that maximizing Pr(R|A)

is equivalent to maximizing LAP(A|R).

If the reads were error-free and each position in the genome was sequenced equally

likely, the probability of observing read r would simply be Pr(r|A) = nr/(2L), where nr is

the number of occurrences of the read as a substring of the assembly A, L is the length of

A, and thus 2L is the length of the two strands combined.

Another way of looking at the error free model is to say that the probability of generat-

ing read from position j is one if read exactly matches the assembly at a given position, and

zero otherwise. This can be extended to account for sequencing errors. The probability

of generating a read from position j is a real number representing likelihood of generating

that read from given position. This value mainly depends on the number of di�erences

between the read and the assembly at the position.

Formally we de�ne pr,j as a probability of generating read r from a sequence that ends

at position j. Then the probability of generating read r can be computed as:

Pr(r|A) =

∑
j p

forward
r,j +

∑
j p

reverse
r,j

2L

The individual probabilities pr,j can be computed by dynamic programing, where we

de�ne T [x, y] as a probability of generating pre�x of a read of length y from the sequence

which ends at position x. Clearly, pr,j = T [j, `], where ` is the length of the read. Also

T [x, 0] = 1 for all x and T [0, y] = 0 for all y > 0. For general x, y, T [x, y] can be computed

using following formula:

T [x, y] = T [x− 1, y − 1] Pr(Subs(A[x], r[y]))

+T [x, y − 1] Pr(Ins(r[y]))

+T [x− 1, y] Pr(Del(A[x]))

Here, A[x] and r[y] represents bases in the assembly at position x and in read at position

y respectively. Subs, Ins, and Del represent events of substitution, insertion and deletion.

In practice, this dynamic programming is too time consuming. To approximate the

probability, we will instead align reads to the assembly and compute likelihood from these
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alignments.

The probability of a single alignment with m matching positions and s errors (substi-

tutions and indels) is de�ned as R(s,m)/(2L), where R(s,m) = εs(1 − ε)m and ε is the

sequencing error rate.

Given the read r and set Sr of several best alignments of r to genome A (as obtained

by one of standard fast read alignment tools), the probability of generating read r can be

estimated as:

Pr(r|A) ≈
∑

j∈Sr
R(sj,mj)

2L
,

where mj is the number of matches in the j-th alignment, and sj is the number of mis-

matches and indels implied by this alignment. The formula assumes the simplest possible

error model, where insertions, deletions, and substitutions have the same probability, and

ignores GC content bias. Of course, much more comprehensive read models are possible

(see e.g. Clark et al. (2013)).

Paired reads. Likelihood model can also accommodate paired reads. We assume that

the insert size distribution in a set of reads R can be modeled by a normal distribution

with known mean µ and standard deviation σ. The probability of observing paired reads

r1 and r2 can be estimated from the sets of alignments Sr1 and Sr2 as follows:

Pr(r1, r2|A) ≈ 1

2L

∑
j1∈Sr1

∑
j2∈Sr2

R(sj1 ,mj1)R(sj2 ,mj2) Pr(d(j1, j2)|µ, σ)

As before, mji and sji are the numbers of matches and sequencing errors in alignment ji

respectively, and d(j1, j2) is the distance between the two alignments as observed in the

assembly. If alignments j1 and j2 are in two di�erent contigs, or on inconsistent strands,

Pr(d(j1, j2)|µ, σ) is zero.

Reads that have no good alignment to A. Some reads or read pairs do not align well

to A, and as a result, their probability Pr(r|A) is very low; our approximation by a set of

high-scoring alignments can even yield zero probability if set Sr is empty. Such extremely

low probabilities then dominate the log likelihood score. Ghodsi et al. (2013) propose a

method that assigns such a read a score approximating the situation when the read would

be added as a new contig to the assembly. In practice this usually means having lower

bound on the probability of generating a read.
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Assembler LAP N50 (thousands) NA50 (thousands)

Reference sequence −23.509 2873 2873

ALLPATHS-LG −23.760 1092 1092

SOAPdenovo −23.862 332 288

Velvet −23.925 762 126

AbySS −24.584 34 28

Table 2.3: Comparison of several assemblers on Staphylococcus aureus dataset

using LAP and NA50. Data from Ghodsi et al. (2013).

To illustrate usufulness of likelihood socre we present several results from Ghodsi et al.

(2013) where they compare several assemblers and resulting NA50 and the assembly likeli-

hood, and show that there is a good correlation between these measures (Table 2.3). More

data can be found in Ghodsi et al. (2013).

There are also other approaches to calculate assembly likelihood, most notably ALE

(Clark et al., 2013) and CGAL (Rahman and Pachter, 2013). Both models are speci�cally

tailored to paired reads. CGAL model is very similar to the model described above. ALE

model consists from three scores, one for read placement, one for insert sizes, and one for

read coverage.

2.5 Genome Assembly by Maximum Likelihood

Section 2.2 reviewed several approaches to genome assembly, where most of them are

tailored for speci�c combination of read libraries. Combination of sequencing technologies

with complementary strengths can help to improve assembly quality. However, it is not

feasible to design new algorithms for every possible combination of datasets. Often it is

possible to supplement previously developed tools with additional heuristics for new types

of data. For example, PBJelly (English et al., 2012) uses Paci�c Biosystems reads solely

to aid gap �lling in draft assemblies. Assemblers like PacbioToCa (Koren et al., 2012)

or Cerulean (Deshpande et al., 2013) use short reads to improve the quality of Paci�c

Biosystems reads so that they can be used within traditional assemblers. However, such

approaches do not use all information contained within the datasets.

We propose a new framework GAML (Genome Assembly by Maximum Likelihood),

that allows systematic combination of diverse datasets into a single assembly, without
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requiring a particular type of data for speci�c heuristic steps. We build GAML on top of

probabilistic model from Section 2.4.2, where we have shown, that probabilistic models are

very successful in evaluating the quality of genome assemblers. Here, we use likelihood of

a genome assembly as an optimization criterion, with the goal of �nding the assembly with

the highest likelihood. Even though this may not be always feasible, we demonstrate that

optimization based on simulated annealing can be very successful at �nding high likelihood

genome assemblies.

To test our framework, we have implemented a prototype genome assembler GAML

(Genome Assembly by Maximum Likelihood) that can use any combination of insert sizes

with Illumina or 454 reads, as well as PacBio reads. The starting point of the assembly

are short contigs derived from Velvet (Zerbino and Birney, 2008) with very conservative

settings in order to avoid assembly errors. We then use simulated annealing to combine

these short contigs into high likelihood assemblies. We compare our assembler to existing

tools on benchmark datasets, demonstrating that we can assemble genomes of up to 10 MB

long with N50 sizes and error rates comparable to ALLPATHS-LG (Gnerre et al., 2011)

or Cerulean (Deshpande et al., 2013). For larger genomes, we can start from an assembly

given by a di�erent tool and improve on the result. While ALLPATHS-LG and Cerulean

each require a very speci�c combination of datasets, GAML works on any combination.

2.5.1 Probabilistic Model for Sequence Assembly used in GAML

Probabilistic model used in GAML is build on top of the model by Ghodsi et al. (2013),

described in Section 2.4.2. The probabilistic model de�nes the probability Pr(R|A) that

a set of sequencing reads R is observed assuming that assembly A is the correct assembly

of the genome. In our work, instead of evaluating the quality of a single assembly, we use

the likelihood as an optimization criterion with the goal of �nding high likelihood genome

assemblies. We used the following modi�cations of Ghodsi et al. (2013) model in GAML.

Variable length reads that have no good alignment to A. Ghodsi et al. (2013)

propose a method that assigns a read which does not have a good alignment a score

approximating the situation when the read would be added as a new contig to the assembly.

We modify their formulas for variable read length, and use score ec+k` for a single read of

length ` or ec+k(`1+`2) for a pair of reads of lengths `1 and `2. Values k and c are scaling

constants set similarly as by Ghodsi et al. (2013). These alternative scores are used instead

of the read probability Pr(r|A) whenever the probability is lower than the score.
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Multiple read sets. Our work is speci�cally targeted at a scenario, where we have

multiple read sets obtained from di�erent libraries with di�erent insert lengths or even

with di�erent sequencing technologies. We use di�erent model parameters for each set and

compute the �nal score as a weighted combination of log average probabilities for individual

read sets R1, . . . , Rk:

LAP(A|R1, . . . , Rk) = w1LAP(A|R1) + · · ·+ wkLAP(A|Rk). (2.1)

In our experiments, we use weight wi = 1 for most datasets, but we lower the weight

for Paci�c Biosciences reads, because otherwise they dominate the likelihood value due to

their longer length. The user can also increase or decrease weights wi of individual sets

based on their reliability.

Penalizing spuriously joined contigs. The model described above does not penalize

obvious misassemblies when two contigs are joined together without any evidence in the

reads. We have observed that to make the likelihood function applicable as an optimization

criterion for the best assembly, we need to introduce a penalty for such spurious connec-

tions. We say that a particular base j in the assembly is connected with respect to read

set R if there is a read which covers base j and starts at least k bases before j, where k

is a constant speci�c to the read set. In this setting, we treat a pair of reads as one long

read. If the assembly contains d disconnected bases with respect to R, penalty αd is added

to the LAP(A|R) score (α is a scaling constant).

Computation of likelihood and aligning of data from di�erent sequencing tech-

nologies. Our model can be applied to di�erent sequencing technologies by appropriate

settings of model parameters (see also Table 2.1). For example, Illumina technology typ-

ically produces reads of length 75-150bp with error rate below 1% (Quail et al., 2012).

For smaller genomes, we often have a high coverage of Illumina reads. Using paired reads

technologies, it is possible to prepare libraries with di�erent insert sizes ranging up to tens

of kilobases, which are instrumental in resolving longer repeats (Gnerre et al., 2011). To

align these reads to proposed assemblies, we use Bowtie2 (Langmead and Salzberg, 2012).

Similarly, we can process reads by the Roche 454 technology, which are characteristic by

higher read lengths (hundreds of bases).

Paci�c Biosciences technology produces single reads of variable length, with median

length reaching several kilobases, but the error rate exceeds 10% (Quail et al., 2012; Desh-

pande et al., 2013). Their length makes them ideal for resolving ambiguities in assemblies,
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but the high error rate makes their use challenging. To align these reads, we use BLASR

(Chaisson and Tesler, 2012). When we calculate the probability Pr(r|A), we consider not

only the best alignments found by BLASR, but for each BLASR alignment, we also add

probabilities of similar alignments in its neighborhood. More speci�cally, we run a banded

version of the forward algorithm by Ghodsi et al. (2013), considering all alignments in a

band of size three around a guide alignment produced by BLASR.

2.6 Finding a High Likelihood Assembly

Our goal is to �nd the highest likelihood assembly directly. Of course, the search space is

huge, and the objective function too complex to admit exact methods. Here, we describe an

e�ective optimization routine based on the simulated annealing framework (Eglese, 1990).

Our algorithm for �nding the maximum likelihood assembly consists of three main steps:

preprocessing, optimization, and postprocessing. In preprocessing, we decrease the scale of

the problem by creating an assembly graph, where vertices correspond to contigs and edges

correspond to possible adjacencies between contigs supported by reads. In order to make

the search viable, we will restrict our search to assemblies that can be represented as a set

of walks in this graph. Therefore, the assembly graph should be built in a conservative way,

where the goal is not to produce long contigs, but rather to avoid errors inside them. In the

optimization step, we start with an initial assembly (a set of walks in the assembly graph),

and iteratively propose changes in order to optimize the assembly likelihood. Finally,

postprocessing examines the resulting walks and splits some of them into shorter contigs

if there are multiple equally likely possibilities of resolving ambiguities. This happens, for

example, when the genome contains long repeats that cannot be resolved by any of the

datasets. In the rest of this section, we discuss individual steps in more detail.

2.6.1 Optimization by Simulated Annealing

To �nd a high likelihood assembly, we use an iterative simulated annealing scheme. We

start from an initial assembly A0 in the assembly graph. In each iteration, we randomly

choose a move that proposes a new assembly A′ similar to the current assembly A. The

next step depends on the likelihoods of the two assemblies A and A′ as follows:

• If LAP(A′|R) ≥ LAP(A|R), the new assembly A′ is accepted and the algorithm

continues with the new assembly.
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(a) (b) (c)

Figure 2.7: Examples of proposal moves. (a) Walk extension joining two walks. (b)

Local improvement by addition of a new loop. (c) Repeat interchange.

• If LAP(A′|R) < LAP(A|R), the new assembly A′ is accepted with probability

e(LAP(A′|R)−LAP(A|R))/T ; otherwise A′ is rejected and the algorithm retains the old

assembly A for the next step.

Here, parameter T is called the temperature, and it changes over time. In general, the

higher the temperature, the more aggressive moves are permitted. We use a simple cooling

schedule, where T = T0/ ln(i) in the i-th iteration. The computation ends when there is no

improvement in the likelihood for a certain number of iterations. We select the assembly

with the highest LAP score as the result.

To further reduce the complexity of the assembly problem, we classify all contigs as

either long (more than 500bp) or short and concentrate on ordering the long contigs cor-

rectly. The short contigs are used to �ll the gaps between the long contigs. Recall that

each assembly is a set of walks in the assembly graph. A contig can appear in more than

one walk or can be present in a single walk multiple times.

Proposals of new assemblies are created from the current assembly using the following

moves:

• Walk extension. (Fig.2.7a) We start from one end of an existing walk and randomly

walk through the graph, in every step uniformly choosing one of the edges outgoing

from the current node. Each time we encounter the end of another walk, the two

walks are considered for joining. We randomly (uniformly) decide whether we join

the walks, end the current walk without joining, or continue walking.
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• Local improvement. (Fig.2.7b) We optimize the part of some walk connecting two

long contigs s and t. We �rst sample multiple random walks starting from contig

s. In each walk, we only consider nodes from which contig t is reachable. Then

we evaluate these random walks and choose the one that increases the likelihood

the most. If the gap between contigs s and t is too big, we instead use a greedy

strategy where in each step we explore multiple random extensions of the walk of

length around 200bp and pick the one with the highest score.

• Repeat optimization. We optimize the copy number of short tandem repeats. We do

this by removing or adding a loop to some walk. We precompute the list of all short

loops (up to �ve nodes) in the graph and use it for adding loops.

• Joining with advice. We join two walks that are spanned by long reads or paired

reads with long inserts. We �rst select a starting walk, align all reads to this walk

and randomly choose a read which has the other end outside the walk. Then we �nd

to which node this other end belongs to and join appropriate walks. If possible, we �ll

the gap between the two walks using the same procedure as in the local improvement

move. Otherwise we introduce a gap �lled with Ns.

• Disconnecting. We remove a path through short contigs connecting two long contigs

in the same walk, resulting in two shorter walks.

• Repeat interchange. (Fig.2.7c) If a long contig has several incoming and outgoing

walks, we optimize the pairing of incoming and outgoing edges. In particular, we

evaluate all moves that exchange parts of two walks through this contig. If one of

these changes improves the score, we accept it and repeat this step, until the score

cannot be improved at this contig.

At the beginning of each annealing step, the type of the move is chosen randomly; each

type of move has its own probability. We also choose randomly the contig at which we

attempt to apply the move.

Note that some moves (e.g. local improvement) are very general, while other moves

(e.g. joining with advice) are targeted at speci�c types of data. This does not contra-

dict a general nature of our framework; it is possible to add new moves as new types of

data emerge, leading to improvement when using speci�c datasets, while not a�ecting the

performance when such data is unavailable.
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2.6.2 Preprocessing and the Initial Assembly

To obtain the assembly graph, we use Velvet with basic error correction and unambiguous

concatenation of k-mers. These settings will produce very short contigs, but will also give a

much lower error rate than a regular Velvet run. GAML with the default settings then uses

each long contig as a separate walk in the starting assembly for the simulated annealing

procedure.

2.6.3 Postprocessing

The assembly obtained by the simulated annealing procedure may contain walks with no

evidence for a particular con�guration of incoming and outgoing edges in the assembly

graph. This happens for example if a repeat is longer than the span of the longest paired

read. In this case, there would be several versions of the assembly with the same or

very similar likelihood score. In the postprocessing step, we therefore apply the repeat

interchange move at every possible location of the assembly. If the likelihood change

resulting from such a move is negligible, we break the corresponding walks into shorter

contigs to avoid assembly errors.

2.6.4 Fast Likelihood Evaluation

The most time consuming step in our algorithm is evaluation of the assembly likelihood,

which we perform in each iteration of simulated annealing. This step involves alignment

of a large number of reads to the current assembly. However, only a small part of the

assembly is changed in each annealing step, which we can use to signi�cantly reduce the

running time. Next, we describe three optimizations implemented in our software.

Limiting read alignment to a�ected regions of the assembly. Since only a small

portion of the assembly is a�ected in each step, we can keep most alignments from the

previous iterations and only align reads to the regions that changed. To determine these

regions, we split walks into overlapping windows, each window containing several adjacent

contigs of a walk. Windows should be as short as possible, but adjacent windows should

overlap by at least 2`r bases, where `r is the length of the longest read. As a result, each

alignment is completely contained in at least one window even in the presence of extensive

indels.
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We determine the window boundaries by a simple greedy strategy, which starts at the

�rst contig of a walk, and then extends the window by at least 2`r bases beyond the

boundary of the �rst contig. The next window always starts at the latest possible location

that ensures a su�cient overlap and extends at least 2`r bases beyond the end of the

previous window.

For each window, we keep the position and edit distance of all alignments. In each

annealing step, we identify which windows of the assembly were changed since the last

iteration. We then glue together overlapping windows and align reads against these se-

quences.

We further improve this heuristics by avoiding repeated alignments of reads to interiors

of long contigs, because these parts of the assembly never change. In particular, if some

window starts with a long contig, we only realign reads to the last 2`r bases from that

contig, and similarly we use only the �rst 2`r bases from a long contig at the end of a

window.

Reducing the number of reads which need to be aligned. The �rst improvement

eliminates most of the assembly from read mapping. In contrast, the second improvement

reduces the set of reads which need to be realigned, because most of the reads will not align

to the changed part of the assembly. We use a pre�ltering step to �nd the reads which are

likely to align to the target sequence. In the current implementation, we use the following

three options for such �ltering.

In the simplest approach, we look for reads which contain some k-mer (usually k = 13)

from the target sequence. We store an index of all k-mers from all reads in a hash map. In

each annealing step, we iterate over all k-mers in the target portion of the assembly and

retrieve reads that contain them. This approach is very memory consuming, because the

identi�er of each read is stored for each k-mer from this read.

In the second approach, we save memory using min-hashing (Broder, 1997). Given

hash function h, the min-hash of set A is de�ned as m(A) = minx∈A h(x). For each read

R, we calculate min-hash for the set of all its k-mers. Thus, the identi�er of each read

is stored in the hash table only once. In each annealing step, we calculate the min-hash

for each substring of the target sequence of length `r and retrieve the reads that have the

same min-hash.

An important property of min-hashing is that Pr(m(A) = m(B)) = J(A,B), where

J(A,B) = |A∩B|
|A∪B| is the Jaccard similarity of two sets A and B (Broder et al., 2000). The



CHAPTER 2. PROBABILISTIC SEQUENCE ASSEMBLY 28

statement holds if the hash function h is randomly chosen from a family with the min-wise

independence property, which means that for every subset of elements X, each element in

X has the same chance to have the minimum hash.

Note that strings with a very small edit distance have a high Jaccard similarity between

their k-mer sets, and therefore a high chance that they will hash to the same value using

min-hashing. We can use several min-hashes with di�erent hash functions to improve the

sensitivity of our �ltering at the cost of additional memory.

In our implementation, we use a simple hash function which maps k-mers into 32-bit

integers. We �rst represent the k-mer as an integer (where each base corresponds to two

bits). We then xor this integer with a random number. Finally, we perform mixing similar

to the �nalization of the Murmur hash function (Appleby, 2008):

h ^= h >> 16;

h *= 0h85ebca6b;

h ^= h >> 13;

h *= 0hc2b2ae35;

h ^= h >> 16;

We choose this �nalizer because the Murmur hash function is fast and results in few

collisions. It is not min-hash independent, but we found it to perform well in practice.

To illustrate the speci�city and sensitivity of min-hashing, we have compared our

min-hashing approach with indexing all k-mers (with k = 15) on evaluating LAP of the

ALLPATHS-LG assembly of Staphylococus aureus (using read set SA1 described in Sec-

tion 2.7 and aligning it to the whole S. aureus genome). Indexing all k-mers resulted

in 3,659,273 alignments found by examining 21,241,474 candidate positions. Using min-

hashing with three hash functions, we were able to �nd 3,639,625 alignments by examining

3,905,595 candidates positions. Since these reads have a low error rate, k-mer indexing

retrieves practically all relevant alignments, while the sensitivity of min-hashing is approx-

imately 99.5%. In min-hashing, 93% of examined positions yield an alignment, whereas

speci�city of k-mer indexing is only 17%. Also min-hashing used 30 times smaller index.

Note that min-hashing was previously used in a similar context by Berlin et al. Berlin

et al. (2014) to �nd similarities among PacBio reads. However, since PacBio reads have a

high error rate, the authors had to use a high number of hash functions, whereas we use

only a few hash functions to �lter Illumina reads, which have a low error rate.

In GAML, we �lter PacBio reads by a completely di�erent approach, which is based

on alignments, rather than k-mers. In particular, we take all reasonably long contigs (at
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least 100 bases) and align them to PacBio reads. Since BLASR can �nd alignments where

a contig and a read overlap by only around 100 bases, we use these alignments as a �lter.

Final computation of the likelihood score. When all reads are properly aligned to

the new version of the assembly, we can combine the alignments to the �nal score. In the

implementation, we need to handle several issues, such as correctly computing likelihood

for reads that align to multiple walks, assigning a special likelihood to reads without any

good alignment, and avoiding double counting for reads that align to regions covered by

two overlapping windows of the same walk.

Again we improve the running time by considering only reads that were in�uenced by

the most recent change. Between consecutive iterations, we keep all alignments for each

sequence window of the assembly and recompute only alignments to a�ected windows, as

outlined above. We also keep the likelihood value of each read or a read pair. Recall that

the likelihood of a read or a read pair is the sum of likelihoods of individual alignments.

In each iteration, we then identify which walks were removed and added. Then we

calculate likelihoods of all read alignments in these walks (using stored or newly computed

alignments) and we use these values to adjust the likelihood values of individual reads,

subtracting for removed walks and adding for new walks. At this step, we also handle

paired reads, identifying pairs of alignments in correct distance and orientation. Finally,

we sum likelihoods of all reads in each dataset and compute the total likelihood score.

2.7 Experimental Evaluation

We have implemented the algorithm proposed in the previous section in a prototype as-

sembler GAML (Genome Assembly by Maximum Likelihood). At this stage, GAML can

assemble small genomes (approx. 10 Mbp) in a reasonable amount of time (approximately

4 hours on a single CPU and using 10GB of memory).

To evaluate the quality of our assembler, we have adopted the methodology the GAGE

project (Salzberg et al., 2012), using metrics on sca�olds. We have used the same genomes

and libraries as Salzberg et al. (2012) (the Staphylococus aureus genome and the human

chromosome 14) and Deshpande et al. (2013) (the Escherichia coli genome). The overview

of the datasets is shown in Table 2.4. An additional dataset EC3 (long insert, low coverage)

was simulated using the ART software (Huang et al., 2012).

We have evaluated GAML in the following scenarios:
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Insert Read Error

ID Source Technology length length Coverage rate

Staphylococus aureus (2.87Mbp)

SA1 Salzberg et al. (2012) Illumina 180bp 101bp 90 3%

SA2 Salzberg et al. (2012) Illumina 3500bp 37bp 90 3%

Escherichia coli (4.64Mbp)

EC1 Deshpande et al. (2013) Illumina 300bp 151bp 400 0.75%

EC2 Deshpande et al. (2013) PacBio 4000bp 30 13%

EC3 simulated Illumina 37,000bp 75bp 0.5 4%

Human chromosome 14 (88.29Mbp)

H1 Salzberg et al. (2012) Illumina 150bp 101bp 42 1%

H2 Salzberg et al. (2012) Illumina 2500bp 101bp 26 3%

H3 Salzberg et al. (2012) Illumina 35000bp 76bp 1.3 4.5%

Table 2.4: Properties of datasets used.

1. combination of fragment and short insert Illumina libraries (SA1, SA2),

2. combination of a fragment Illumina library and a long-read high-error-rate Paci�c

Biosciences library (EC1, EC2),

3. combination of a fragment Illumina library, a long-read high-error-rate Paci�c Bio-

sciences library, and a long jump Illumina library (EC1, EC2, EC3),

In each scenario, we use the short insert Illumina reads (SA1 or EC1) in Velvet with

conservative settings to build the initial contigs and assembly graph. For the LAP score,

we give all Illumina datasets weight 1 and the PacBio dataset weight 0.01. The results are

summarized in Table 2.5. Note that none of the assemblers considered here can e�ectively

run in all three of these scenarios, except for GAML.

In the �rst scenario, GAML performance ranks third among zero-error assemblers in

the N50 length. The best N50 assembly is given by ALLPATHS-LG (Gnerre et al., 2011).

A closer inspection of the assemblies indicates that GAML missed several possible joins.

One such miss was caused by a 4.5 kbp repeat, while the longest insert size in this dataset

is 3.5 kbp. Even though in such cases it is sometimes possible to reconstruct the correct

assembly thanks to small di�erences in the repeated regions, the di�erence in likelihood

between alternative repeat resolutions may be very small. Another missed join was caused
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Assembler Number

of scaf-

folds

Longest

sca�old

(kb)

Longest

sca�old

corr.

(kb)

N50

(kb)

Err. N50

corr.

(kb)

LAP

(1) Staphylococus aureus, read sets SA1, SA2

GAML 28 1191 1191 514 0 514 −23.45
ALLPATHS-LG 12 1435 1435 1092 0 1092 −25.02

SOAPdenovo 99 518 518 332 0 332 −25.03

Velvet 45 958 532 762 17 126 −25.34

Bambus2 17 1426 1426 1084 0 1084 −25.73

MSR-CA 17 2411 1343 2414 3 1022 −26.26

ABySS 246 125 125 34 1 28 −29.43

Cons. Velvet∗ 219 95 95 31 0 31 −30.82

SGA 456 286 286 208 1 208 −31.80

(2) Escherichia coli, read sets EC1, EC2

PacbioToCA 55 1533 1533 957 0 957 −33.86
GAML 29 1283 1283 653 0 653 −33.91

Cerulean 21 1991 1991 694 0 694 −34.18

AHA 54 477 477 213 5 194 −34.52

Cons. Velvet∗ 383 80 80 21 0 21 −36.02

(3) Escherichia coli, read sets EC1, EC2, EC3

GAML 4 4662 4661 4662 3 4661 −60.38
Celera 19 4635 2085 4635 19 2085 −61.47

Cons. Velvet∗ 383 80 80 21 0 21 −72.03

*: Velvet with conservative settings used to create the assembly graph in our method.

Table 2.5: Comparison of assembly accuracy in the �rst three scenarios. For all

assemblies, N50 values are based on the actual genome size. All misjoins were considered

as errors and error-corrected values of N50 and contig sizes were obtained by breaking

each contig at each error (Salzberg et al., 2012). All assemblies except for GAML and

conservative Velvet were obtained from Salzberg et al. (2012) in the �rst experiment, and

from Deshpande et al. (2013) in the second experiment.
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by a sequence coverage gap penalized in our scoring function. Perhaps in both of these cases

the manually set constants may have caused GAML to be overly conservative. Otherwise,

the GAML assembly is very similar to the one given by ALLPATHS-LG.

In the second scenario, Paci�c Biosystems reads were employed instead of jump li-

braries. These reads pose a signi�cant challenge due to their high error rate, but they are

very useful due to their long length. Assemblers such as Cerulean (Deshpande et al., 2013)

deploy special algorithms taylored to this technology. GAML, even though not explicitly

tuned to handle Paci�c Biosystems reads, builds an assembly with N50 size and the num-

ber of sca�olds very similar to that of Cerulean. In N50, both programs are outperformed

by PacbioToCA (Koren et al., 2012), however, this is again due to a few very long re-

peats (approx. 5000 bp) in the reference genome which were not resolved by GAML or

Cerulean. (Cerulean also aims to be conservative in repeat resolution.) Note that in this

case, simulated annealing failed to give the highest likelihood assembly among those that

we examined, so perhaps our results can be improved by tuning the likelihood optimization.

The third scenario shows that the assembly quality can be hugely improved by including

a long jump library, even if the coverage is really small (we have used 0.5× coverage in this

experiment). This requires a �exible genome assembler; in fact, only Celera (Myers et al.,

2000) can process this data, but GAML assembly is clearly superior. We have attempted to

run also ALLPATHS-LG, but the program could not process this combination of libraries.

Compared to the previous scenario, GAML N50 size increased approximately 7 fold (or

approx. 4 fold compared to the best N50 from the second scenario assemblies).

2.8 Improving Previously Assembled Genomes

For medium and large genomes, it would take GAML too many iterations to arrive at

a reasonable assembly starting from the contigs produced by Velvet with conservative

settings. However, it is still possible to scale up GAML to larger genomes by using another

assembler to provide a more reasonable starting point.

To this end, we have to map such an input assembly to the assembly graph. We �rst

align the assembly contigs to the Velvet contigs using NUCmer (Delcher et al., 2002). We

keep only alignments which cover entire Velvet contigs and have a high sequence identity.

If a single input contig is aligned to several Velvet contigs, we connect these Velvet contigs

to a walk in the assembly graph. The missing portions of the walk are found by dynamic

programming so as to minimize the edit distance between the input contig and the walk.
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Assembler Number

of scaf-

folds

Longest

sca�old

(kb)

Longest

sca�old

corr.

(kb)

N50

(kb)

Err. N50

corr.

(kb)

LAP

(4) Human chromosome 14, starting from Velvet assembly

Before 1081 4628 263 1190 9156 27 -138.765779

After 1634 1046 265 347 8049 27 -138.632657

REAPR 17727 153 81 36 4607 14 -162.869192

(5) Human chromosome 14, starting from ALLPATHS-LG assembly

Before 129 81640 14918 81640 34 7652 -111.288806

After 139 81640 14918 81640 33 7652 -111.287938

REAPR 858 977 146 190 4230 17 -168.024865

Table 2.6: Improving existing assemblies of the human chromosome 14 by

GAML. In both experiments, we use read sets H1, H2, and H3 and compare the original

assembly computed by another tool with the assembly found by GAML.

In the dynamic programming, we consider only edit distance of up to 10, and if we do not

�nd a connection within this threshold, we add a corresponding number of Ns to our walk.

If the input assembly di�ers too much from the Velvet contigs, a good mapping of the

contigs to walks in the Velvet assembly graph cannot be found. In such cases, we construct

the assembly graph directly from the input assembly. We �rst build a de Bruijn graph

from the contigs, and then we concatenate nodes connected by unambiguous connections.

We can now use GAML to improve medium-size genome assemblies (approx. 100 Mbp).

In this setting, 10000 iterations require approximately 2 days time and 50GB of memory.

We have tested this approach by using Illumina reads with three di�erent insert sizes

(H1, H2, H3) on the human chromosome 14 (data from Salzberg et al. (2012); see Table

2.4). We use the non-conservative Velvet assembly and the ALLPATHS-LG assembly as

our starting point. The results are shown in Table 2.6.

Starting from the Velvet assembly, GAML makes 787 breaks and 234 joins, reducing

the error count by more than a thousand. Our joins did not introduce any new errors to the

assembly. The ALLPATHS-LG assembly has a much higher quality, and starting from this

assembly, GAML decreases the number of errors only by one at the cost of introducing ten

breaks. In both cases, we were able to remove some assembly errors, while not decreasing
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the error-corrected N50 values. Perhaps more corrections could be found if we ran our

algorithm for more iterations (especially in the Velvet case).

Since breaks predominate in the changes made by GAML, we have also compared our

results to REAPR (Hunt et al., 2013), which is a tool that aligns reads to an existing

assembly and then splits contigs at the positions weakly supported or even in con�ict with

the reads. When it concludes that some place is not a breakpoint, but should instead

contain an insertion, it inserts a sequence of Ns. Note that REAPR can only process one

jumping library along with an optional fragment library, and it requires the library to have

a reasonable coverage (15x). Due to these constraints, we have used REAPR only with

short jump library H2. For the Velvet assembly, REAPR removes signi�cantly more errors

than GAML, but at the cost of a great increase in the number of contigs and a decrease

in the error-corrected N50 value. REAPR also introduces many cuts in the ALLPATHS-

LG assembly and the GAGE error checking tools report a high increase in errors. We

hypothesize that this due to REAPR adding many regions of Ns in the corrected assembly,

which leads to a high number of small contigs which GAGE checker cannot align correctly.

2.9 Conclusion

We have presented a new probabilistic approach to genome assembly, maximizing likelihood

in a model capturing essential characteristics of individual sequencing technologies. It can

be used on any combination of read datasets and can be easily adapted to other technologies

arising in the future. We have also adapted our tool to improve existing assemblies after

converting a given assembly to a set of walks.

Our work opens several avenues for future research. First, we plan to further improve

running time and memory and to allow the use of our tool on larger genomes. Second, the

simulated annealing procedure could be improved by optimizing probabilities of individual

moves or devising new types of moves. Finally, it would be interesting to explore even more

detailed probabilistic models, featuring coverage biases and various sources of experimental

error.



Chapter 3

Read Indexing and Related problems

The second generation sequencing technologies (such as Illumina) allow us to investigate

DNA and RNA sequences at a previously unseen scale. A single sequencing run can produce

vast amounts of sequencing reads of lengths 100�150bp that need to be processed by using

e�cient data structures and algorithms.

Commonly applied �rst step in processing Illumina reads is to �nd (possibly approxi-

mate) occurrences of these reads in a reference genome. This task, also called read mapping,

is often dependent on sophisticated indexes of the reference genome, such as uni-directional

or bi-directional FM-index (see e.g. Langmead and Salzberg (2012)). After the reads are

aligned to the reference genome, we can answer common queries, such as which or how

many reads overlap a particular genomic position. These queries �nd many applications,

including variant calling in population genetic analysis, locating transciption factor binding

sites, assessing duplication structure of the genome, di�erential gene expression, and many

more.

However, in many cases the reference genome is unknown or incomplete. In such

cases, one would still want to preprocess large collections of reads so that similar queries

can be processed e�ciently. In particular, Philippe et al. (2011) introduced a problem

of read indexing, where the task is to build an index which can be queried for all reads

that contain a particular k-mer as a substring (maximum k is given beforehand). Their

data structure, called Gk-array, is based on e�cient indexing of a concatenation of all

reads in the collection, and can answer these queries in O(k log n + |Q|) time, where n is

the size of the read collection, and |Q| is the number of reads in the answer. Recently,

Välimäki and Rivals (2013) introduced compressed Gk-arrays, which decrease the memory

use signi�cantly by using compressed su�x arrays (Grossi et al., 2003). These indexing

35
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structures �nd use in many practical applications involving read clustering, k-mer counting,

and similarity search.

In this chapter, we explore problems of indexing either a long string or collection of

short strings in such way that we can quickly search for all positions of a short �xed

length k-mer (typically with k ≤ 32). In Section 3.1, we �rst describe FM-index (Li and

Durbin, 2009; Ferragina and Manzini, 2000), then in Section 3.2 we propose MH-index, our

alternative data structure for searching for �xed length k-mers in a long string. MH-index

is based on the idea of min-hashing, which allows us to build fast index which consumes

small amount of memory.

We also investigate problems of indexing collections of short strings, in particular those

that are the result of a sequencing experiment. Note, that this problem can be reduced

to indexing of long string by concatenating strings in the collection and maintaining the

positional information. We �rst present Gk-arrays (Philippe et al., 2011) and compressed

Gk-arrays (Välimäki and Rivals, 2013) in Section 3.3, which follow this basic idea. Then in

Section 3.4, we present CR-index, our own data structure for indexing reads, which exploits

the fact that the reads are likely substrings of some unknown string, sampled at a high

coverage. This assumption allows us to design a data structure that is much more memory

e�cient than compressed Gk-arrays as we demonstrate in the experimental evaluation.

Work on MH-index has been in part included in a bachelor's thesis of Kuljovský (2016),

that I have supervised. CR-index was published at the SPIRE 2015 conference (Boºa et al.,

2015).

3.1 FM-index

In this section, we brie�y describe the FM-index data structure (Li and Durbin, 2009;

Ferragina and Manzini, 2000). In recent years, FM-Index has become de facto a standard

for string indexing. FM-index is based on su�x arrays (Manber and Myers, 1993), Burrows-

Wheeler transform (BWT) and to save memory, it uses succinct data structures like wavelet

trees (Grossi et al., 2003).

De�nition 7 (Su�x array) Given string T , su�x array SA of T is lexicographic or-

dering of su�xes of T , i.e. SA[i] is the index of the i-th lexicographly smallest su�x in

T .

Su�x array can be constructed in linear time (Kärkkäinen and Sanders, 2003). In this
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array of sorted su�xes, we can search for a substring q of string T by �nding su�xes

beginning with substring q. More speci�caly, the goal of the search is to �nd an interval

(b, e) such that b is the smallest number where q is a pre�x of T [SA[b]..n] and e is the

largest number where q is a pre�x of T [SA[e]..n]. After �nding the matching interval we

can lookup positions in the original string by using values from array SA.

Finding the interval (b, e) can be achieved for example by using the binary search in

time O(|q| lg n), and speeded up by using auxiliary data structures like the LCP (longest

common pre�x) arrays.

De�nition 8 (Longest common pre�x (LCP) array) Given string T and its su�x

array SA, the longest common pre�x array LCP is de�ned as: LCP [1] = −1 and LCP [i]

is the length of the common pre�x of su�xes starting at positions SA[i] and SA[i− 1].

The LCP arrays are then combined with range minimum queries and binary search

to provide faster search algorithm in su�x arrays. More precisely, denote current inteval

of binary search as (bi, ei). Denote mb as length of longest common pre�x of T [SA[bi]..n]

and q, and similarly me as length of longest common pre�x of T [SA[ei]..n] and q. Denote

LCP(i, j) the longest common pre�x of su�xes numbered i and j. Denote ki as the middle

point between bi and ei. Assume that mb ≥ me (other case is handled symmetrically).

Now if LCP(bi, ki) > mb, then next interval for binary search is (ki, ei), since the (mb + 1)-

th character of su�xes bi and ki is same and di�erent to (mb + 1)-th character in q. If

LCP(bi, ki) < mb, then next interval for binary search is (bi, ki). If LCP(bi, ki) = mb, we

start comparing from (mb + 1)-th character of su�x ki and q. We also update values mb

and me accordingly.

This algorithm compares each character from q only constant number of times and its

complexity is O(|q|+ lg n).

Another option is to use Burrows-Wheeler transform and exploit its internal properties

for the substring search.

De�nition 9 (Burrows-Wheeler transform) Given string T , where T [n] = $ (a spe-

cial end of string character), Burrows-Wheeler transform (BWT) of T is constructed by

lexicographically ordering all cyclical rotations of T and then taking the last character from

each rotation. Formally, let Ti be the rotation starting at the i-th position of T and let Xi

be the index of i-th lexicographically smallest rotation. Then the BWT of T is the sequence

B = TX1 [n]TX2 [n] . . . TXn [n].
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$GACACGTAT

ACACGTAT$G

ACGTAT$GAC

AT$GACACGT

CACGTAT$GA

CGTAT$GACA

GACACGTAT$

GTAT$GACAC

T$GACACGTA

TAT$GACACG

Figure 3.1: Sorted cyclical rotations for string GACACGTAT. Note that we have added

a special character $ at the end of the string. Last charecters of rotations, which are

concatenated in the BWT are underlined. The BWT of the original string then becomes

TGCTAA$CAG.

Using the standard algorithms for construction of su�x arrays we can construct BWT

of T in O(|T |) time and space. Also, it is possible to reconstruct the original string T from

string B in linear time.

An interesting property of the BWT is LF mapping. We denote array of the �rst letters

from rotations F = TX1 [1]TX2 [1] . . . TXn [1]. Note, that array F consists of sorted characters

from the string T . Then it holds that if rotation Ti ends with the i-th occurence of letter

c in B, then rotation Ti−1 start with the i-th occurence of letter c in F .

The LF mapping allows us to construct a procedure for �nding an occurrence of string

q in T as a substring. Denote C(a) as the smallest index i where TXi
[1] = a. In other

words, C(a) is the total number of characters smaller than a. Also denote Occ(a, i) as the

number of occurrences of a in B[1], . . . , B[i]. If we know the interval (b, e) for q, then the

interval for aq is given as:

(C(a) +Occ(a, b− 1) + 1, C(a) +Occ(a, e))

By starting from an empty string, we can use this formula to calculate interval for any

pattern, building it from the end of pattern. Note that the am interval for empty string is

(1, |T |).
FM-Index uses compressed representation of structures mentioned above. For the DNA

string of size n with alphabet of size 4, the naive representation would need 4n log2 n bits
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for array Occ, and n log2 n bits for array S and 2n bits for array B. We also need few bits

for array C, but the size of that is only proportional to the alphabet size.

We can save space for array Occ by only storing each q-th member of the array and

computing other values using array B. Another option is to use wavelet trees (Grossi et al.,

2003; Ferragina et al., 2009), to store both array B and array Occ. We describe the wavelet

trees in Section 3.1.1. The space requiments for wavelet trees are 2n + o(n) bits for DNA

alphabet.

Also, we can store only each m-th value from array SA. Other values can be computed

by using array Occ. By varying the number m we introduce time-memory tradeo�, since

lower m means faster query time, but higher memory requirements. More speci�cally

retrieving one value of SA takes O(m) lookups in array Occ and we need n lgn
m

bits of

memory to store values of SA.

In some cases we also want to store inverse su�x array (ISA, where ISA[SA[i]] = i).

Inverse su�x array values can be used for �nding position of speci�c su�x in su�x array

and thus �nding su�xes which have same character in the beginning. Inverse su�x array

values can be sampled similarly as su�x array values.

3.1.1 Rank, Select and Wavelet Trees

Here, we describe how to augment a bit vector with rank and select operations using only

a small amount of additional memory. We also describe how to extend these operations

for arbitrary sequences using wavelet trees. These operations are essential part of any

compressed string indexing data structure. We start by de�ning rank and select operations

over a bit vector.

De�nition 10 (Rank) Given a bit vector B[1..n], rank(i) returns number of ones in

B[1..i].

De�nition 11 (Select) Given a bit vector B[1..n], select(i) returns position of i-th one

in B. Thus rank(select(i)) = i and B[select(i)] = 1.

Rank and select operation can be implemented trivially to support O(1) time queries

while using O(n lg n) bits of additional memory. However, there exists a better implemen-

tation, where rank and select still work in O(1) time, but the data structure uses only

additional o(n) bits of memory (Jacobson, 1988; Clark, 1998).
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Jacobson (1988) proposes the following solution for the rank query. We �rst split array

B into blocks of length b =
⌊

lgn
2

⌋
. These blocks are then grouped into superblocks of length

s = s · blg nc. For each superblock we calculate rank of the bit preceeding it, thus for i-th

superblock we have: Rs(i) = rank((i− 1) · s).
For each block, we calculate rank of the bit preceeding the block, but only considering

region covered by its superblock. For j-th block contained in i-th superblock we have:

Rb(j) = rank(j · b) − rank(i · s) Finally, for each possible sequence of length b and all

possible positions we precalculate ranks. We denote this table Rp(S, k), where S is a

sequence of length b and k is a position.

Using all three precomputed tables, we can easily answer the rank query in a constant

time. Table Rs has
n
s
elements, each one of them has lg n bits, so it consumes O(n

s
lg n) =

O( n
lg2 n

lg n) = O( n
lgn

) bits. Table Rb has
n
b
elements, each one of them has lg s bits, so

it consumes O(n
b

lg s) = O( n
lgn

lg(lg2 n)) = O(n lg lgn
lgn

) bits. Table Rp has b2b elements

and each one of them has lg b bits, so it consumes O(b2b lg b) = O(2
lgn
2 lg n lg lg n) =

O(
√
n lg n lg lg n) bits. Thus, all of these auxiliary tables require o(n) bits of auxiliary

memory, to suppor rank queries in O(1) time.

The select query is more complicated. Clark (1998) splits original bit vector into blocks

of variable length, each containing lg n lg lg n ones. If the block is sparse, we directly store

positions of ones. If the block is dense, we repeat the same procedure, and for second-level

dense substrings we use similar lookup table as Rp in rank implementation. Thus using

O( n
lg lgn

) = o(n) additional bits, we can support select queries in O(1) time.

We can generalize rank and select queries for an array over arbitrary alphabet.

De�nition 12 Given a string T of length n over an alphabet Σ of size σ:

• rankc(i) returns the number of occurences of character c in T [1..i],

• selectc(i) returns the position of the i-th occurence of character c .

Again, both queries can be implemented to support O(1) time queries while using

O(σn lg n) bits of auxiliary memory. Another option is to use one bit vector for each

character, which lowers the memory use to σn+ o(σn) bits.

Perhaps the best structure available for non-binary alphabets to date are wavelet trees

(Grossi et al., 2003; Ferragina et al., 2009), which have O(lg σ) query time and use n lg σ+

o(n lg σ) bits of space. Wavelet tree is a perfect binary tree, build on alphabet symbols,

where each node represent subset of Σ. In particular, the root represents whole alphabet
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and each leaf represents a distinct alphabet symbol. We denote alphabet associated with

tree node v as Σ(v). We denote the left child of node v as vl and the right child as vr, then:

Σ(v) = Σ(vl) ∪ Σ(vr)

Σ(vl) ∩ Σ(vr) = ∅

To build a wavelet tree for string T , we associate to each node v a string T (v) which

is obtained from T formed by omitting symbols not from Σ(v). We do not store T (v)

explicitely, we only store a bit vector B(v), such that B(v)[i] = 1 if T (v)[i] ∈ Σvr. By

augmenting vectors B(v) with rank and select operations, we can easily answer rank and

select queries for general alphabet in O(lg σ) time and using n lg σ+o(n lg σ) bits of memory.

We also do not need to store the original string T , since that can be easily recovered from

the tree.

3.2 Fast String Matching Using Min-Hashing

In this section, we explore a problem of indexing a long string of length ` to quickly search

for all locations of a �xed length k-mer in this string. Here we assume, that ` is very large

and k is relatively small (k ≤ 32).

Traditionally, this problem is solved in two ways:

• Directly indexing all k-mers (and their positions). All k-mers are stored either in a

sorted array or in a hash table. The sorted array is usually more compact and hash

table has faster retrieval time. We usually get fast constant query time in case of

hash tables (if we assume k �ts into the machine word), or logaritmic time in case

of sorted arrays. Storing all k-mers takes at least 2nk bits of memory (assuming

standard four letter DNA alphabet) and storing each position requires n lg n bits of

memory and there is also overhead depending on the hash table implementation.

• Using su�x arrays or FM-index (Li and Durbin, 2009; Ferragina and Manzini, 2000)

(see also section 3.1). This approach usually takes much less space than indexing

all k-mers. On the other hand, querying is slower. The advantage of FM-index

is a possibility to trade query time for memory by adjusting the sampling rate s.

Querying using FM-index usually takes O(k + zs) time, where z is the number of

hits. Storage space requirements for DNA sequences are approximately 2n + O(n)

bits for wavelet tree of BWT and n lgn
s

for samples of the su�x array.
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Even though all of these solutions have comparable asymptotic time and space com-

plexities, a practical performance di�ers signi�cantly (see Tables 3.1 and 3.2).

In this section, we propose an alternative index structure, MH-index (minhash-index),

which is mainly inspired by the use of minimizers in KRAKEN (Wood and Salzberg, 2014)

and minhashing used in Canu (Koren et al., 2017). Minimizers were also used for speeding

up the de Bruijn graph construction (Li et al., 2013; Chikhi et al., 2014). MH-index does

not exhibit good theoretical properties in the worst case, but is very e�cient in practice.

In parallel with our work a variant of su�x arrays using minimizers to sample su�xes,

called SamSAMi was developed (Grabowski and Raniszewski, 2015). Main advantage of

SamSAMi over our work is that SamSAMi works for queries of length k and higher while

our approach focuses on queries of length exactly k. On the other hand, SamSAMi has

to perform additional binary search step, while MH-index �nd occurences directly and, in

general, is conceptually much simpler.

We start �rst by de�nition of a minimizer of a k-mer and then describe how to use the

minimizers for indexing k-mers in a string.

De�nition 13 (Minimizer of a k-mer) Given k-mer x, number m, and ordering O, a

minimizer of x is a substring of x of length m with the minimal value in O. If there are

multiple possible minimizers, we select the �rst one.

One of the possible orderings is lexicographic, but this leads to undesirable properties,

like very skewed distribution of minimizers (Wood and Salzberg, 2014). Instead, we use

exclusive-or (XOR) operation with prede�ned constant c before comparing ordering of

k-mers.

In our work, we exploit a crucial property of minimizers that adjacent k-mers are likely

to share a common minimizer. First, we �nd a minimizer for each k-mer in the original

string. Then we �nd a union of these minimizers (see Figure 3.2) and construct index only

for the minimizers; for each minimizer value, we record positions of their occurences. We

also store the original string in addition to the index.

Querying in MH-index is straighforward. Given query q of length k, we �rst �nd the

minimizer of the query and then check each position indexed for the minimizer for the

query match. Note that we use the position of the minimizer in the original query, thus

we only examine a single substring for each minimizer hit.

In fact, checking the minimizer hits may seem like a computational bottleneck. For

example, consider a string An and a query AAAAAAAC, where AAAA is the minimizer. In
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CAGTTACCT

CAGTT

AGTTA

GTTAC

TTACC

TACCT

Figure 3.2: Example of minimizers of k-mer for k = 5 and m = 2 using lex-

icographic ordering. For each k-mer the minimizer is marked. There are only two

minimizers for all k-mers in this string.

this string we would have to check almost every position in the original string and all the

positions of minimizers are false positives.

In reality, typical DNA sequences do not exhibit this behaviour. Moreover, if k is small,

checking the minimizer hit essentially requires only comparison of two 64-bit numbers.

Similarly to FM-index, MH-index exhibits time vs. memory tradeo�. By making

the length of the minimizer larger, we use more memory, since k-mers would share less

minimizers, but the querying time is faster, since there are less false positive hits from the

minimizers.

3.2.1 Finding Minimizers in a String

Grabowski and Raniszewski (2015) discuss several options for �nding minimizers in a string.

Here, we provide two alternatives that are much simpler and faster than previously con-

sidered.

Consider a string T of length n, length of the query k and length of the minimizer m.

Our goal is to �nd minimizers for each substring of length k in T . First, we assume that

we can �t each substring of length m into the machine word. Thus listing all substrings of

length m can be done in O(n) time and we denote the array of these substrings Tm. Now

our goal is to �nd minimums of intervals Tm[1..k −m+ 1], Tm[2..k −m+ 2], etc..

Let p = k−m+ 1. We cut array Tm into windows of length 2p where two neighbouring

windows overlap by p positions, i.e. we have windows Tm[1..2p], Tm[p..3p], Tm[2p..4p], etc.

We use the �rst window to provide answers for intervals Tm[1..p], . . . Tm[p..2p]. Second

window will be used for interals Tm[p..2p], . . . , Tm[2p..3p], etc.

We process each window using the following algorithm. Given a window Tm[kp..(k+2)p]
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Memory Time per

Index consumption (MB) query (µs)

Hash table 426 0.4

Sorted array 72 0.5

FM-index (sampling 1) 15 3.6

FM-index (sampling 4) 5.2 4.0

MH-index (m = 12) 4.7 0.5

Table 3.1: Comparison of indices on Echerichia coli dataset (4.6 Mb)

we split the window into two halves and calculate the su�x minima S[x] = minTm[x..(k+

1)p] for the �rst half and pre�x minima P [x] = minTm[(k + 1)p..x] for the second half.

We can build these arrays in O(p) time. Note that each answer can be recovered using a

combination of su�x and pre�x minima in a constant time. Thus processing of one window

takes O(p) time.

Since we have O(n
p
) windows, the whole processing takes O(n) time. Note that we do

not need to build whole array Tm at once, we only need to have one window available, thus

our processing takes only O(k) additional memory.

Other option is to use double-ended queue (deque). Deque will hold indices for the array

Tm. We process elements of Tm in order and in deque we only hold indices of elements,

which have potential to become minimizer at some point in the future. Thus, following

invariant holds in the deque: If deque consists of elements a1, a2, . . . , az, then if i < j also

ai < aj and Tm[ai] <= Tm[aj].

During processing of element Tm[i], we are looking for minimum of interval Tm[i− p+

1..i]. We �rst remove all elements aj from the back of the deque where Tm[aj] > Tm[i], since

this elements will never become minimizers. Then we put i into the back of the deque. We

also remove all elements from the front of the deque where ai < i− p + 1, since these are

elements, which are before our interval of the interest. Now the minimizer of the interval

Tm[i− p+ 1..i] is the �rst element of the deque.

Since each element was once added to the deque and once removed from the deque

whole processing takes O(n) time. Also we consume only O(k) additional memory.
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Memory Time per

Index consumption (MB) query (µs)

Hash table 7217 0.4

Sorted array 1293 0.5

FM-index (sampling 1) 325 3.6

FM-index (sampling 4) 107 4.0

MH-index (m = 12) 89 2.5

MH-index (m = 15) 100 1.4

MH-index (m = 19) 237 1.1

Table 3.2: Comparison of indices on Human chromosome 14 dataset (88 Mb)

3.2.2 Experiments

We tested the MH-index on two DNA sequences: Escherichia coli K12 MG1665 (4.6 Mb

long) and Human chromosome 14 (88Mb long). We compared indexes based on the hash

table, the sorted array, the FM-index with sampling rates 1 and 4, and MH-index with

several values of m. We recorded memory consumed by the index and query time for

executing million queries of length k = 30. We chose half of the queries randomly from

original string and the other half of the queries as random strings. Results are sumarized

in Tables 3.1 and 3.2.

Experimental results show, that for smaller strings, we can achive small memory foot-

print comparable with FM-index and very fast query time comparable with hash tables.

On larger string we are slightly slower than hash tables, but consume much smaller amount

of memory. We are also faster than FM-index using comparable amount of memory. We

also believe, than further research and better implemention can speed up MH-index even

futher.

3.3 Gk-arrays

In this section, we describe Gk-arrays (Philippe et al., 2011) and compressed Gk-arrays

(Välimäki and Rivals, 2013), the data structures for indexing large collections of short

reads. Both data structures support the following queries for a �xed length k-mer q:

Q1: In which reads does q occur?

Q2: In how many reads does q occur?
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Q3: What are the occurence positions of q in the reads?

Q4: What is the number of occurences of q in the reads?

Q5: In which reads does q occur only once?

Q6: In how many reads does q occur only once?

Q7: What are the occurence positions of q in each read where q occurs only once?

Another interesting feature of Gk-arrays, is ability to also specify the query by read ID

and position in the read and improving the query time by using this speci�cation. This

feature is useful, for example, for counting overlaps between reads.

Gk-arrays start with concatenating all reads without a delimiter into string T . Then

they sort all k-mers from T which do not cross read boundary. They use a few more

auxiliary structures similar to LCP arrays to speed up query time. Gk-arrays handle

queries Q5-7 by just �ltering the answers from respective queries Q1-4. Overall, due to

high memory consuption, which is caused by the lack of any compressed data structures,

Gk-arrays are not very useful in practice.

Compressed Gk-arrays start by concatenating reads with delimiters into string T . First,

they build FM-index over T . Then they use the following auxiliary data structures:

• Blcp is a bit vector, where Blcp[i] = 1 if and only if LCP [i] < k. This structure is used

to �nd su�x array range for given k-mer from the speci�ed read and the position.

First, we use an inverse su�x array to �nd k-mer position in the su�x array. Then

we are looking for range [s, e] such that LCP [i] ≥ k for all s < i ≤ e. This range

can be found by using Blcp together with rank and select queries. Note that we can

compute the LCP array from the BWT (Beller et al., 2013).

• Blast is a bit vector, where Blast[i] = 1 if and only if k-mer q = T [SA[i]..SA[i]+k−1]

starting from position SA[i] is the last occurence of q within the corresponding read.

This array, together with rank and select queries, can be used to count the number

of reads having speci�ed k-mer.

• Bonce is a bit vector where for each i, where Blast[i] = 1, we indicate whether the

corresponding k-mer occurs only once in the corresponding read. This vector can be

used to speed up answer to queries Q5-7.

Using data structures mentioned above, we can achieve good query times for all queries

mentioned above. We summarize space and time complexity of compressed Gk-arrays in

table 3.3.
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Final index size (bits) nHh log logσ n+O(n)

Query time for a k-mer O(k log σ + polylog(n))

a read position O(log log n)

Additional time to answer:

Q1: In which reads does q occur? O(|Q1| log log n)

Q2: In how many reads does q occur? O(1)

Q3: What are the occurence positions of q in the reads? O(|Q3| log log n)

Q4: What is the number of occurences of q in the reads? O(1)

Q5: In which reads does q occur only once? O(|Q5| log log n)

Q6: In how many reads does q occur only once? O(1)

Q7: What are the occurence positions of q in O(|Q7| log log n)

each read where q occurs only once?

Table 3.3: Summary of space and time complexities for compressed Gk-arrays

taken from (Välimäki and Rivals, 2013). Hh denotes h-th order entropy. |Qi| denotes
output size for query type i.

3.4 CR-index

Previous approaches (Philippe et al., 2011; Välimäki and Rivals, 2013) were optimized

for collections that consist of randomly generated strings. Yet, in many applications (like

our GAML framework proposed in Chapter 2), the collection contains reads that have

large overlaps, and there can even be many identical reads. In this section, we propose

a new data structure CR-index targeted at read collections that are randomly selected

short substrings of a given template, sampled to high coverage, with only a few di�erences

compared to the template (e.g., Illumina reads from a given genome at 50× coverage and

1% error rate).

The main idea of CR-index is to use a guide superstring G, which contains all reads ri

from the collection R as substrings. The guide superstring is supplemented by additional

structures allowing identi�cation of IDs of all reads that align to a particular position in G.

The guide superstring will be generally much shorter than the concatenation of all reads

and since representation of this string accounts for most of the memory used in the previous

indexing structures, it will be possible to reduce the memory footprint signi�cantly on real

data.

It may seem that the genome from which the reads originated may be the ideal guide
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superstring. At the same time, often we want to use CR-index to support the task of

genome assembly from reads, so requiring a guide superstring as a prerequisite may seem

somewhat circular. However, we do not require a guide string that would be a plausible

interpretation of the read collection. Obtaining a plausible genome assembly means resolv-

ing sequence repeats correctly (including correct number of repeats and their organization)

and joining as many contigs as possible into larger sca�olds, which is a very di�cult task.

In contrast, the guide string is only required to satisfy the above technical de�nition; it

is allowed to be very fragmented, and the best guide strings will be over-collapsed, with

each repeat included only once. Such guide strings can be easily obtained even through the

simplest de Bruijn graph approaches or by simple approximation algorithms for building

the shortest superstring.

However, there is a problem with errors contained in the reads. Any read that has been

changed compared to the original template will likely not align to the original template

and thus the guide string would have to be signi�cantly enlarged to also include all the

reads with errors. On the other hand, allowing too many di�erences between guide string

and reads would complicate the querying, since during query time we would have to test

all possible di�erences. As a tradeo�, we decided that the best way is to allow only one

di�erence per each k-mer, which gives following de�nition of the guide string:

De�nition 14 (k-guide superstring) For a given read collection R and number k, a

k-guide superstring is a string G such that for each read r ∈ R there exists a substring of

G or a reverse complement of a substring of G, denoted sr, such that any two di�erences

between sr and r are located more than k bases apart.

Note that in this work, we allow only substitutions as di�erences between r and sr.

The query algorithm is illustrated in Figure 3.3. For a given query k-mer x, we search

the guide string for all strings at Hamming distance at most one from x and from the

reverse complement of x. This bound on Hamming distance is su�cient, because di�erences

between r and sr are more than k bases apart, and thus the query will overlap at most

one di�erence between the guide string and the target read. After recovering all potential

matching reads, we verify that each of them actually contains the original query x as a

substring.

Even though this search algorithm is somewhat complicated due to the relaxed de�ni-

tion of the k-guide superstring, we gain signi�cant improvements in memory. For example

on E. coli dataset, we were able to construct exact superstring of length 224 Mbp and

k-guide string of length 108 Mbp.
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TAAT original k-mer

AAAT ... TACT ...        k-mers with distance at most 1

ACCGTACTCAAGTTC superstring with matching part

extracted read which matches original queryACCGTAAT
GTACTCAAG extracted read which does not match original query

Figure 3.3: Overview of the algorithm for answering CR-index query.

Read 0 ACCGTAATCA

Read 1 GTACTCAAAG

Read 2 CTGAAAGTTC

Superstring G ACCGTACTCAAAGTTC

Read positions 0: 0; 1: 3; 2: 6

Read substitutions (0,6): A, (3,2): G

Figure 3.4: Overview of the CR-index for three input reads shown at the top.

3.4.1 Representing k-guide Superstring and Auxiliary Data Struc-

tures

As shown in Figure 3.4, the CR-index consists of three main parts. The �rst part repre-

sents the k-guide superstring G and allows fast exact pattern matching. The second part

represents the starting positions of individual reads in G and allows us to quickly locate

reads covering a given region in G. Finally, the last part lists di�erences between the reads

and the guide superstring, and allows us to quickly verify if a read matches our query

k-mer x.

To implement the CR-index, we use succint data structures from the SDSL library (Gog

et al., 2014). In particular, the guide superstring is represented using FM-index (Li and

Durbin, 2009; Ferragina and Manzini, 2000), which allows e�cient exact pattern matching

while maintaining a small memory footprint (linear in the length of the superstring). FM-

index consists of a wavelet tree, which contains a BWT-transformed superstring G, and

samples from su�x and inverse su�x arrays for G. The sampling rate in�uences memory

usage and query time; a higher sampling rate results in faster queries but requires more
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Read starts Pb 1001001000000000

Read IDs Pr 0 1 2

Reverse complements Pc F F F

Figure 3.5: Data structures needed to locate reads starting at a particular posi-

tion.

memory.

The other two parts of the data structure are described in more details below, but both

use sparse bit vectors represented as SDarrays (Okanohara and Sadakane, 2007). In this

representation, a bit vector of length n with m bits set to one occupies m lg n
m

+2m+o(m)

bits of memory. The rank query (retrieving the number of bits set to 1 in a pre�x of the

vector of length i) works in O(log n
m

+ log4m/ log n) time and the select query (retrieving

the position of i-th bit set to 1) works in O(log4m/ log n) time.

Representation of reads starting at a given position. After locating a particular

k-mer occurrence in the guide superstring G, we need to recover all reads that overlap this

occurrence. First, assume that at most one read starts at each position of G. We will

construct a bitvector Pb containing 1 at each position where a read starts. This bitvector

will be stored in an SDarray, and thus support fast rank and select queries. The read

IDs will be stored in array Pr sorted by their position in the superstring. Finally, Pc is a

bitvector indicating a strand of the read in the superstring. Figure 3.5 demonstrates the

use of these arrays. We can �nd the read located at position p by �rst checking whether

Pb[p] = 1 and then using rank query to �nd the position of the read in Pr and Pc.

To accomodate multiple reads at the same position, we store reads mapping to the

same position in a linked list. Our implementation of the linked lists is optimized for the

case when most lists have length only one, which is usually the case unless the coverage is

very high. The �rst item of each linked list is stored in arrays Pb, Pr, and Pc as before. To

store the rest of the linked lists, we use a bitvector Lb which contains one at position r if

read with ID r has successor in the linked list. Note that the length of Lb is the same as

the total number of reads. We enhance this array to support rank queries. Read IDs of

the remaining reads (not present in Pr) are in array Lr and their strand information is in

bit vector Lc. Figure 3.6 illustrates these structures.
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Pb 1010100

Pr 0 3 1

Lb 11000

Lr 4 2

Figure 3.6: Two reads ACG with IDs 0, 4 start at position 0, one read GTT with

ID 3 starts at position 2, and and two reads TAA with IDs 1, 2 start at position

4. We omit arrays Pc and Lc for simplicity.

Reads are ordered in Lr and Lc by the ID of their predecessor so that we can use the

following algorithm to retrieve all reads starting at position p. We �rst use arrays Pb and

Pr to �nd index i of the read which is the head of the linked list. The remaining reads are

found as follows:

while L_b[i] == 1:

rank = L_b.rank(i)

output L_r[rank], L_c[rank]

i = L_r[rank]

We store Pr and Lr as ordinary integer vectors with dlg(n − 1)e + 1 per integer. In

total they take n(dlg(n− 1)e+ 1) +O(lg n) bits. Arrays Pc and Lc are standard bitvectors

and take n + O(lg n) bits in total. Vectors Pb and Lb are sparse, and thus represented as

SDarrays.

Di�erences between the guide and the read. Since not all reads map to the guide

string exactly, we need to be able to recover the di�erences between a particular read and

the guide superstring. Let ` be the length of one read and n be the number of all reads.

Bitvector Db of length n` will for each read and each position in the read store zero, if

the read is identical to the guide at that particular position, or one otherwise. Vector Ds

will store the di�erences corresponding to 1s in bitvector Db. We can use rank and select

queries to recover a particular di�erence. Figure 3.7 illustrates the arrays. We can store

the array Ds in 2d + O(lg d) memory, where d is the total number of di�erences between

the reads and the guide. Db is a sparse bitvector represented by SDarrays.
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Bitvector Db 0000001000 0000000000 0010000000

Original bases Ds A G

Figure 3.7: Representation of di�erences between the read and the guide.

Querying CR-index. The algorithm for querying the index follows the outline explained

in the beginning of Section 3.4. More speci�cally, given k-mer x we obtain the reads

containing x using the following steps:

1. Construct reverse complement xR of x and the set Q of all k-mers with Hamming

distance of at most one from x or xR.

2. For each q ∈ Q, �nd the set P of its positions in G using the FM index.

3. For each p ∈ P , �nd the set R of reads containing k-mer starting at p. This is

achieved by retrieving the reads starting at positions p− `+ k, . . . , p, where ` is the

length of a read.

4. For each r ∈ R: If q = x or q = xR check if r does not contain any substitutions in the

interval corresponding to q. Otherwise check if r contains exactly one substitution

which is the same as the di�erence between q and x (xR). Output the read, if it

passes the test.

In the FM index, we search for O(k) string from Q, each search taking time O(k).

If this search �nds m matching positions in total, we spend O(m) time to recover these

positions. Let r be the number of reads overlapping these matches, s the length of G,

t the total length of reads, and d the total number of di�erences. Extracting each read

involves a constant number of rank and select queries in arrays Pb and Lb, which takes

O(r lg s
r

+ lg4 r/ lg s) time. Extracting relevant di�erences takes one rank query in array

Db, which in total takes O(r lg d
t

+ lg4 d/ lg t).

In our algorithms, we search the data structure for all k-mers from Q. However, if we

search for q ∈ Q which di�ers from x or xR by a particular substitution, we may �nd no

matches, because this particular substitution does not occur in any read in the set. In

real data, usually only a few substitutions lead to a matching read. To reduce the number

of useless queries, we implement a simple �lter based on Bloom �lters (Bloom, 1970). In

particular, we use a Bloom �lter to store all k-mers from all reads that di�er from their
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corresponding k-mers in G. For every substituion on a read compared to the superstring we

thus store k strings. Before querying FM-index for occurrences of q, we �rst test whether

the substitution in q compared to the query k-mer x or xR is hashed in the Bloom �lter.

3.4.2 Finding the k-guide Superstring

Our goal is to �nd as short k-guide superstring as possible for a given collection of reads

R. This problem is a generalization of a well-known shortest superstring problem, which

is NP-hard (Gallant et al., 1980). In our work, we will use a heuristics based on commonly

used sequence assembly tools in the following three steps:

1. Read correction. First, we identify the reads containing low-frequency substrings.

Unique/low-frequency substrings would unnecessarily in�ate the size of the guide

string, and we attempt to remove these low-frequency substrings by introducing a

small number of substitutions. Various formulations of such read correction problem

have been studied in the context of sequence assemblers (Kelley et al., 2010). We use

the read correction algorithm from SGA (Simpson and Durbin, 2010), but we only

accept the substitutions that are at least k bases apart (if SGA proposes substitutions

that are too close, we greedily chose a subset satisfying our criterion).

2. Finding read overlaps. Again, this is a well studied problem in the context of

sequence assembly. We use the SGA overlap algorithm with standard settings.

3. Construction of the superstring. The easiest approach would be to use a

well-known greedy approximation shortest superstring algorithm, which repeatedly

merges two strings with the largest overlap (Blum et al., 1994). In practice, we have

found that the guide construction can be speeded up by doing assembly �rst and

only perform the greedy merge as a �nishing step to incorporate reads that were not

successfuly included in the assembly.

Various modi�cations are possible. For example, using a simple string concatena-

tion in the �nishing step leads typically to about 25% in�ation in the string length

compared to the greedy merging.

In our experiments we found that our construction e�ciently compressed around 90%

of reads (those present in the assembly) and modestly compresses the remaining erroneous

reads.
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Figure 3.8: Comparison of memory usage of CR-index and compressed Gk-arrays

on the E. coli dataset with increasing coverage.

3.4.3 Experiments

We compare the performance of our data structure with compressed Gk-arrays (Välimäki

and Rivals, 2013) on two datasets. The �rst data set is the set of 151bp Illumina reads from

E. coli strain MG1655 (genome length 4.7 Mbp, 184× coverage after removal of low-quality

reads, 0.75% error rate) (Illumina). The second data set is a set of 101bp Illumina reads

from human chromosome 14 (sequence length 107 Mbp, 23× coverage, 1.5% error rate)

from Genome Assembly Gold-Standard Evaluations (library 1; Salzberg et al. (2012)). In

addition, we also use error-free reads of length 151bp simulated from the E. coli genome

with coverage up to 50×. In all experiments, we have used query length k = 15.

First, we were interested in the guide string length and memory use when dealing with

error-free reads from the E. coli genome. With increasing number of reads, the size of the

guide string stayed almost the same (4.7 Mbp). The overall memory grew linearly with

the number of reads, and at 50× coverage, the whole data structure required only 8.8 MB,

or 5.9 bytes per read.

The situation is more complicated in the case of real reads containing errors (see Figure

3.8). Memory usage of the CR-index still grows approximately linearly with the coverage,

and the slope is much lower than for the compressed Gk-arrays. Whereas the length of

the superstring is 6.9 Mbp at coverage 2.5 (1.7 times smaller than total length of reads),
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Figure 3.9: Comparison of query time of CR-index and compressed Gk-arrays

on the E. coli dataset with increasing coverage.

the size increases with the coverage up to 108 Mbp at coverage 184, which is 8× smaller

than the length of all reads concatenated. The increase in length is due to the presence of

reads with errors that are less than k positions apart, and consequently cannot be easily

integrated into a smaller superstring. The largest dataset is represented in 142.4 MB of

memory, of which 71% is taken by the FM index, 15% is taken by read positions, less than

2% is required to represent the substitutions in reads, and approximately 12% is taken by

the Bloom �lter.

Compressed Gk-array queries are faster at small coverage, but the relative di�erences

become insigni�cant at higher coverage (Figure 3.9).

On the human chromosome 14 (23× coverage of 107 Mbp sequence, 1.5% error rate),

the CR-index requires only 571 MB of memory, while Gk-arrays require ≈ 1.7 GB. On

the other hand, a typical query takes 214 ms in CR-index, or roughly 3× longer than in

Gk-arrays (71 ms). We believe that this is due to higher error rate in the data which may

cause the Bloom �lter to �lter out fewer queries.

Both CR-index and compressed Gk-arrays use sampling of the su�x array. This allows

time vs. memory tradeo�, since by sampling more values, we get a better running time at

the expense of higher memory usage. Figure 3.10 shows this tradeo� at coverage 50 in the

E. coli dataset. CR-index is much less sensitive to sampling parameters than compressed
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Figure 3.10: Comparison of query time and memory usage of CR-index and

compressed Gk-arrays on the E. coli dataset with coverage 50 for varying su�x

array sampling rates.

Gk-arrays. This is due to compressed superstring representation which results in a smaller

FM-index and a smaller number of hits in FM-index during the search.

3.4.4 Support of Other Gk-array Queries

CR-index directly supports queries for reads that contain a particular k-mer and for all

occurrences of the k-mer in these reads (queries Q1 and Q3 in Välimäki and Rivals (2013)).

In this work, we did not implement other queries supported by compressed Gk-arrays. In

particular, while the number of reads and the number of occurrences in reads (queries Q2

and Q4) can also be easily recovered, an e�cient implementation is more di�cult. We

could count the reads overlapping a given position in the guide string by rank queries,

however these counts will also include reads that mismatch the guide string and these

would need to be excluded, requiring additional operations proportional to the number of

matching reads. In contrast, after locating the k-mer, compressed Gk-arrays can count

the number of occurrences in constant time. Mismatches between the guide string and the

reads also do not leave much space for non-trivial implementations of queries Q5-Q7 which

require exactly one occurrence of the k-mer in a read. Perhaps additional auxiliary data

structures would help to implement these queries in a more reasonable time.
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3.5 Discussion and Conclusion

We have presented two data structures for indexing �xed length k-mers either in a long

string or in a big collection of short strings.

First, we have presented MH-index, a data structure for indexing long strings, which

uses idea of minimzers for lowering its memory complexity. The resulting data structure

is conceptually very simple and yet it has a favorable practical performance compared

to the hash tables and the FM-index. We think that the MH-index can be improved in

case of long repeated character sequences. It might be also worth to combine the idea

of minimizers with compressed data structures such as FM-index. Ideally, we would like

to have fast average case behaviour of MH-index combined with worse case guaranties of

FM-index. Chikhi et al. (2014) uses ordering of minimizers based on their frequency for

construction of de Bruijn graph. In future, we should also test e�ects of this ordering on

algorithm performance.

In the second part, we have presented a new compressed data structure, called CR-

index, for indexing short sequencing reads. CR-index has a signi�cantly smaller memory

footprint than Gk-arrays (Philippe et al., 2011; Välimäki and Rivals, 2013) and still main-

tains a reasonable query time. In our work, we have used standard algorithms for read

correction and sequence assembly to construct the guide string. It may be possible to

achive lower memory consumption by developing more specialized algorithms. For error

correction, we do not need exact error correction of reads, we need error correction, which

minimizes the length of the guide string and thus sometimes correct more errors than

needed. Also standard assembly algorithms are quite conservative and we believe, that us-

ing aggresive heuristic for constructing shortest common superstring might lead to better

results.

In our intended application, which is alignment of multiple references to �xed read

library, the same read is likely to be ��shed-out� through many k-mer queries, and thus it

may be argued that in majority of cases there should be an exact match of at least one

k-mer. Thus is most cases in might be possible to skip searching for neighbourhoods to

account for mismatches between the guide string and the reads. In this case, we can omit

auxiliary structures for error correction and simplify and speed up the query procedure.

Also, in our application we usually query CR-index using k-mers which overlap by k−1

positions. Interesting possibility is to support a "rolling" query in a faster time.

Another possible extension of CR-index would be to allow reads to be divided into
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multiple pieces. The only requirement should be that each k-mer from reads is present in

guide string. this idea allows further decrease in memory consumption, which was explored

in a followup work by Petrucha (2016).



Chapter 4

Base Calling and Indexing Nanopore

Reads

In this chapter, we study problems directly related to DNA sequencing, in particular to

MinION nanopore sequencing device. The MinION device by Oxford Nanopore (Mikheyev

and Tin, 2014), weighing only 90 grams, is currently the smallest high-throughput DNA

sequencer. Thanks to its low capital costs, small size and the possibility of analyzing the

data as they are produced, MinION is very promising for clinical applications, such as

monitoring infectious disease outbreaks (Judge et al., 2015; Quick et al., 2015, 2016), and

characterizing structural variants in cancer (Norris et al., 2016).

Although MinION is able to produce long reads, data produced by the platform exhibit

a rather high sequencing error rate.

In this chapter, we �rst describe data produced by the MinION sequencer, then we

examine problems related to base calling of MinION data (translating raw signal into

DNA bases). Finally, we explore the area of indexing and aligning raw data from the

sequencer. From the computer science perspective, we are mostly looking at problems

of sequence to sequence prediction and indexing and comparing sequences of real valued

numbers.

59
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Figure 4.1: Raw signal from MinION and its segmentation to events. The plot was

generated from the E. coli data (http://www.ebi.ac.uk/ena/data/view/ERR1147230).

4.1 Characterics of the Data Produced by the MinION

Sequencer

In the MinION device, single-stranded DNA fragments move through nanopores. At each

pore electric current,a�ected by the passing DNA fragment, is measured thousands times

per second, resulting in a measurement plot as shown in Fig.4.1. The electric current

depends mostly on the context of several DNA bases passing through the pore at the time of

measurement. As the DNA moves through the pore, the context shifts, and measured signal

changes. Based on these changes, the sequence of measurements is split into events, each

event ideally representing the shift of the context by one base. Each event is summarized

by mean, variance and duration. This sequence of events is then translated into a DNA

sequence by a base caller.

A MinION device typically yields reads tens thousands bases long; reads as long as

500,000 bp have been reported (Smith, 2016). To reduce error rate, the device attempts

to read both strands of the same DNA fragment. The resulting template and complement

reads can be combined into a single two-directional (2D) read during base calling. As

shown in Table 4.2, this can reduce the error rate of the default base caller from roughly

30% for 1D reads to 13-15% for 2D reads on the R7.3 version.

http://www.ebi.ac.uk/ena/data/view/ERR1147230
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To sum up, output of the the sequencing device for one read is a sequence of pairs:

(m1, s1), (m2, s2), . . . , (mn, sn), where mi represents mean of the event i, and si represents

standard deviation of event i. Optionally, we can have a similar sequence for the comple-

ment DNA sequence of the read.

4.1.1 Applications of MinION Sequencer

Apart from obvious applications of MinION data, like genome assembly, where long Min-

ION reads are very helpful, there are many other applications for the MinION sequencer.

Methylation detection. In most of hte current sequencing technologies, the DNA is

�rst multiplied and copied, which results in reading synthetic DNA). In contract to this,

MinION can read the original DNA molecules extracted directly from live organism and

consequently it can detect modi�cations in chemical structure of DNA bases, such as

methylation (Simpson et al., 2016). These modi�cations have many regulatory functions

in biological organisms. During MinION sequencing, methylation modi�cations cause small

changes in electric current, which can be detected by models speci�cally trained for this

purpose.

Real time sequencing. Another feature of MinION is real time sequencing, where we

can obtain results from sequencing as they are produces (even from un�nished reads).

This feature is very useful in clinical applications, for example for pathogen detection

(Mitsuhashi et al., 2017).

Selective sequencing. Real time sequencing can be further improved with selective

sequencing. In many cases, the sample contains a mix of DNA, some of which we are

interested in, and some of which is not interesting. For example, when we sequence DNA

sample containing DNA from multiple organisms (e.g. human and a pathogen) we are

only interested in one organism (e.g. pathogen from the previous example). Or we may be

interested only in speci�c region of DNA.

MinION device has two important features, which allow selective DNA sequencing.

First, it allows real time streaming and analysis of sequenced data, and secondly, it is

possible to reject particular reads and stop their sequencing. it is thus possible to read

only the �rst few hundred bases from a read (we usually discard the �rst 100 sequencing

events and then look at the next 250 events) from a read, then deciding whether we want
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Figure 4.2: Means and standard deviations of expected signal from MinION

for several di�erent kmers. Data are from Nanocall model (David et al., 2016). We

can clearly see that base alling is not a triivial task, since we can get the same signal for

multiple contexts.

to keep the read, or stop its sequencing. This idea was mostly explored in Readuntil tool

(Loose et al., 2016).

4.1.2 Base Calling of MinION Reads

Since MinION only produces a sequence of real numbers, software is required to translate

this sequence of events into the sequence of DNA bases. This software is called base

caller. MinION signal sequences are quite noisy (see Fig. 4.2), so we use machine learning

approaches for sequence to sequence prediction. Typical examples of these models are

Hidden Markov models (HMMs) and recurrent neural networks (RNNs).

The manufacturer of MinION provides proprietary base caller for MinION, called Met-

richor. In older versions, the basecaller used Hidden Markov models. In newer version

they use recurrent neural networks. When using Hidden Markov models we assume that

the electric current read by MinION depends only on a context of k = 6 consecutive bases

and that the context typically shifts by one base in each step. As a result, every base is

read as a part of k consecutive events.

Each state in the HMM model represents one k-tuple and the transitions between states

correspond to k-tuples overlapping by k − 1 bases (e.g. AACTGT will be connected to

ACTGTA, ACTGTC, ACTGTG, and ACTGTT), similarly as in de Bruijn graphs (David

et al., 2016). Emission probabilities re�ect the current expected for a particular k-tuple,

with an appropriate variance added (usually we use a Gaussian distribution for event mean



CHAPTER 4. BASE CALLING AND INDEXING NANOPORE READS 63

and an Inverse Gaussian distribution for event standard deviation). Finally, additional

transitions represent missed events, falsely split events, and other likely errors (in fact,

insertion and deletion errors are quite common in the MinION sequencing reads, perhaps

due to the errors in the event segmentation).

After the parameter training, base calling can be performed by running the Viterbi

algorithm (Jr, 1973), which will result in the sequence of states with the highest likelihood.

It is not known, what is the exact nature of the model used in Metrichor, but the emission

probabilities required for this type of model are provided by Oxford Nanopore in the �les

storing the reads. HMM model was also implemented in an opensource basecaller called

Nanocall (David et al., 2016).

4.1.3 Signal Scaling and Shift Caused by Pore Degradation

MinION uses biological pores made of proteins. During the sequeicing run these pores de-

grade, which causes changes in the electric current over time. Fortunatelly, shifts typically

do not change signi�cantly within a single read and thus can be modeled by simple scaling

and shift of the signal1. Detecting correct scaling and shift is very important in HMM

models (Nanocall (David et al., 2016) runs a variat of the EM algorithm). In RNN models,

it is often su�cient to standardize signal to zero mean and unit variance. We will return

to this problem in Section 4.3, where we describe how this problem can a�ect alignment

of raw events.

4.2 Base Calling Using Recurrent Neural Networks

There are several disadvantages to using HMMs for base calling of MinION data. HMMs

are very good at representing short-range dependencies (such as moving from one k-mer to

the next), yet it has been hypothesized that long-range dependencies may also play a role

in MinION base calling, and such dependencies are very hard to capture in HMMs. Also,

in HMMs a prior model for the DNA sequence itself is a part of the model. This may be

di�cult to provide for an unknown DNA sequence and using incorrect prior model may

cause signi�cant biases.

In this section, we present our own basecaller DeepNano (Boºa et al., 2016), which uses

1Some models also assume that signal slightly drifts during sequencing of one read, but e�ect of drift

on accuracy is usually very small.
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recurrent neural networks and was developed in parallel with the current o�cial MinION

base caller.

4.2.1 Recurrent Neural Network Used by DeepNano

Recurrent neural networks (Lee Giles et al., 1994; Graves, 2012; Goodfellow et al., 2016)

are arti�cial neural networks used for sequence labeling. Given a sequence of input vectors

{~x1, ~x2, . . . , ~xt}, the prediction of the recurrent neural network (RNN) is a sequence of

output vectors {~y1, ~y2, . . . , ~yt}. In our case, the input vectors consist of the mean, standard

deviation, and length of each event, and the output vectors give a probability distribution

of called bases.

Simple recurrent neural networks. First, we describe a simple recurrent neural net-

work with one hidden layer (Fig. 4.3a). During processing of each input vector ~xi, a

recurrent neural network calculates two vectors: its hidden state ~hi and the output vector

~yi. Both depend on the current input vector and the previous hidden state: ~hi = f(~hi−1, ~xi),

~yi = g(~hi). We will describe our choice of functions f and g later. The initial state ~h0 is

one of the trainable parameters of the model.

Prediction accuracy can be usually improved by using neural networks with several

hidden layers (Fig 4.3b), where each layer uses hidden states from the previous layer. We

use networks with three or four layers. Calculation for three layers proceeds as follows:

~h
(1)
i = f1(~h

(1)
i−1, ~xi)

~h
(2)
i = f2(~h

(2)
i−1,

~h
(1)
i )

~h
(3)
i = f3(~h

(3)
i−1,

~h
(2)
i )

~yi = g(~h
(3)
i )

Note that in di�erent layers, we use di�erent functions f1, f2, and f3, where each

function has its own set of trainable parameters.

Bidirectional recurrent neural networks. In case of MinION data, the prediction

for input vector ~xi can be in�uenced by data seen before ~xi but also by data seen after it.

To incorporate this data into prediction, we use a bidirectional neural network (Schuster

and Paliwal, 1997), which scans data in both directions and concatenates hidden outputs

before proceeding to the next layer (see Fig. 4.3c). Thus, for a three-layer network, the
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Figure 4.3: (a) recurrent neural network with one layer. (b) recurrent neural

network with three layers. (c) bidirectional recurrent neural network

calculation would proceed as follows (|| denotes concatenation of vectors):

~h
(1+)
i = f1+(~h

(1+)
i−1 , ~xi)

~h
(1−)
i = f1−(~h

(1−)
i+1 , ~xi)

~h
(1)
i = ~h

(1+)
i ||~h(1−)

i

~h
(2+)
i = f2+(~h

(2+)
i−1 ,

~h
(1)
i )

~h
(2−)
i = f2−(~h

(2−)
i+1 ,

~h
(1)
i )

~h
(2)
i = ~h

(2+)
i ||~h(2−)

i

~h
(3+)
i = f3+(~h

(3+)
i−1 ,

~h
(2)
i )

~h
(3−)
i = f3−(~h

(3−)
i+1 ,

~h
(2)
i )

~h
(3)
i = ~h

(3+)
i ||~h(3−)

i

~yi = g(~h
(3)
i )

Gated recurrent units. A typical choice of function f in a recurrent neural network is

a linear transformation of inputs followed by hyperbolic tangent nonlinearity:

f( ~hi−1, ~xi) = tanh(W ~xi + U~hi−1 +~b)

where the matrices W,U and the bias vector ~b are the trainable parameters of the model.

Note that we use separate parameters for each layer and direction of the network.
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This choice unfortunately leads to the vanishing gradient problem (Hochreiter, 1998).

During parameter training, the gradient of the error function in layers further from the

output is much smaller that in layers closer to the output. In other words, gradient

diminishes during backpropagation through network, complicating parameter training.

One solution is to use long-short term memory units (Hochreiter and Schmidhuber,

1997). In our model we use gated recurrent units (Chung et al., 2014), which are simpler

than LSTM and also solve vanishing gradient problem.

Given input ~xi and previous hidden state ~hi−1, a gated recurrent unit �rst calculate

values for update and reset gates:

~ui = σ(Wu~xi + Uu~hi−1 + bu),

~ri = σ(Wr ~xi + Ur~hi−1 + br),

where σ is the sigmoid function: σ(z) = 1/(1 + e−z). Then the unit computes a potential

new value

~ni = tanh(W ~xi + ~ri ◦ U~hi−1).

Here, ◦ is the element-wise vector product. If some component of the reset gate vector is

close to 0, it decreases the impact of the previous state.

Finally, the overall output is a linear combination of ~ni and ~hi−1, weighted by the

update gate vector ~ui:
~hi = ~ui ◦ ~hi−1 + (1− ~ui) ◦ ~ni.

Note that both gates give values from interval (0, 1) and allow for a better �ow of the

gradient through the network, making training easier.

Output layer. Typically, one input event leads to one called base. But sometimes we

get multiple events for one base, so there is no output for some events. Conversely, some

events are lost, and we need to call multiple bases for one event. We limit the latter case

to two bases per event. For each event, we output two probability distributions over the

alphabet Σ = {A,C,G, T,−}, where the dash means no base. We will denote the two bases

predicted for input event ~xi as b
(1)
i and b

(2)
i . Probability of each base q ∈ Σ is calculated

from the hidden states in the last layer using the softmax function:

P [b
(k)
i = q] =

exp(~θ
(k)
q
~h

(3)
i )∑

p∈Σ exp(~θ
(k)
p
~h

(3)
i )
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Final basecalling is done by taking the most probable base for each b
(k)
i (or no base if dash

is the most probable character from Σ). During training, if there is one base per event, we

always set b
(1)
i to dash.

During our experiments we found that outputing two independent distributions works

better than outputing one distribution with 21 symbols (nothing, 4 options for one base,

16 options for two bases).

Training. Let us �rst consider the scenario in which we know the correct DNA bases

for each input event. The goal of the training is then to �nd parameters of the network that

maximize the log likelihood of the correct outputs. In particular, if o
(1)
1 , o

(2)
1 , o

(1)
2 , . . . , o

(1)
n , o

(2)
n

is the correct sequence of output bases, we try to maximize the sum

n∑
i=1

lgP [b
(1)
i = o

(1)
1 ] + lgP [b

(2)
i = o

(2)
2 ]

As an optimization algorithm, we use stochastic gradient descent (SGD) combined

with Nesterov momentum (Sutskever et al., 2013) to increase the convergence rate. For

2D basecalling, we �rst use SGD with Nesterov momentum, and after several iterations we

switch to L-BFGS (Liu and Nocedal, 1989). Our experience suggests that SGD is better

at avoiding bad local optima in the initial phases of training, while L-BFGS seems to be

faster during the �nal �ne-tuning.

Unfortunately, we do not know the correct output sequence; more speci�cally, we only

know the region of the reference sequence where the read is aligned, but we do not know

the exact pairs of output bases for individual events. We solve this problem in an EM-like

fashion. First, we create an approximate alignment between the events and the reference

sequence using a simple heuristic (in R7.3 we minimize the sum of di�erences between the

expected and observed means for events and have simple penalties for undetected and split

events; in R9 we use outputs of metrichor as approximate targets). After each hundredth

pass through the whole data set, we realign the events to the reference sequence. We

score the alignment by computing the log-likelihood of bases aligned to each event in the

probability distribution produced by the current version of the network. Each event can

get zero, one or two bases aligned to it. Score of an alignment for each event is sum of log

of output probabalities (either for aligned bases or for empty bases). To �nd the alignment

with maximum likelihood, we use a simple dynamic programming.



CHAPTER 4. BASE CALLING AND INDEXING NANOPORE READS 68

Data preprocessing. Mean and standard deviation of measured signals change over

time due to degradation of pores during a sequencing run. The simplest way of accounting

for this factor is to scale the measured values.

In our model, we can use scaling parameters calculated by Metrichor. In particular, we

use scale and shift for mean, and scaling for standard deviation; we do not use drift for

means as the use of this parameter has a negligible e�ect on the performance. To make

our approach independent of Metrichor, we have also implemented a simple method for

computing scaling parameters. In particular, we set the scaling parameters so that the

25th and 75th percentile of the mean values �t prede�ned values and the median of the

standard deviations �ts a prede�ned value. Using either Metrichor scaling parameters or

our simpli�ed scaling yields a very similar performance in our experiments.

1D base calling. The neural networks described above can be used for base calling

template and complement strands in a straightforward way. Note that we need a separate

model for each strand, since they have di�erent properties. In both models, we use neural

networks with three hidden layers and 100 hidden units.

2D base calling. In 2D base calling, we need to combine information from separate event

sequences for the template and complement strands. A simple option is to apply neural

networks for each strand separately, producing two sequences of output probability distri-

butions. Then we can align these two sequences of distributions by dynamic programming

and produce the DNA sequence with maximum likelihood.

However, this approach leads to unsatisfactory results in our models, with the same

or slightly worse accuracy than the original Metrichor basecaller. We believe that this

phenomenon occurs because our models output independent probabilities for each base,

while the Metrichor basecaller allows dependencies between adjacent basecalls.

To compensate for this shortcoming, we have built a neural network which gets as

an input corresponding events from the two strands and combines them into a single

prediction. To do so, we need an alignment of the two event sequences, as some events

can be falsely split or missing in one of the strands. We can use either the alignment

obtained from the base call �les produced by Metrichor or our own alignment, computed

by a simple dynamic programming over output probabilities, which �nds path with the

highest likelihood. We convert each pair of aligned events to a single input vector. Events

present in only one strand are completed to a full input vector by special values. This
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E. coli E. coli K. pneumoniae

training testing testing

# of template reads 3,803 3,942 13,631

# of template events 26,403,434 26,860,314 70,827,021

# of complement reads 3,820 3,507 13,734

# of complement events 24,047,571 23,202,959 67,330,241

# of 2D reads 10,278 9,292 14,550

# of 2D events 84,070,837 75,998,235 93,571,823

Table 4.1: Sizes of experimental data sets. The sizes di�er between strands because

only base calls mapping to the reference were used. Note that the counts of 2D events are

based on the size of the alignment.

input sequence is then used in a neural network with four hidden layers and 250 hidden

units in each layer; we needed to use a bigger network than in 1D case since there is more

information to process.

Implementation details. We have implemented our network using Theano library for

Python (Bergstra et al., 2010), which includes symbolic di�erentiation and other useful

features for training neural networks. We do not use any regularization, as with the size

of our dataset we saw almost no over�tting.

4.2.2 Experimental Evaluation of DeepNano

We have used existing data sets from Escherichia coli (Loman et al., 2015a) and Klebsiella

pneumoniae (WTC Human Genetics, 2016) produced by the SQK-MAP006 sequencing

protocol with R7.3 �ow cells. We have only used the reads that passed the original base

calling process and had a full 2D base call. We have also omitted reads that did not map

to the reference sequence (mapping was done separately for 2D base calls and separately

for base calls from individual strands).

We have split the E. coli data set into training and testing portions; the training set

contains the reads mapping to the �rst 2.5 Mbp of the genome. We have tested the

predictors on reads which mapped to the rest of the E. coli genome and on reads from K.

pneumoniae. Basic statistics of the two data sets are shown in Table 4.1.
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E. coli K. pneumoniae

Template reads

Metrichor 71.3% 68.1%

Nanocall 68.3% 67.5%

DeepNano 77.9% 76.3%

Complement reads

Metrichor 71.4% 69.5%

Nanocall 68.5% 68.4%

DeepNano 76.4% 75.7%

2D reads

Metrichor 86.8% 84.8%

DeepNano 88.5% 86.7%

Table 4.2: Accuracy of base callers on two testing data sets for R7.3 MinION

data. The results of base calling were aligned to the reference using BWA-MEM (Li,

2013). The accuracy was computed as the number of matches in the alignment divided by

the length of the alignment.

Accuracy comparison. We have compared our base calling accuracy with the accuracy

of the original Metrichor base caller and with Nanocall. The main experimental results are

summarized in Table 4.2. We see that in the 1D case, our base caller is signi�cantly better

on both strands and in both data sets. In 2D base calling, our accuracy is still slightly

higher than Metrichor's.

On the Klebsiella pneumoniae data set, we have observed a di�erence in the GC con-

tent bias between di�erent programs. This genome has GC content of 57.5%. DeepNano

has underestimated the GC content on average by 1%, whereas the Metrichor base caller

underestimated it by 2%.

To explore sequence biases in more detail, we also compared the abundance of all 6-mers

in the Klebsiella genome in the base-called reads. Fig. 4.4 shows that base calls produced

by DeepNano exhibits signi�cantly smaller bias in 6-mer composition than Metrichor base

calls. This trend is particularly pronounced for repetitive 6-mers (Fig. 4.5); similar bias

was previously observed by Loman et al. (2015b).

With R9 version of the platform, Oxford Nanopore has introduced a variety of base

calling options, including cloud-based Metrichor service, local base calling options, ex-
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Figure 4.4: DeepNano reduces bias in 6-mer composition. Comparison of 6-mer con-

tent in Klebsiella reference genome and base-called reads by Metrichor (left) and DeepNano

(right). From top to bottom: template, complement, 2D.
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Figure 4.5: Abudances for repetitive 6-mers.

perimental Nanonet code base, and binary-only Albacore platform, all of these options

very similar in accuracy. All of these options are also based on RNNs. We have used

a benchmark E. coli data set from Loman lab (http://s3.climb.ac.uk/nanopore/R9_

Ecoli_K12_MG1655_lambda_MinKNOW_0.51.1.62.tar) to evaluate performance of Deep-

Nano. The training and testing sets were split in the same way as in the case of R7 data

sets. Table 4.3 shows that the accuracy of DeepNano is very similar to that of Nanonet,

but DeepNano is faster than Nanonet. By decreasing the number of hidden units from 100

to 50, we can further trade accuracy for base calling speed. The smaller RNNs can be used

in applications, where fast running times are crucial.

Base calling speed. It is hard to compare the speed of the Metrichor base caller with

our base caller, since Metrichor is a cloud-based service and we do not know the exact

con�guration of hardware used. From the logs, we are able to ascertain that Metrichor

spends approximately 0.01 seconds per event during 1D base calling. DeepNano spends

0.0003 seconds per event on our server, using one CPU thread. During 2D base call,

Metrichor spends 0.02 seconds per event (either template or complement), while our base

http://s3.climb.ac.uk/nanopore/R9_Ecoli_K12_MG1655_lambda_MinKNOW_0.51.1.62.tar
http://s3.climb.ac.uk/nanopore/R9_Ecoli_K12_MG1655_lambda_MinKNOW_0.51.1.62.tar
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Accuracy Speed (events per second)

Nanonet 83.2% 2057 ev/s

DeepNano (100 hidden units) 81.0% 4716 ev/s

DeepNano (50 hidden units) 78.5% 7142 ev/s

Table 4.3: Accuracy and running time on R9 data. The results of base calling were

aligned to the reference using BWA-MEM (Li, 2013). The accuracy was computed as the

number of matches in the alignment divided by the length of the alignment.

caller spends 0.0008 seconds per event. To put these numbers into perspective, base calling

a read with 4,962 template and 4,344 complement events takes Metrichor 46s for template,

34s for complement, and 190s for 2D data. DeepNano can process the same read in 1.5s

for template, 1.3s for complement, and 11.3 seconds for 2D data. We believe that unless

Metrichor base calling is done on a highly overloaded server, our base caller has a much

superior speed. Compared to Nanocall, we observed that DeepNano is 5 to 20 times faster,

depending on Nanocall settings.

Although DeepNano is relatively fast in base calling, it requires extensive computation

during training. The 1D networks were trained for three weeks on one CPU (with a small

layer size, there was little bene�t from parallelism). The 2D network was trained for

three weeks on a GPU, followed by two weeks of training on a 24-CPU server, as L-BFGS

performed better using multiple CPUs. Note however that once we train the model for

a particular version of MinION chemistry, we can use the same parameters to base call

all data sets produced by the same chemistry, as our experiments indicate that the same

parameters work well for di�erent genomes.

4.3 Fast Indexing and Alignment of MinION Data

One of the MinION applications mentioned in Section 4.1.1 is selective sequencing, where

we only sequence "interesting" reads by rejecting all other reads after reading the �rst few

hundred bases. The idea was mostly explored in Readuntil tool (Loose et al., 2016).

Hard part of selective sequencing is deciding which reads to reject. Standard algorithm

for selective sequencing would be to base call the �rst few hundreds of events from the read

and then align them to the reference sequence. After aligning, we would accept the read if

we �nd a match with the acceptable similarity.
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Unfortunately, the speed of the base calling algorithm on a reasonable computer is

much lower than the rate at which the sequencer produces the data. This means that we

need to use other approaches than base calling followed by alignment. We will explore an

approach which does not translate electric signal into DNA, but instead it works directly

with the electric signal data.

First, we describe dynamic time warping (DTW) algorithm used by Loose et al. (2016)

and then we demonstrate that using DTW and application of thresholding on its matching

cost does not have enough discriminative power to distinguish false matches from true

matches. We hypothesize that the main problem lies in determining correct scaling and

shift of the data (which is hard on small number of events). We test this experimentaly by

using scaling and shift parameters determined from the whole read and our experiments

agree with the hypothesis.

Finally, we propose a variant of DTW algorithm and demonstrate that it has much

better discriminative power than the original DTW algorithm.

4.3.1 Dynamic Time Warping

Using emission distributions from the HMM for base calling (see Section 4.1.2), we can

construct the expected electric signal for given sequence of DNA bases. Thus, our main

goal is to compare two sequences of electric signals, characterized by event means. We will

ignore event standard deviation in this section. More formally, given an expected sequence

e1, e2, . . . , en and an observed sequence o1, o2, . . . , om, we need to determine whether the

observed sequence �ts into the expected sequence, and if so, �nd the alignment.

Since the event detection is unreliable, the expected and observed sequences may not

only exhibit small di�erences in signal levels, but also some events may be missing or

duplicated. A standard algorithm for comparing two such signal sequences, which vary in

speed is called Dynamic Time Warping (DTW) (Sanko� and Kruskal, 1983). DTW was

�rst used for aligning speeches.

DTW calculates a matching between elements of two sequences. It produces a sequence

of pairs (a1, b1), . . . , (ak, bk), where ai represents an index in the �rst signal sequence and

bi represents an index in the second signal sequence. The following properties should hold:

• b1 = 1, bk = m

• 0 ≤ bi − bi−1 ≤ 1
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Figure 4.6: An ilustration of DTW matching between elements. Note that some-

times a single element of the �rst sequence is matched to multiple elements from the second

sequence (and vice versa), but each element is matched to at least one element from the

other sequence.

• 0 ≤ ai − ai−1 ≤ 1

• (ai > ai−1) ∨ (bi > bi−1)

The goal of DTW is to minimize the cost of the matching, which is the sum of costs for

each matched pair. The cost of matching a pair is de�ned by cost function d(x, y) which

compares two matched elements from the two sequences. In our case, we have chosen

simply d(x, y) = (x− y)2.

The optimal matching can be found by using a simple dynamic programming. We de�ne

subproblemD[i][j] as the best cost of DTW for sequences e1, . . . , ei and o1, . . . , oj, assuming

that ei and oj are matched together. Using this subproblem, the dynamic programming

would proceed according to the following recurrence:

D[i][j] = d(ei, oj) + min(D[i− 1][j − 1], D[i− 1][j], D[i][j − 1])

In our application, we are checking whether the second sequence can be found in the

�rst sequence, thus the cost of the optimal alignment can be found as: miniD[i][m].

The algorithm has O(nm) time complexity, where n, m are the lengths of the �rst and

second sequence.
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4.3.2 Applying DTW to Selective Sequencing

Before running DTW on MinION data, we �rst have to determine correct scaling and shift

of the data. Standard procedure for this is Z-score normalization, i.e. normalizing data

mean to zero and variance to one, as used in Readuntil (Loose et al., 2016).

After �nding the best matching, we have to decide based on the score, whether the read

matches the target sequence or whether the score only represents a spurious match of the

query to the target sequence (a false positive). This is usually done by simply thresholding

on the score. We will call this setup a naive scaling.

In the following sections, we demostrate that the naive scaling has very low speci�city

when higher sensitivity is required. This causes problems especially when we are trying to

match data to a longer reference sequence, where many false positive matches can occur.

Here, we propose a simple heuristics, which greatly improves the tradeo� between sen-

sitivity and speci�city. If the alignment of the query was �xed, we could easily �nd better

scaling parameters by looking at the sequence of matched pairs and setting scaling and shift

to minimize the matching cost. More formally, given a DTW alignment (a1, b1), . . . , (ak, bk),

we are looking for parameters A,B such that the matching cost∑
k

(Aobi +B − eai)2

is as small as possible. This can be solved by the ordinary least squares regression,

which means calculating:

ô =
1

k

∑
i

obi

ê =
1

k

∑
i

eai

A =

∑
i(obi − ô)(eai − ê)∑

i(obi − ô)2

B = ê− Aô

Once we have better scaling parameters, it is possible to improve the matching by run-

ning the DTW algorithm on newly rescaled signal. In fact, we could run several iterations

of rescaling and DTW to improve the matching and the scaling parameters. We call this

approach iterative scaling.

In the next section, we compare the performance of the naive scaling and our new

iterative rescaling method.
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Algorithm variant Sensitivity Speci�city

Baseline 90% 99.72%

Naive 90% 99.88%

Simple rescaling 90% 99.94%

Two iteration rescaling 90% 99.92%

Baseline 95% 99.64%

Naive 95% 99.45%

Simple rescaling 95% 99.88%

Two iteration rescaling 95% 99.86%

Baseline 98% 99.46%

Naive 98% 90.74%

Simple rescaling 98% 99.58%

Two iteration rescaling 98% 99.46%

Baseline 99% 98.88%

Naive 99% 47.30%

Simple rescaling 99% 95.88%

Two iteration rescaling 99% 97.20%

Table 4.4: Comparison of speci�city of several scaling variants on prespeci�ed sensitivity

levels.

4.3.3 Experimental Evaluation

In our experiments we have used R9 Ecoli dataset from Loman Labs (Loman, 2016) using

only reads with and alignment to the reference and longer than 3000 bases.

As a query, we have used events number 100 to 350 from each read. In each experiment,

we run each method for each read against aligned location and against hundred random

500 bp long locations from the genome. After running each method, we study speci�city-

sensitivity tradeo� of each method by varying the threshold for the score. For each method,

we set the threshold to achieve a prede�ned sensitivity (how many times DTW accepted a

match of the read to the correct location) and measure speci�city (how many times DTW

rejected a match of the read to a random location).

We compared the following methods:

• Z-score normalization using complete reads (on more than 3000 events), followed by

DTW (on 250 events). This is an unrealistic scenario in which we e�ectively know
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the correct scaling parameters. We will use this method as a baseline for comparison.

• Naive scaling, which represents the state of the art, consisting of Z-score normaliza-

tion, followed by DTW.

• Simple rescaling, consisting of Z-score normalization, followed by DTW and rescaling.

• Two iteration rescaling, consisting of Z-score normalization, followed by DTW, rescal-

ing, and another DTW.

Table 4.4 shows comparison of these scaling variants.

We can see that at higher sensitivities, the naive variant performs much worse than

rescaled variants of DTW. This is especially visible at 99% sensitivity level, where naive

variant treats every second false match as a good match. Also at 99% sensitivity we see

bene�t of two iteration rescaling, which discards many more false positives than simple

rescaling. A consistently strong baseline performance suggests that the scaling is a big

problem when using DTW and need to be addressed before the method can be widely

applicable. Our approach seems like a step in a good direction to solve the problem.

4.4 Conclusions and Future Work

In this chapter, we have proposed a new base caller DeepNano for MinION data, and we

also propose a variant of the DTW algorithm for matching MinION raw data to reference

sequence, having much higher speci�city at high sensitivity levels than current solutions.

DeepNano provided more accurate base calling on older versions of MinION sequencing

platform. For current version, it provides faster but slightly less accurate base calling

compared to the base caller provided by the device manufacturer. We think, that the

current role of DeepNano is not to compete with the o�cial base caller in accuracy, but

to provide a foundation for solving other niche problems, like �nding DNA methylation or

providing better base calling in cases where other base callers fail (these cases are frequently

reported from many laboratories).

There are also many avenues for improving base calling accuracy like, using ensembles

of multiple models, using raw unsegmented data, and adjusting architecture of the network.

Also, the speed of the base calling can be improved by a technique called dark knowledge

(Hinton et al., 2014, 2015) where we train a smaller network using data generated from

output probabilities of a larger network. This approach often leads to an improved accuracy
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for the smaller networks compared to training it directly on the training data. Another

approach to speed up the network, is to use quasi-recurrent neural networks (Bradbury

et al., 2016), which architecture is much more parallelizable and thus possibly faster than

ordinary recurrent neural networks.

We also plan to further improve raw signal indexing. Our goal is to develop a data

structure for indexing raw signals, where we could �rst preprocess target reference sequence

and then �nd candidate positions for possible signal matches for a query sequence, using

this index similarly as in classical sequence aligners (Li, 2013; Chaisson and Tesler, 2012;

Altschul et al., 1990; Kent, 2002).

Also, an interesting topic to study theoretically is a variation of DTW, where we allow

the algorithm to select best scaling and shift parameters.



Chapter 5

Conclusion

In this thesis, we have presented several algorithms related to sequence assembly.

In Chapter 2, we presented GAML assembly framework, which can seamlessly combine

multiple types of reads and has good theoretical foundation. There are many possibilities

for further research here. First, we believe that optimization procedure can be improved to

spend less time on obvious improvements (we can make obvious improvements to assembly

in parallel). Secondly, we believe that GAML needs more testing with even more types

of sequencing data (optical maps (Nagarajan et al., 2008), RNAseq (Wang et al., 2009),

etc.). Finally, the probabilistic model used in GAML can be improved to accomodate more

realistic model of errors, like chimeric reads, biases of particular technologies, etc.

In Chapter 3, we have presented two data structures for indexing either a long string

or a collection of short strings in such a way that we can quickly search for all positions of

a short �xed-length query. MH-index is an index for the long strings, which uses idea of

minimizers. While MH-index works in practice, little is known about theoretical properties

of methods based on minhashes. It would be interesting to study theoretical properties,

such as expected number of minimizers, etc. Also we think, that there is an interesting

possibility of combining the idea of minimizers with FM-indices to gain faster search times

in practice and still good theoretical guarantees in the worst case. We also presented CR-

index, a structure for querying collections of short reads. One open area for research, is to

directly support alignment of indexed reads to prede�ned sequence.

In Chapter 4, we studied problems related to Oxford Nanopore sequencer MinION.

First, we have developed our own base caller, DeepNano. It would be interesting to study

problems related to DNA methylation, either using supervised or unsupervised learning.

Also developing a fast and reasonably accurate base caller to be used in a �eld sequencing
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might be possible avenue for DeepNano. Lastly, we studied problems of aligning raw signal

data from the sequencer. Here, we demonstrated that naive scaling approaches combined

with DTW fail and proposed a better approach. Here, the obvious avenue of research, is

to develop an index for raw signal data, to improve the query time.
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