Substitution Models

Tomáš Vinař November 4, 2021

Substitution models, notation

 $P(b|a,t)$: probability that if we start with symbol a , after time t we will see symbol b

Transition probability matrix:

$$
S(t) = \begin{pmatrix} P(A|A,t) & P(C|A,t) & P(G|A,t) & P(T|A,t) \\ P(A|C,t) & P(C|C,t) & P(G|C,t) & P(T|C,t) \\ P(A|G,t) & P(C|G,t) & P(G|G,t) & P(T|G,t) \\ P(A|T,t) & P(C|T,t) & P(G|T,t) & P(T|T,t) \end{pmatrix}
$$

Substitution models, basic properties

 $\bullet S(0) = I$

$$
\bullet \lim_{t \to \infty} S(t) = \begin{pmatrix} \pi_A & \pi_C & \pi_G & \pi_T \\ \pi_A & \pi_C & \pi_G & \pi_T \\ \pi_A & \pi_C & \pi_G & \pi_T \\ \pi_A & \pi_C & \pi_G & \pi_T \end{pmatrix}
$$

Distribution π is called stationary (equilibrium)

 $\bullet \ \ S(t_1+t_2)=S(t_1)S(t_2) \ \text{(multiplicativity)}$

• Jukes-Cantor model should also satisfy

$$
S(t) = \begin{pmatrix} 1 - 3s(t) & s(t) & s(t) & s(t) & s(t) \\ s(t) & 1 - 3s(t) & s(t) & s(t) & s(t) \\ s(t) & s(t) & 1 - 3s(t) & s(t) & s(t) \\ s(t) & s(t) & s(t) & 1 - 3s(t) \end{pmatrix}
$$

$$
S(t) = \begin{pmatrix} 1 - 3s(t) & s(t) & s(t) & s(t) \\ s(t) & 1 - 3s(t) & s(t) & s(t) \\ s(t) & s(t) & 1 - 3s(t) & s(t) \\ s(t) & s(t) & s(t) & 1 - 3s(t) \end{pmatrix}
$$

$$
S(2t) = S(t)^2 =
$$
\n
$$
= \begin{pmatrix}\n1 - 6s(t) + 12s(t)^2 & 2s(t) - 4s(t)^2 & 2s(t) - 4s(t)^2 & 2s(t) - 4s(t)^2 \\
2s(t) - 4s(t)^2 & 1 - 6s(t) + 12s(t)^2 & 2s(t) - 4s(t)^2 & 2s(t) - 4s(t)^2 \\
2s(t) - 4s(t)^2 & 2s(t) - 4s(t)^2 & 1 - 6s(t) + 12s(t)^2 & 2s(t) - 4s(t)^2 \\
2s(t) - 4s(t)^2 & 2s(t) - 4s(t)^2 & 2s(t) - 4s(t)^2 & 1 - 6s(t) + 12s(t)^2\n\end{pmatrix}
$$
\n
$$
\approx \begin{pmatrix}\n1 - 6s(t) & 2s(t) & 2s(t) & 2s(t) \\
2s(t) & 1 - 6s(t) & 2s(t) & 2s(t) \\
2s(t) & 2s(t) & 1 - 6s(t) & 2s(t) \\
2s(t) & 2s(t) & 1 - 6s(t) & 1 - 6s(t)\n\end{pmatrix}
$$

for $t \to 0$

Substitution rate matrix (matica rýchlostí, matica intenzít)

\n- Substitution rate matrix for Jukes-Cantor model:
\n- \n
$$
R = \begin{pmatrix}\n -3\alpha & \alpha & \alpha & \alpha \\
 \alpha & -3\alpha & \alpha & \alpha \\
 \alpha & \alpha & -3\alpha & \alpha \\
 \alpha & \alpha & \alpha & -3\alpha\n \end{pmatrix}
$$
\n
\n

- $\bullet\,$ For very small t we have $S(t)\approx I+Rt$
- $\bullet\,$ Rate α is the probablity of a change per unit of time for very small t , or derivative of $s(t)$ with respect to t at $t=0$
- Solving the differential equation for the Jukes-Cantor model ^w e $\textsf{get}\,\, s(t) = (1-e)$ $\frac{-4\alpha t}{4}$

Jukes-Cantor model

$$
S(t) = \begin{pmatrix} (1+3e^{-4\alpha t})/4 & (1-e^{-4\alpha t})/4 & (1-e^{-4\alpha t})/4 & (1-e^{-4\alpha t})/4 \\ (1-e^{-4\alpha t})/4 & (1+3e^{-4\alpha t})/4 & (1-e^{-4\alpha t})/4 & (1-e^{-4\alpha t})/4 \\ (1-e^{-4\alpha t})/4 & (1-e^{-4\alpha t})/4 & (1+3e^{-4\alpha t})/4 & (1-e^{-4\alpha t})/4 \\ (1-e^{-4\alpha t})/4 & (1-e^{-4\alpha t})/4 & (1-e^{-4\alpha t})/4 & (1+3e^{-4\alpha t})/4 \end{pmatrix}
$$

The rate matrix is typically normalized so that there is on average one substitution per unit of time, here $\alpha = 1/3$

Jukes-Cantor model, summary

- $\bullet\; \; S(t) \colon \mathsf{matrix}\;4 \times 4,$ where $S(t)_{a,b} = P(b|a,t)$ is the probability that if we start with base a , after time t we have base b .
- $\bullet\,$ Jukes-Cantor model assumes that $P(b|a,t)$ is the same for all $a\neq b$
- $\bullet\,$ For a given time t , off-diagonal elements are $s(t)$, diagonal $1-3s(t)$
- $\bullet\,$ Rate matrix R : for J-C off-diagonal α , diagonal -3α
- $\bullet\,$ For very small t we have $S(t)\approx I-Rt$
- $\bullet~$ Rate α is the probablity of a change per unit of time for very small $t,$ or derivative of $s(t)$ with respect to t for $t=0$
- Solving the differential equation for the Jukes-Cantor model, we get $s(t)=(1-e)$ $\frac{-4\alpha t}{4}$
- The rate matrix is typically normalized so that there is on average one substitution per unit of time, that is, $\alpha=1/3$

Correction of evolutionary distances

$$
\Pr(X_{t_0+t} = C \,|\, X_{t_0} = A) = \frac{1}{4}(1 - e^{-\frac{4}{3}t})
$$

The expected number of observed changes per base in time t : $D(t) = \Pr(X_{t_0+t} \neq X_{t_0}) = \frac{3}{4}(1-e)$ − 4 $\frac{4}{3}t\big)$

Branch length (time)

Correction of observed distances

$$
D = \frac{3}{4} \left(1 - e^{-\frac{4}{3}t} \right) \qquad \Rightarrow \qquad t = -\frac{3}{4} \ln \left(1 - \frac{4}{3}D \right)
$$

More complex models

• General rate matrix R

$$
R = \left(\begin{array}{cccc} \cdot & \mu_{AC} & \mu_{AG} & \mu_{AT} \\ \mu_{CA} & \cdot & \mu_{CG} & \mu_{CT} \\ \mu_{GA} & \mu_{GC} & \cdot & \mu_{GT} \\ \mu_{TA} & \mu_{TC} & \mu_{TG} & \cdot \end{array}\right)
$$

• μ_{xy} is the rate at which base x changes to a different base y

• Namely,
$$
\mu_{xy} = \lim_{t \to 0} \frac{\Pr(y \mid x, t)}{t}
$$

- The diagonal is added so that the sum of each row is 0
- There are models with ^a smaller number of parameters (compromise between J-C and an arbitrary matrix)

Kimura model

- A and G are purines, C and T pyrimidines
- Purines more often change to other purines and pyrimidines to pyrimidines
- Transition: change within group $A \Leftrightarrow G, C \Leftrightarrow T$, Transversion: change to a different group $\{A, G\} \Leftrightarrow \{C, T\}$
- Two parameters: rate of transitions α , rate of transversions β

$$
\bullet \ \ R = \left(\begin{array}{cccc} -2\beta-\alpha & \beta & \alpha & \beta \\ \beta & -2\beta-\alpha & \beta & \alpha \\ \alpha & \beta & -2\beta-\alpha & \beta \\ \beta & \alpha & \beta & -2\beta-\alpha \end{array}\right)
$$

HKY model (Hasegawa, Kishino, Yano)

- Extension of Kimura model, which allows different probabilities of A, C, G, ^T in the equilibrium
- If we set time to infinity, original base is not important, base frequencies stabilize in an equilibrium.
- Jukes-Cantor has probability of each base in the equilibrium 1/4.
- $\bullet\,$ In HKY the equilibrium frequencies π_A,π_C,π_G,π_T are parameters (summing to 1)
- $\bullet\,$ Parameter $\kappa\colon$ transition $/$ transversion ratio (α/β)
- Rate matrix: at
1

 $\mu_{x,y} =$ $\left\{\right.$ $\begin{matrix} \end{matrix}$ $\kappa\pi_y$) if mutation from x to y is transition π_y if mutation from x to y is transversion

From rate matrix R to transition probabilities $S(t)$

- J-C and some other models have explicit formulas for $S(t)$
- For more complex models, such formulas are not available
- In general, $S(t) = e^{Rt}$
- Exponential of a matrix A is defined as $e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$
- If R is diagonalized $R = UDU^{-1}$, where D is a diagonal matrix, then $e^{Rt} = Ue^{Dt}U^{-1}$ and the exponential function is applied to the diagnal elements of D
- Diagonalization always exists for symmetric matrices R (the diagonal contains eigenvalues)