Algorithms for HMMs

Broña Brejová October 28, 2021

Recall: HMM (hidden Markov model, skrytý Markovov model)

Pr(S, A) – probability that the model generates pair (S, A).

Assume the model starts in the blue state

 $\Pr(\texttt{aCag}) = 0.27 \cdot 0.001 \cdot 0.27 \cdot 0.99 \cdot 0.24 \cdot 0.99 \cdot 0.28 = 4.8 \cdot 10^{-6}$ $\Pr(\texttt{aCag}) = 0.27 \cdot 0.999 \cdot 0.23 \cdot 0.999 \cdot 0.27 \cdot 0.999 \cdot 0.23 = 0.0038$

Another toy example: weather

- Period of low atmospheric pressure: mostly raining
- Period of high atmospheirc pressure: mostly sunny

Each period typically lasts several days

Exercise: Represent by an HMM

Recall: Parameters of HMMs (notation)

Sequence $S = S_1, \ldots, S_n$ Annotation $A = A_1, \ldots, A_n$

Model parameters:

Transition probability $a(u, v) = \Pr(A_{i+1} = v | A_i = u)$, Emission probability $e(u, x) = \Pr(S_i = x | A_i = u)$, Starting probability $\pi(u) = \Pr(A_1 = u)$.

a				e	а	С	g	t
	0.99	0.007	0.003		0.24	0.27	0.28	0.21
	0.01	0.99	0		0.26	0.22	0.22	0.30
	0.001	0	0.999		0.27	0.23	0.23	0.27

The resulting probability:

 $\Pr(A, S) = \pi(A_1)e(A_1, S_1) \prod_{i=2}^n a(A_{i-1}, A_i)e(A_i, S_i)$

For a given HMM and sequence S, find the most probable annotation (state path) $A = \arg \max_A \Pr(A, S) = \arg \max_A \Pr(A \mid S)$

Any ideas?

Recall our example:

 $\Pr(\texttt{aCag}) = 0.27 \cdot 0.001 \cdot 0.27 \cdot 0.99 \cdot 0.24 \cdot 0.99 \cdot 0.28 = 4.8 \cdot 10^{-6}$ $\Pr(\texttt{aCag}) = 0.27 \cdot 0.999 \cdot 0.23 \cdot 0.999 \cdot 0.27 \cdot 0.999 \cdot 0.23 = 0.0038$

Find the most probable state path $A = \arg \max_A \Pr(A, S)$

Subproblem V[u, i]: probability of the most probable state path generating $S_1 S_2 \dots S_i$ and ending in state u

Subproblem V[u, i]: probability of the most probable state path generating $S_1 S_2 \dots S_i$ and ending in state u

Recurrence?

V[u,1] =

V[u,i] =

Recall notation:

Sequence $S = S_1, \ldots, S_n$, annotation $A = A_1, \ldots, A_n$ Transition probability $a(u, v) = \Pr(A_{i+1} = v | A_i = u)$, Emission probability $e(u, x) = \Pr(S_i = x | A_i = u)$, Starting probability $\pi(u) = \Pr(A_1 = u)$. $\Pr(A, S) = \pi(A_1)e(A_1, S_1) \prod_{i=2}^n a(A_{i-1}, A_i)e(A_i, S_i)$

Subproblem V[u, i]: probability of the most probable state path generating $S_1 S_2 \dots S_i$ and ending in state u

Recurrence:

 $V[u,1] = \pi_u \cdot e_{u,S_1}$ $V[u,i] = \max_w V[w,i-1] \cdot a_{w,u} \cdot e_{u,S_i}$

Algorithm, final answer, running time?

Recall notation:

Sequence $S = S_1, \ldots, S_n$, annotation $A = A_1, \ldots, A_n$ Transition probability $a(u, v) = \Pr(A_{i+1} = v | A_i = u)$, Emission probability $e(u, x) = \Pr(S_i = x | A_i = u)$, Starting probability $\pi(u) = \Pr(A_1 = u)$. $\Pr(A, S) = \pi(A_1)e(A_1, S_1)\prod_{i=2}^n a(A_{i-1}, A_i)e(A_i, S_i)$

Viterbi algorithm (overview)

Goal: Find the most probable state path $A = \arg \max_A \Pr(A, S)$

Subproblem V[u, i]: probability of the most probable state path generating $S_1 S_2 \dots S_i$ and ending in state u

Recurrence:

$$V[u,1] = \pi_u \cdot e_{u,S_1}$$

$$V[u,i] = \max_w V[w,i-1] \cdot a_{w,u} \cdot e_{u,S_i}$$

Algorithm:

```
Initialize V[*, 1]
for i = 2...n (n=length of S)
for u = 1...m (m =number of states)
compute V[u, i], keep best w in B[u, i]
Maximum V[u, n] over all u is max<sub>A</sub> Pr(A, S)
Retrieve the full path using matrix B
```

Dynamic programming in ${\cal O}(nm^2)$ time

Second problem: overall probability of S

Viterbi computes $\arg \max_A \Pr(A, S)$ Now we want $\Pr(S) = \sum_A \Pr(A, S)$ Usefull e.g. to compare different models, which is more likely to produce S

Any ideas?

Recall our example:

 $\Pr(\texttt{aCag}) = 0.27 \cdot 0.001 \cdot 0.27 \cdot 0.99 \cdot 0.24 \cdot 0.99 \cdot 0.28 = 4.8 \cdot 10^{-6}$ $\Pr(\texttt{aCag}) = 0.27 \cdot 0.999 \cdot 0.23 \cdot 0.999 \cdot 0.27 \cdot 0.999 \cdot 0.23 = 0.0038$

Forward algorithm (dopredný algoritmus)

Computes overall probability that the model emits S $\Pr(S) = \sum_A \Pr(A,S)$

Subproblem F[u, i]: probability that in i steps we generate $S_1, S_2, \ldots S_i$ and end in state u.

$$F[u, i] = \Pr(A_i = u \land S_1, S_2, \dots, S_i) = \sum_{A_1, \dots, A_{i-1}, A_i = u} \Pr(A_1, A_2, \dots, A_i \land S_1, S_2, \dots, S_i)$$

Recurrence?

$$F[u,1] = F[u,i] =$$

Recall Viterbi recurrence:

$$V[u,1] = \pi_u \cdot e_{u,S_1}$$
$$V[u,i] = \max_w V[w,i-1] \cdot a_{w,u} \cdot e_{u,S_i}$$

Forward algorithm

Computes overall probability that the model emits S $\Pr(S) = \sum_{A} \Pr(A, S)$

Subproblem F[u, i]: probability that in i steps we generate $S_1, S_2, \ldots S_i$ and end in state u.

Recurrence:

$$F[u,1] = \pi_u \cdot e_{u,S_1}$$

$$F[u,i] = \sum_w F[w,i-1] \cdot a_{w,u} \cdot e_{u,S_i}$$

Recall Viterbi recurrence:

$$V[u,1] = \pi_u \cdot e_{u,S_1}$$
$$V[u,i] = \max_w V[w,i-1] \cdot a_{w,u} \cdot e_{u,S_i}$$

Forward algorithm

Computes overall probability that the model emits S $\Pr(S) = \sum_A \Pr(A,S)$

Subproblem F[u, i]: probability that in i steps we generate $S_1, S_2, \ldots S_i$ and end in state u.

Recurrence:

$$F[u, 1] = \pi_u \cdot e_{u, S_1}$$

$$F[u, i] = \sum_w F[w, i - 1] \cdot a_{w, u} \cdot e_{u, S_i}$$

Result? $\Pr(S) =$
Running time?

Forward algorithm

Computes overall probability that the model emits S $\Pr(S) = \sum_A \Pr(A,S)$

Subproblem F[u, i]: probability that in i steps we generate $S_1, S_2, \ldots S_i$ and end in state u.

Recurrence:

$$F[u, 1] = \pi_u \cdot e_{u, S_1}$$

$$F[u, i] = \sum_w F[w, i - 1] \cdot a_{w, u} \cdot e_{u, S_i}$$
Result $\Pr(S) = \sum_u F[u, n]$
Running time $O(nm^2)$

Third problem: probability that S_i was generated in state u

$$\Pr(A_i = u \mid S) = \frac{\Pr(A_i = u, S)}{\Pr(S)}$$
$$\Pr(A_i = u, S) = \sum_{A:A_i = u} \Pr(A, S)$$

Compute this by a combination of forward and backward algorithms F[u, i]: probability that in i steps we generate S_1, S_2, \ldots, S_i and end in state u.

B[u,i]: probability that if we start at u at position i, we will generate $S_{i+1} \ldots, S_n$ in the next steps

 $\Pr(A_i = u, S) = F[u, i] \cdot B[u, i]$

Backward algorithm (spätný algoritmus)

Forward algorithm F[u, i]: probability that in *i* steps we generate $S_1, S_2, \ldots S_i$ and end in state *u*.

$$F[u,1] = \pi_u \cdot e_{u,S_1}$$

$$F[u,i] = \sum_w F[w,i-1] \cdot a_{w,u} \cdot e_{u,S_i}$$

Backward algorithm B[u, i]: probability that if we start at u at position i, we will generate $S_{i+1} \ldots, S_n$ in the next steps

How to compute B[u, i]?

Backward algorithm (spätný algoritmus)

Forward algorithm F[u, i]: probability that in *i* steps we generate $S_1, S_2, \ldots S_i$ and end in state *u*.

$$F[u,1] = \pi_u \cdot e_{u,S_1}$$

$$F[u,i] = \sum_w F[w,i-1] \cdot a_{w,u} \cdot e_{u,S_i}$$

Backward algorithm B[u, i]: probability that if we start at u at position i, we will generate $S_{i+1} \ldots, S_n$ in the next steps

$$B[u,n] = 1$$

$$B[u,i] = \sum_{w} F[w,i+1] \cdot a_{u,w} \cdot e_{w,S_{i+1}}$$

Exercise: How to use matrix B to compute Pr(S)?

Posterior decoding

Using forward/backward we can compute $Pr(A_i = u \mid S)$ for each u and i (posterior probabilities of states) in $O(nm^2)$ overall time

We can also select A such that $A_i = \max_i \Pr(A_i = u \mid S)$ Advantage: This takes into account suboptimal state paths Disadvantage: $\Pr(A \mid S)$ can be zero or very low

Another option: use posterior probabilities to assign confidence to parts of prediction from Viterbi

Recall: Finding genes with HMMs

Pr(S, A) – probability that the model generates pair (S, A).

- Determine states and transitions of the model: by hand based on your knowledge about the gene structure
- Parameter training: emission and transition probabilities are determined based on the real sequences with known genes (training set)
- Use: for a new sequence S, find the most probable annotation $A = \arg \max_A \Pr(A|S)$ Viterbi algorithm in $O(nm^2)$ (dynamic programming)

Parameter training

- States and allowed transitions typically manually
- Probabilities of transition, emission, starting usually automatically from training adata
- More complex models with more parameters need more training data
 Otherwise overfitting: model fits training data very well but behaves poorly on unseen examples
- To test acurracy of the model use a separate testing set not used for training.

HMM parameter training from annotated sequences

Input: state diagram of the model and a training set of sequences and state paths $(S^{(1)}, A^{(1)}), (S^{(2)}, A^{(2)}), \ldots$

Goal: choose parameters maximalizing their likelihood in the model $\arg \max_{a,e,\pi} \prod_i \Pr(S^{(i)}, A^{(i)} | a, e, \pi)$

This is achieved by using observed frequencies

Fir example $a_{u,v}$: find all occurrences of state u and find out how often is it followed by v

HMM parameter training from unannotated sequences

Input: state diagram of the model and a training set of sequences $S^{(1)},S^{(2)},\ldots$, state paths $A^{(1)}$ unknown

Goal: choose parameters maximalizing their likelihood in the model $\arg \max_{a,e,\pi} \prod_i \Pr(S^{(i)}|a,e,\pi)$

Baum-Welch algorithm (version of expectation maximization, EM). Iterative heuristic algorithm improving parameters until convergence. Each iteration forward and backward algorithms

Designing state diagram of HMM

Two examples

- How would you modify gene finding HMM so that intergenic regions have length at least 10?
 What about lengths of introns and exons?
- Create a model of prokaryotic genes without introns which are grouped into operons, each operon starting with a promoter containing sequence TATAAT 10bp before transcription start. Genes in an operon are separated by short untranslated regions.
 Operons are separated by some untranscribed regions.