Algorithms for HMMs

Broňa Brejová October 28, 2021

Recall: HMM (hidden Markov model, skrytý Markovov model)

 $\Pr(S,A)$ – probability that the model generates pair $(S,A).$

Assume the model starts in the blue state

 $\Pr(\texttt{aCag}) = 0.27 \cdot 0.001 \cdot 0.27 \cdot 0.99 \cdot 0.24 \cdot 0.99 \cdot 0.28 = 4.8 \cdot 10^{-6}$ $\Pr(\texttt{acag}) = 0.27 \cdot 0.999 \cdot 0.23 \cdot 0.999 \cdot 0.27 \cdot 0.999 \cdot 0.23 = 0.0038$

Another toy example: weather

- Period of low atmospheric pressure: mostly raining
- Period of high atmospheirc pressure: mostly sunny

Each period typically lasts several days

Exercise: Represent by an HMM

Recall: Parameters of HMMs (notation)

Sequence $S=S_1,\ldots,S_n$ Annotation $A=A_1,\ldots,A_n$

Model parameters:

Transition probability $a(u,v) = \Pr(A_{i+1}=v|A_i=u)$, Emission probability $e(u,x) = \Pr(S_i = x | A_i = u)$, Starting probability $\pi(u) = \Pr(A_1 = u).$

The resulting probability:

Fine resulting probability.
 $Pr(A, S) = \pi(A_1)e(A_1, S_1) \prod_{i=1}^{n}$ \overline{n} $\sum\limits_{i=2}^na(A_{i-1},A_i)e(A_i,S_i)$

For a given HMM and sequence S , find the most probable annotation (state path) $A = \arg \max_{A} \Pr(A, S) = \arg \max_{A} \Pr(A | S)$

Any ideas?

Recall our example:

 $Pr(\text{aCag}) = 0.27 \cdot 0.001 \cdot 0.27 \cdot 0.99 \cdot 0.24 \cdot 0.99 \cdot 0.28 = 4.8 \cdot 10^{-6}$ $Pr(\text{acag}) = 0.27 \cdot 0.999 \cdot 0.23 \cdot 0.999 \cdot 0.27 \cdot 0.999 \cdot 0.23 = 0.0038$

Find the most probable state path $A = \arg \max_A \Pr(A, S)$

Subproblem $V[u, i]$: probability of the most probable state path generating $S_1S_2 \ldots S_i$ and ending in state u

Subproblem $V[u, i]$: probability of the most probable state path generating $S_1S_2 \ldots S_i$ and ending in state u

Recurrence?

 $V[u, 1] =$

 $V[u, i] =$

Recall notation:

Sequence $S = S_1, \ldots, S_n$, annotation $A = A_1, \ldots, A_n$ Transition probability $a(u, v) = Pr(A_{i+1} = v | A_i = u)$, Emission probability $e(u, x) = Pr(S_i = x | A_i = u)$, Starting probability $\pi(u) = Pr(A_1 = u)$. $Pr(A, S) = \pi(A_1)e(A_1, S_1) \prod_{i=2}^n a(A_{i-1}, A_i)e(A_i, S_i)$

Subproblem $V[u, i]$: probability of the most probable state path generating $S_1S_2 \ldots S_i$ and ending in state u

Recurrence:

 $V[u, 1] = \pi_u \cdot e_{u, S_1}$ $V[u, i] = \max_{w} V[w, i - 1] \cdot a_{w, u} \cdot e_{u, S_i}$

Algorithm, final answer, running time?

Recall notation:

Sequence $S = S_1, \ldots, S_n$, annotation $A = A_1, \ldots, A_n$ Transition probability $a(u, v) = Pr(A_{i+1} = v | A_i = u)$, Emission probability $e(u, x) = Pr(S_i = x | A_i = u)$, Starting probability $\pi(u) = Pr(A_1 = u)$. $\Pr(A, S) = \pi(A_1)e(A_1, S_1) \prod_{i=2}^n a(A_{i-1}, A_i)e(A_i, S_i)$

Viterbi algorithm (overview)

Goal: Find the most probable state path $A = \argmax_{A} \Pr(A, S)$

 ${\bf Subproblem}$ $V[u,i]$: probability of the most probable state path generating $S_1S_2\ldots S_i$ and ending in state u

Recurrence:

$$
V[u, 1] = \pi_u \cdot e_{u, S_1}
$$

$$
V[u, i] = \max_w V[w, i - 1] \cdot a_{w, u} \cdot e_{u, S_i}
$$

Algorithm:

```
Initialize V[\ast,1]for i=2\ldots n (n=length of S)for u=1\ldots m (m=number of states)
compute V[u,i], keep best w in B[u,i]Maximum V[u,n] over all u is \max_{A} \Pr(A,S)Retrieve the full path using matrix B
```
Dynamic programming in $O(nm^2)$ time

Second problem: overall probability of S

Viterbi computes $\argmax_{A} \Pr(A, S)$ viterbi computes $\arg\max_{A} \Pr(A, S)$
Now we want $\Pr(S) = \sum_{A} \Pr(A, S)$ Usefull e.g. to compare different models, which is more likely to produce S

Any ideas?

Recall our example:

 $\Pr(\texttt{aCag}) = 0.27 \cdot 0.001 \cdot 0.27 \cdot 0.99 \cdot 0.24 \cdot 0.99 \cdot 0.28 = 4.8 \cdot 10^{-6}$ $\Pr(\texttt{acag}) = 0.27 \cdot 0.999 \cdot 0.23 \cdot 0.999 \cdot 0.27 \cdot 0.999 \cdot 0.23 = 0.0038$

Forward algorithm (dopredný algoritmus)

Computes overall probability that the model emits S Computes overall prob $\Pr(S) = \sum_{A} \Pr(A, S)$

 ${\bf Subproblem}$ $F[u,i]$: probability that in i steps we generate $S_1, S_2, \ldots S_i$ and end in state $u.$

$$
F[u, i] = Pr(A_i = u \wedge S_1, S_2, \dots, S_i) =
$$

$$
\sum_{A_1, \dots, A_{i-1}, A_i = u} Pr(A_1, A_2, \dots, A_i \wedge S_1, S_2, \dots, S_i)
$$

Recurrence?

$$
F[u,1] = F[u,i] =
$$

Recall Viterbi recurrence:

$$
V[u, 1] = \pi_u \cdot e_{u, S_1}
$$

$$
V[u, i] = \max_w V[w, i - 1] \cdot a_{w, u} \cdot e_{u, S_i}
$$

Forward algorithm

Computes overall probability that the model emits S $Pr(S) = \sum_{A} Pr(A, S)$

Subproblem $F[u, i]$: probability that in i steps we generate $S_1, S_2, \ldots S_i$ and end in state u .

Recurrence:

$$
F[u, 1] = \pi_u \cdot e_{u, S_1}
$$

$$
F[u, i] = \sum_w F[w, i - 1] \cdot a_{w, u} \cdot e_{u, S_i}
$$

Recall Viterbi recurrence:

$$
V[u, 1] = \pi_u \cdot e_{u, S_1}
$$

$$
V[u, i] = \max_w V[w, i - 1] \cdot a_{w, u} \cdot e_{u, S_i}
$$

Forward algorithm

Computes overall probability that the model emits S $\Pr(S) = \sum_{A} \Pr(A, S)$

Subproblem $F[u, i]$: probability that in i steps we generate $S_1, S_2, \ldots S_i$ and end in state u .

Recurrence:

$$
F[u, 1] = \pi_u \cdot e_{u, S_1}
$$

\n
$$
F[u, i] = \sum_w F[w, i - 1] \cdot a_{w, u} \cdot e_{u, S_i}
$$

\n**Result?** Pr(S) =
\n**Running time?**

Forward algorithm

Computes overall probability that the model emits S $Pr(S) = \sum_{A} Pr(A, S)$

Subproblem $F[u, i]$: probability that in i steps we generate $S_1, S_2, \ldots S_i$ and end in state u .

Recurrence:

$$
F[u, 1] = \pi_u \cdot e_{u, S_1}
$$

\n
$$
F[u, i] = \sum_w F[w, i - 1] \cdot a_{w, u} \cdot e_{u, S_i}
$$

\n**Result**
$$
Pr(S) = \sum_u F[u, n]
$$

\n**Running time**
$$
O(nm^2)
$$

Third problem: probability that S_i was generated in state u

$$
Pr(A_i = u | S) = \frac{Pr(A_i = u, S)}{Pr(S)} Pr(A_i = u, S) = \sum_{A: A_i = u} Pr(A, S)
$$

Compute this by ^a combination of forward and backward algorithms $F[u,i]$: probability that in i steps we generate $S_1, S_2, \ldots S_i$ and end in state u_{\cdot}

 $B[u,i]$: probability that if we start at u at position i , we will generate $S_{i+1} \ldots, S_n$ in the next steps

 $\Pr(A_i = u, S) = F[u, i] \cdot B[u, i]$

Backward algorithm (spätný algoritmus)

Forward algorithm $F[u,i]$: probability that in i steps we generate $S_1, S_2, \ldots S_i$ and end in state $u.$

$$
F[u, 1] = \pi_u \cdot e_{u, S_1}
$$

$$
F[u, i] = \sum_w F[w, i - 1] \cdot a_{w, u} \cdot e_{u, S_i}
$$

 ${\sf Backward}$ algorithm $B[u,i]$: probability that if we start at u at position i , we will generate $S_{i+1} \ldots, S_n$ in the next steps

How to compute $B[u,i]$?

Backward algorithm (spätný algoritmus)

Forward algorithm $F[u,i]$: probability that in i steps we generate $S_1, S_2, \ldots S_i$ and end in state $u.$

$$
F[u, 1] = \pi_u \cdot e_{u, S_1}
$$

$$
F[u, i] = \sum_w F[w, i - 1] \cdot a_{w, u} \cdot e_{u, S_i}
$$

 ${\sf Backward}$ algorithm $B[u,i]$: probability that if we start at u at position i , we will generate $S_{i+1} \ldots, S_n$ in the next steps

$$
B[u, n] = 1
$$

$$
B[u, i] = \sum_{w} F[w, i + 1] \cdot a_{u, w} \cdot e_{w, S_{i+1}}
$$

 $\boldsymbol{\mathsf{Exercise:}}$ How to use matrix B to compute $\Pr(S)?$

Posterior decoding

Using forward/backward we can compute $Pr(A_i = u | S)$ for each u and i (posterior probabilities of states) in $O(nm^2)$ overall time

We can also select A such that $A_i = \max_i \Pr(A_i = u \mid S)$ Advantage: This takes into account suboptimal state paths Disadvantage: $Pr(A \mid S)$ can be zero or very low

Another option: use posterior probabilities to assign confidence to parts of prediction from Viterbi

Recall: Finding genes with HMMs

 $\Pr(S,A)$ – probability that the model generates pair $(S,A).$

- Determine states and transitions of the model: by hand based on your knowledge about the gene structure
- Parameter training: emission and transition probabilities are determined based on the real sequences with known genes (training set)
- \bullet Use: for a new sequence S, find the most probable annotation $A = \argmax_{A} \Pr(A|S)$ Viterbi algorithm in $O(nm^2)$ (dynamic programming)

Parameter training

- States and allowed transitions typically manually
- Probabilities of transition, emission, starting usually automatically from training adata
- More complex models with more parameters need more training data Otherwise overfitting: model fits training data very well but

behaves poorly on unseen examples

• To test acurracy of the model use a separate testing set not used for training.

HMM parameter training from annotated sequences

Input: state diagram of the model and a training set of sequences and state paths $(S^{(1)},A^{(1)}),(S^{(2)},A^{(2)}),\ldots$

Goal: choose parameters maximalizing their likelihood in the model arg max_{a,e, $\pi \prod_i \Pr(S^{(i)}, A^{(i)} | a, e, \pi)$}

This is achieved by using observed frequencies

Fir example $a_{u,v}$: find all occurrences of state u and find out how often is it followed by v

HMM parameter training from unannotated sequences

Input: state diagram of the model and a training set of sequences $S^{(1)}, S^{(2)}, \ldots$, state paths $A^{(1)}$ unknown

Goal: choose parameters maximalizing their likelihood in the model arg max_{a,e, $\pi \prod_i \Pr(S^{(i)} | a, e, \pi)$}

Baum-Welch algorithm (version of expectation maximization, EM). Iterative heuristic algorithm improving parameters until convergence. Each iteration forward and backward algorithms

Designing state diagram of HMM

Two examples

- How would you modify gene finding HMM so that intergenic regions have length at least 10? What about lengths of introns and exons?
- Create ^a model of prokaryotic genes without introns which are grouped into operons, each operon starting with ^a promoter containing sequence TATAAT 10bp before transcription start. Genes in an operon are separated by short untranslated regions. Operons are separated by some untranscribed regions.