
Algorithms for HMMs

Broňa Brejová

October 28, 2021

1



Recall: HMM (hidden Markov model, skrytý Markovov model)

model

(HMM)
random DNA sequence S, random annotation A

(similar to real DNA)

Pr(S,A) – probability that the model generates pair (S,A).

a:0.24
c:0.27
g:0.28
t:0.21

a:0.27
c:0.23
g:0.23
t:0.27

a:0.26
c:0.22
g:0.22
t:0.30

0.007

0.999

0.001

0.99 0.99

0.003 0.01

Assume the model starts in the blue state

Pr(acag) = 0.27 · 0.001 · 0.27 · 0.99 · 0.24 · 0.99 · 0.28 = 4.8 · 10−6

Pr(acag) = 0.27 · 0.999 · 0.23 · 0.999 · 0.27 · 0.999 · 0.23 = 0.0038

2



Another toy example: weather

• Period of low atmospheric pressure: mostly raining

• Period of high atmospheirc pressure: mostly sunny

Each period typically lasts several days

Exercise: Represent by an HMM

3



Recall: Parameters of HMMs (notation)

Sequence S = S1, . . . , Sn

Annotation A = A1, . . . , An

Model parameters:

Transition probability a(u, v) = Pr(Ai+1 = v|Ai = u),

Emission probability e(u, x) = Pr(Si = x|Ai = u),

Starting probability π(u) = Pr(A1 = u).

a

0.99 0.007 0.003

0.01 0.99 0

0.001 0 0.999

e a c g t

0.24 0.27 0.28 0.21

0.26 0.22 0.22 0.30

0.27 0.23 0.23 0.27

The resulting probability:

Pr(A,S) = π(A1)e(A1, S1)
∏n

i=2 a(Ai−1, Ai)e(Ai, Si)

4



Viterbi algorithm

For a given HMM and sequence S,

find the most probable annotation (state path)

A = argmaxA Pr(A,S) = argmaxA Pr(A |S)

Any ideas?

Recall our example:

Pr(acag) = 0.27 · 0.001 · 0.27 · 0.99 · 0.24 · 0.99 · 0.28 = 4.8 · 10−6

Pr(acag) = 0.27 · 0.999 · 0.23 · 0.999 · 0.27 · 0.999 · 0.23 = 0.0038

5



Viterbi algorithm

Find the most probable state path A = argmaxA Pr(A,S)

Subproblem V [u, i]: probability of the most probable state path

generating S1S2 . . . Si and ending in state u

a:0.24
c:0.27
g:0.28
t:0.21

a:0.27
c:0.23
g:0.23
t:0.27

a:0.26
c:0.22
g:0.22
t:0.30

0.007

0.999

0.001

0.99 0.99

0.003 0.01

V [u, i] a c a g

6



Viterbi algorithm

Subproblem V [u, i]: probability of the most probable state path

generating S1S2 . . . Si and ending in state u

Recurrence?

V [u, 1] =

V [u, i] =

Recall notation:

Sequence S = S1, . . . , Sn, annotation A = A1, . . . , An

Transition probability a(u, v) = Pr(Ai+1 = v|Ai = u),

Emission probability e(u, x) = Pr(Si = x|Ai = u),

Starting probability π(u) = Pr(A1 = u).

Pr(A,S) = π(A1)e(A1, S1)
∏n

i=2 a(Ai−1, Ai)e(Ai, Si)

7



Viterbi algorithm

Subproblem V [u, i]: probability of the most probable state path

generating S1S2 . . . Si and ending in state u

Recurrence:

V [u, 1] = πu · eu,S1

V [u, i] = maxw V [w, i− 1] · aw,u · eu,Si

Algorithm, final answer, running time?

Recall notation:

Sequence S = S1, . . . , Sn, annotation A = A1, . . . , An

Transition probability a(u, v) = Pr(Ai+1 = v|Ai = u),

Emission probability e(u, x) = Pr(Si = x|Ai = u),

Starting probability π(u) = Pr(A1 = u).

Pr(A,S) = π(A1)e(A1, S1)
∏n

i=2 a(Ai−1, Ai)e(Ai, Si)

8



Viterbi algorithm (overview)

Goal: Find the most probable state path A = argmaxA Pr(A,S)

Subproblem V [u, i]: probability of the most probable state path

generating S1S2 . . . Si and ending in state u

Recurrence:

V [u, 1] = πu · eu,S1

V [u, i] = maxw V [w, i− 1] · aw,u · eu,Si

Algorithm:

Initialize V [∗, 1]

for i = 2 . . . n (n=length of S)

for u = 1 . . .m (m =number of states)

compute V [u, i], keep best w in B[u, i]

Maximum V [u, n] over all u is maxA Pr(A,S)

Retrieve the full path using matrix B

Dynamic programming in O(nm2) time

9



Second problem: overall probability of S

Viterbi computes argmaxA Pr(A,S)

Now we want Pr(S) =
∑

A Pr(A,S)

Usefull e.g. to compare different models, which is more likely to

produce S

Any ideas?

Recall our example:

Pr(acag) = 0.27 · 0.001 · 0.27 · 0.99 · 0.24 · 0.99 · 0.28 = 4.8 · 10−6

Pr(acag) = 0.27 · 0.999 · 0.23 · 0.999 · 0.27 · 0.999 · 0.23 = 0.0038

10



Forward algorithm (dopredný algoritmus)

Computes overall probability that the model emits S

Pr(S) =
∑

A Pr(A,S)

Subproblem F [u, i]: probability that in i steps we generate

S1, S2, . . . Si and end in state u.

F [u, i] = Pr(Ai = u ∧ S1, S2, . . . , Si) =
∑

A1,...,Ai−1,Ai=u Pr(A1, A2, ..., Ai ∧ S1, S2, ..., Si)

Recurrence?

F [u, 1] =

F [u, i] =

Recall Viterbi recurrence:

V [u, 1] = πu · eu,S1

V [u, i] = maxw V [w, i− 1] · aw,u · eu,Si

11



Forward algorithm

Computes overall probability that the model emits S

Pr(S) =
∑

A Pr(A,S)

Subproblem F [u, i]: probability that in i steps we generate

S1, S2, . . . Si and end in state u.

Recurrence:

F [u, 1] = πu · eu,S1

F [u, i] =
∑

w F [w, i− 1] · aw,u · eu,Si

Recall Viterbi recurrence:

V [u, 1] = πu · eu,S1

V [u, i] = maxw V [w, i− 1] · aw,u · eu,Si

12



Forward algorithm

Computes overall probability that the model emits S

Pr(S) =
∑

A Pr(A,S)

Subproblem F [u, i]: probability that in i steps we generate

S1, S2, . . . Si and end in state u.

Recurrence:

F [u, 1] = πu · eu,S1

F [u, i] =
∑

w F [w, i− 1] · aw,u · eu,Si

Result? Pr(S) =

Running time?

13



Forward algorithm

Computes overall probability that the model emits S

Pr(S) =
∑

A Pr(A,S)

Subproblem F [u, i]: probability that in i steps we generate

S1, S2, . . . Si and end in state u.

Recurrence:

F [u, 1] = πu · eu,S1

F [u, i] =
∑

w F [w, i− 1] · aw,u · eu,Si

Result Pr(S) =
∑

u F [u, n]

Running time O(nm2)

14



Third problem: probability that Si was generated in state u

Pr(Ai = u |S) = Pr(Ai=u,S)
Pr(S)

Pr(Ai = u, S) =
∑

A:Ai=u Pr(A,S)

Compute this by a combination of forward and backward algorithms

F [u, i]: probability that in i steps we generate S1, S2, . . . Si and end in

state u.

B[u, i]: probability that if we start at u at position i, we will generate

Si+1 . . . , Sn in the next steps

Pr(Ai = u, S) = F [u, i] ·B[u, i]

15



Backward algorithm (spätný algoritmus)

Forward algorithm F [u, i]: probability that in i steps we generate

S1, S2, . . . Si and end in state u.

F [u, 1] = πu · eu,S1

F [u, i] =
∑

w F [w, i− 1] · aw,u · eu,Si

Backward algorithm B[u, i]: probability that if we start at u at

position i, we will generate Si+1 . . . , Sn in the next steps

How to compute B[u, i]?

16



Backward algorithm (spätný algoritmus)

Forward algorithm F [u, i]: probability that in i steps we generate

S1, S2, . . . Si and end in state u.

F [u, 1] = πu · eu,S1

F [u, i] =
∑

w F [w, i− 1] · aw,u · eu,Si

Backward algorithm B[u, i]: probability that if we start at u at

position i, we will generate Si+1 . . . , Sn in the next steps

B[u, n] = 1

B[u, i] =
∑

w F [w, i+ 1] · au,w · ew,Si+1

Exercise: How to use matrix B to compute Pr(S)?

17



Posterior decoding

Using forward/backward we can compute

Pr(Ai = u |S) for each u and i (posterior probabilities of states)

in O(nm2) overall time

We can also select A such that Ai = maxi Pr(Ai = u |S)

Advantage: This takes into account suboptimal state paths

Disadvantage: Pr(A |S) can be zero or very low

Another option: use posterior probabilities to assign confidence to

parts of prediction from Viterbi

18



Recall: Finding genes with HMMs

model

(HMM)
random DNA sequence S, random annotation A

(similar to real DNA)

Pr(S,A) – probability that the model generates pair (S,A).

• Determine states and transitions of the model: by hand based

on your knowledge about the gene structure

• Parameter training: emission and transition probabilities are

determined based on the real sequences with known genes

(training set)

• Use: for a new sequence S, find the most probable annotation

A = argmaxA Pr(A|S)

Viterbi algorithm in O(nm2) (dynamic programming)

19



Parameter training

• States and allowed transitions typically manually

• Probabilities of transition, emission, starting usually automatically

from training adata

• More complex models with more parameters need more training

data

Otherwise overfitting: model fits training data very well but

behaves poorly on unseen examples

• To test acurracy of the model use a separate testing set not used

for training.

20



HMM parameter training from annotated sequences

Input: state diagram of the model and a training set of sequences and

state paths (S(1), A(1)), (S(2), A(2)), . . .

Goal: choose parameters maximalizing their likelihood in the model

argmaxa,e,π
∏

i Pr(S
(i), A(i)|a, e, π)

This is achieved by using observed frequencies

Fir example au,v : find all occurrences of state u and find out how

often is it followed by v

21



HMM parameter training from unannotated sequences

Input: state diagram of the model and a training set of sequences

S(1), S(2), . . ., state paths A(1) unknown

Goal: choose parameters maximalizing their likelihood in the model

argmaxa,e,π
∏

i Pr(S
(i)|a, e, π)

Baum-Welch algorithm (version of expectation maximization, EM).

Iterative heuristic algorithm improving parameters until convergence.

Each iteration forward and backward algorithms

22



Designing state diagram of HMM

We have seen example of gene finding
translation start

donor4
acceptor4

donor5
intron5

acceptor5

donor3
intron3

acceptor3

acceptor0
intron0

donor0

acceptor1
intron1

donor1

acceptor2
intron2

donor2
translation start

Reverse strand Forward strand

translation stop translation stop

intron4

exon intergenic exon

23



Two examples

• How would you modify gene finding HMM so that intergenic

regions have length at least 10?

What about lengths of introns and exons?

• Create a model of prokaryotic genes without introns

which are grouped into operons,

each operon starting with a promoter containing sequence

TATAAT 10bp before transcription start.

Genes in an operon are separated by short untranslated regions.

Operons are separated by some untranscribed regions.

24


